

BS301 Acoustics Week 6-10

Study online at quizlet.com/_3frjg

a barriers attentuation depends on its	PATH LENGTH DIFFERENCE	17. effective barriers require what surface density and cannot have	10-20kg/m2 any gaps or holes
2. a normal articulation index is	0.05 - 0.20	18. formula for RESONATOR ABSORBERS	resonator freq = $c/(2 \times \pi) \times \sqrt{s}/(1 \times V)$ where $c = \text{speed of }$ sound (m/s) s = cross secitonal neck area (m^2) 1 = length of neck (m) V = volume of
3. a sound which has only ONE FREQUENCY is known as a	PURETONE		
4. absorption of a surface is calculated by	surface area (S) x absorption coefficient (\propto)		
5. according to SABINE what is a perfect reflector	0		
according to SABINE, what is a perfect absorber	1	19. four scales of community noise	cavity (m ³) Leq - equivalent
7. acoustic boot	an air diverter, diverts air through insulation	measurement	continuous sound level Ldn - day-night average sound level (weighted Leq, +10db) Lax - single event noise exposure, eg Leq of 1 second
an articulation index of 0.00 - 0.05 would be	confidential		
9. an articulation index of 0.50 - 1.00 would be	nil		
10. avoid spaces with	the depth exceeds twice the height - to prevent sound shadows		
11. community noise can be assessed by TWO METHODS	1.sound level assessment 2.a police officer		Lx - noise level exceeded x% of time
12. cross talk occurs when	two rooms are linked by common ductwork, a redesign of ductwork may be necessary	20. how long can you be exposed to 85dB	8hours
		21. how long can you be exposed to 100dB	15min
13. d'is what and when is it needed	it the the DIRECT DISTANCE from OBSERVER TO ROAD height of receiver ² +distance to road ² = $\sqrt{d'}$ it is need when using the correction over SOFT GROUND	22. how long can you be exposed to 130dB	1 sec
		23. how man y m/sec does sound progapate	~344m/sec
		24. how man ydB increase is needed for a sound to become significantly lounder	8dB
14. define flutter echo	RAPID SMALL ECHOES following a short sound beware of PARALLEL WALLS	25. how much attenuation is there AFTER 6m distance for OPEN PLAN offices	6dB per DOUBLING OF DISTANCE
15. define PERFORATED PANEL ABSORBERS	a PUNCHED PANEL w an ENCLOSED AIR SPACE between the panel and the wall	26. how much attenuation is there	-20log10(r) 3dB
16. design rule of thumb	1.15-20% of total floor area served	between 2-6m distance for OPEN PLAN offices	-10log10(r)
for plant rooms	by plant room 2.min 11m dimension on one wall regardless of plant room size 3.1% of floor area served for cross- section of both supply & return ducts 4.boundary walls, floors, ceilings Rw50	27. how much attenuation is there for each DOUBLING of the distance from the source up to 2m for OPEN PLAN offices	6dB -20log10(r)
		28. if a change in resonant frequency is required for a PANEL ABSORBER, what can be done	change mounting system, make tighter, less vibration

 29. if a sabine number is bigger it is a better 30. In DAYTIME - HIGH temperature at ground level so 31. in NIGHT - LOW temp at ground level so 32. name some measures to prevent reverberant echos 33. name two types of sound fields 	sound travels FASTER at ground level, SLOWER HIGH UP sound travels LOWER at ground level, FASTER high up 1. use non-parallel walls 2. use absorbant rear wall 3. no aisle walkway along longitudinal axis 4. floor area & volume kept to a minimum direct, reflected	 43. sound absorbers are dependant on 44. sound reflectors are dependant on 45. sound waves at GROUND LEVEL travel 46. SPEECH PRIVACY depends on 3 things 	1. porosity 2. flow resistance 3. structure factor 4. mounting condition size SLOWER 1.SPEECH LEVEL of the SOURCE 2.NOISE REDUCTION achieved between source- receiver locations 3.BACKGROUND noise level at
membrane) 3.fissured ceilir backing 4.RESONATOF (helmholtz) 5.PERFORATE ABSORBERS	2.PANEL ABSORBERS (thin membrane) 3.fissured ceiling tile on solid backing	47. SPEED of SOUND with temperature 48. supply and return air	the receiver location INCREASES 37dB
	5.PERFORATED PANEL ABSORBERS	should not exceed 49. the ARTICULATION INDEX is a measure of o- 1. What is o and what is 1	o - CONFIDENTIAL, can hardly hear conversation 1 - NO PRIVACY, can hear
35. noise from AC can come from 2 sources	1.plant room - motors, compressors, AHUs 2.duct borne - fan noise, airflow noise	50. there are two methods to ascertain ARTICULATION INDEX	everything 1.with people 2.with computers
ENCLOSURE	NOISE WITHIN AN SPL = SWL + $(10\log_{10}[(Q\emptyset/4\pi r^2)+4/Rc])$ where $r = distance from the source (m)$ $Q\emptyset = directivity of source in direction r$ $S = surface area of room (m^2)$	51. to work out the resonant frequency of a PANEL ABSORBER what formula	resonant freq = 6000/√m.d m=mass of panel (kg/m2) d=distance between panel & wall (m)
	Rc = room constant = Rc = $Sa/(1-a)$	52. UNIDIRECTIONAL HEMISPHERICAL SOURCE has whatdB	-8dB
37. one sone = phons 38. PERFORATED PANEL ABSORBERS are different than HELMHOLTZ	they are not as selectively absorbant	attenuation at the end 53. UNIDIRECTIONAL SPHERICAL SOURCE has whatdB attenuation at the end	-11dB
RESONATORS because 39. raytracing angles	angle of incidence = angle of reflection	54. what is a true scale of loudness	SONE
40. reasonable minimum dimension for sound reflector	30 x wavelength	55. what is dependant on a SOUND REFLECTORS size	they have a LOW FREQUENCY CUT OFF dependant on their size, below which they act as DIFFUSES
41. RESONATOR ABSORBERS are most efficient at	LOW FREQUENCIES	56. what is the ARAU- PUCHADES formula for	NON-UNIFORM distribution of absorption
42. sabine formula assumes that the sound in enclosure is	reasonable reverberant diffuse sound has uniform directivity	57. what is the EYRING formula for	reasonably DIFFUSE sound fields DEAD rooms

58. what is the FITZROY EYRING formula for	NON-UNIFORM absorption DEAD rooms
59. what is the FITZROY SABINE formula for	NON-UNIFORM absorption relatively REVERBERANT rooms
60. what is the nominal sight height above any obstructions?	~90mm
61. what reverberant sound is heard as an echo for speech?	anything over 40ms
62. when calc traffic noise, what do you need to figure out BASE RATE	1.base rate 2.speed of traffic & heavy/light 3.correction for gradient 4.correction for surface
63. when calc traffic noise, what to you need for OBSTRUCTED	1.base rate 2.correction for surface (hard) 3.correction for angle 4.correction for barrier
64. when calc traffic noise, what to you need for UNOBSTRUCTED	 base rate correction for surface (grass) correction for angle
65. when did sabine do his research	1895-98 at harvard
66. when do echos occur for speech/music	40ms for speech 100ms for music
67. when is an ideal use for RESONATOR ABSORBERS	where there is a LONG REVERBERATION in a SINGLE FREQUENCY
68. when you put a sound source close to ONE REFLECTING SURFACE, how much dB increase	+3dB
69. when you put a sound source close to THREE reflecting surfaces, (trihedral corner) how much dB increase	+9dB
70. when you put a sound source close to TWO reflecting surfaces, how much dB increase	+6dB
71. where are 4 places that noise can be generated within ducts	1.obstructions 2.sharp bends 3. sudden enlargements or contractions 4.silencers
72. where should silencers be positioned	as close to the fan as possible

73. why shouldn't use concave ceilings	creates uneven acoustic focus
74. with every doubling of exposure (3db) what happens to the allowable daily exposure time	it halves
75. with sound propagation in air, when the DISTANCE DOUBLES	the AMPLITUDE DROPS BY HALF - 6dB