Brüel & Kjær is the sole worldwide distributor of ODEON, a reliable, easy-to-use, modelling software tool for indoor acoustics, developed at the Technical University of Denmark.

ODEON is PC software for simulating the interior acoustics of buildings where, from the geometry and properties of surfaces, acoustics can be calculated, illustrated and listened to. ODEON’s prediction algorithms (image-source method combined with ray tracing) allow reliable predictions in modest calculation times. ODEON is ideal for the prediction of acoustics in large rooms such as concert halls, opera halls, auditoria, foyers, underground stations, airport terminals, and industrial workrooms. For noise prediction of large machinery in industrial environments, a special ray-tracing algorithm has been developed allowing the modelling of surface and line sources. ODEON is a proven tool for predicting the acoustics of new buildings, as well as for evaluating and recommending improvements in existing ones.

USES AND FEATURES

USES
- Prediction and optimisation of the room acoustics of planned buildings
- Prediction of effect of building changes on room acoustical properties
- Improvement of room acoustics of existing buildings

FEATURES
- Fast modelling using the included tools: parametric room editor, graphic editor or import from CAD systems
- Numerous tools for model verification
- Flexible choice of sources, receivers and materials
- Modest calculation time
- Visual results – reflectograms, 3D reflection paths, 3D maps and a wealth of other graphs
- High-quality auralisation, binaural as well as surround
- Effective project management
- Easy copy and export of results for project reports or presentations
- Tool for comparison between measurements and simulations
The classic, Greek odeon evolved from the development of the large, open-air theatre into a more intimate, roofed-over venue for music performance (a place to sing ‘odes’) and, as such, was the first known instance of the construction of concert halls. The first (1991) version of ODEON was aimed at the prediction of auditorium acoustics. Since then, ODEON has been continually developed and refined, and is now available in three state-of-the-art editions: **Industrial, Auditorium,** and **Combined**. All editions run on Microsoft® Windows® 98/NT®, 2000/XP.

Calculation Method – Algorithms and Applications

ODEON is based on prediction algorithms (image-source method and ray-tracing) allowing reliable predictions in modest calculation times. Scattering due to surface roughness and diffraction is taken into account using a novel method that accounts for frequency dependent scattering: the Reflection Based Scattering Coefficient. It is ideal for the prediction of large-room acoustics such as in concert halls, opera houses, foyers, underground stations, airport terminals, industrial workrooms and various auditoria. For noise prediction of large machinery in industrial environments, a special ray-tracing algorithm has been developed allowing the modelling of surface and line sources.

Constructing Your Model

Modelling the Room

3D room geometries can be modelled using the ODEON parametric modelling language, or using the ODEON extrusion modeller, an intuitive graphical tool. They can also be conveniently imported from third party CAD programs in the DXF format. Finally the modelling methods may be combined, allowing you to select the tools best suited for your purpose.

1 Specific features for each of the three ODEON editions are listed in the Ordering Information.
Defining Sources
Point sources can be defined by directivity pattern, gain, equalisation and delay, allowing the definition of natural sound sources as well as loudspeaker systems. ODEON has a list of common sources to choose from and also supports the Common Loudspeaker Format (CLF) used by several manufacturers. The Industrial and Combined editions also allow the definition of line and surface sources that are particularly useful for calculations in industrial environments. Positions, orientations, etc., are automatically reflected in 3D displays.

Materials
Materials are defined by the absorption coefficients from 63 to 8000 Hz and a scattering coefficient. A transparency coefficient can also be used. Materials are selected from an extendable library of materials. The surface list is linked to a display showing the selected surface in 3D.
Checking your Model

To ensure that calculation results are reliable, it is essential that geometries are consistent. ODEON includes a number of tools for geometry verification, e.g., the ‘3D Geometry Debugger’ with a check for duplicate, overlapping or warped surfaces, see Fig. 6. The ray-tracing display can also be used in the verification of room geometry, as can the ‘3D Billiards’ display shown in Fig. 7.

Fig. 6
The ‘3D Geometry Debugger’ points out errors in the model such as overlapping, duplicate or warped surfaces. This makes it safe and easy to locate and correct possible errors in the model description.

Fig. 7
The ‘3D Billiards’ display is a tool that can be used for investigating or demonstrating effects such as scattering, flutter echoes, focusing or coupling effects. A burst of ‘billiard balls’ are emitted from the source and bounce off the surfaces in the room.

3D OpenGL Display
The ‘3D OpenGL’ display shows geometry, materials and source positions. This display is useful when checking the validity of room geometries or source and receiver locations. The surface colours are mapped on to the acoustic reflectance of the surface materials – particularly useful when checking that materials are assigned correctly in complicated models and also useful for presentation purposes.
Fig. 8
The 3D OpenGL display is useful for checking the validity of the model. It can be viewed from all aspects, both inside and outside, using rotation, move and zoom features.

Project Management
Thorough project management is an important ODEON feature. ODEON always ensures that results stored with a project are consistent with the specified geometry, materials, sources, etc. A project stored in the program archive contains all the information needed for full documentation. A project, and all its associated data, can be saved into a compressed file for easy backup or e-mail transfer.

Results

Calculation
Most calculation parameters are set automatically but, for special cases, the user may want to change some parameters, e.g., temperature and relative humidity.

Decay Curves
Two global-decay methods are available – the Quick Estimate based on statistical formulae, and the more precise Global Estimate based on ray-tracing, thus taking room shape, source position, and the position of absorbing materials into account. The global-decay methods can be used for checking the overall decay time and absorption in the model. The Global Estimate corresponds to the reverberation decay averaged over an infinite number of points in the model and thus represents an ideal in traditional reverberation time measurements.
Quick Estimate gives an overview of the model's reverberation time and absorption, and suggests the changes in absorption needed to obtain a certain reverberation time.

Ray-tracing

Two ray-tracing displays are provided. The first shows single-point ray tracing, i.e., rays radiated from the source during calculation of point responses, which is useful for the verification of room geometry and source positions. The other shows two-point ray tracing, (see Fig. 10), for example the early reflection paths from a point source to a receiver, and is linked to the reflectogram (see Fig. 11) to locate the path of particular reflections.

Reflectogram

The reflectogram shows the arrival time and level of all reflections, referred to the direct sound. It helps identify useful, as well as unwanted, reflections. Selected reflections can be investigated further in the ‘3D Reflection Paths’ display (Fig. 10).
Fig. 11
Reflections within the dome of the same theatre (see Fig. 10). The clustering of reflections points to an echo problem. Ray-tracing helps identify echo-causing room surfaces.

Fig. 12
The noise control display allows identification of the dominant noise sources at different receiver positions in a room. You can interactively turn sources on and off while viewing the impact noise levels at the different receiver positions.

Maps
Maps of calculated parameters can be calculated for any number of selected receiver surfaces. Such parameters include, e.g., sound-pressure level, energy parameters or intelligibility (Speech Transmission Index). The resolution of the map (grid resolution) is selected to give sufficient detail within an acceptable length of calculation time.

Fig. 13
Calculated SPL mapping. The graphs on the right show the corresponding 'cumulative distribution graph' and 'fractiles' for the SPL grid. Opera House project for Ankara Congress and Cultural Centre (Architect: Özgür Ecevit, Acoustics: Jordan Akustik, Denmark)
Reflector Coverage
Reflectors are often used to direct reflections into areas that need sound reinforcement. The reflector coverage display allows fast evaluation of the receiver area covered by a number of reflectors for a selected source position.

Fig. 14
The Royal Festival Hall in London – for each reflector, the reflection pattern shows how well it directs sound to the intended audience area

Auralisation
The input signal for auralisation is a digital recording (.wav file) or any signal played on the recording input of the sound card. In ODEON, this recording can be processed for headphone playback using a calculated Binaural Room Impulse Response (BRIR) or for surround playback, using a multichannel impulse response calculated using Ambisonics technology. In either case, all calculations including ray-tracing, calculation of reflections received at a receiver point, binaural filtering or Ambisonics decoding, octave band filtering and convolution is carried out in a one-step process which does not require pre- or post-processing. The BRIRs for headphone auralisation include full filtering of each reflection in nine octave bands (the 16kHz band being extrapolated) and applying a set of HRTFs (Head Related Transfer Functions) for each reflection. A BRIR for auralisation is typically based on more than 100000 reflections. The resulting sound is saved as another standard .wav file or played in real-time over the sound card if the sound card supports this.

Fig. 15
In auralisation, you can ‘replay’ sound in the model and hear how the design affects music, speech or other acoustic signals. Since the ultimate goal is to improve perceived sound quality, this is a very powerful tool for the designer as well as for presentation to clients

Fig. 16
BRIR (Binaural Room Impulse Response) calculated at a receiver position
For a larger audience, ODEON can present auralisation via multi-channel loudspeaker systems. The setup for a standard type 5.1 (6-channel) system is illustrated, with four corner speakers, one front centre speaker and one subwoofer.

Printing and Export
Results, graphic displays and calculation properties can be printed in high quality from within ODEON. Graphics can be exchanged via the Windows® clipboard or via files in multiple formats. Calculated results can be exported to a text file.

Case: Multi-purpose Hall

The Queen's Hall

ODEON was used for the design of the Queen’s Hall in the recent expansion of the Royal Library in Copenhagen. Known locally as the ‘Black Diamond’ and inaugurated in 1999, the hall is mainly designed for chamber music but will also be used for rhythmic music, meetings and lectures.

The Queen’s Hall holds up to 600 people and its reverberation time can be adjusted from 1.1 s up to 1.8 s, while side-wall mounted acoustic diffusers prevent flutter echo. Simulations during the design phase, using ODEON, had shown that this would be necessary – see the calculated decay curves (Fig. 20 and Fig. 21).
For each receiver point in the model, the squared impulse response is calculated and shown as a decay curve and an integrated decay curve. These results can be directly compared to those measured at the same points in the real room.
Specifications – ODEON Room Acoustics Modelling Software Types 7835, 7836 and 7837

OPERATION
The software is a true 32-bit Windows® program, operated using buttons and/or menus and shortcut keys

HELP
Context-sensitive help is available throughout the program

CALCULATION METHOD
Hybrid: combining ray-tracing with image-source modelling
Early Reflections: Image-source model and ray-tracing
Late Reflections: Ray-tracing method simulating diffuse reflections
Scattering: Frequency dependent, using Reflection Based Scattering Coefficient method that accounts for surface roughness and diffraction

FREQUENCY RANGE
8 octave bands from 63 Hz to 8 kHz
Linear and A-weighted levels are calculated from octave levels

MODEL TOOLS
Editor: Text editor supporting parametric modelling
Import Facility: Import of DXF (Drawing Exchange Format) files from CAD software like AutoCAD®, 3ds max and IntelliCAD®
Verification: 3D display, 3D ray tracing, 3D view, automatic check for warped and overlapping surfaces
Patch Tool: Missing surfaces in imported geometries can be created using the integrated 3DView
Extrusion Modeller: Drawing tool for fast modelling of geometries such as industrial work rooms and offices

MODEL ITEMS (properties in italics: industrial and combined editions only)
Model Size: Maximum dimension 2000 × 2000 × 2000 m
Points: Max. 2500 per surface
Surfaces: Max. 50 000
Corners: Max. 100 000
Sources: Point, Line or Surface sources, up to a max. total of 250
Loudspeaker Format: Common Loudspeaker Format (CLF) supported, see www.clfgroup.org
Receiver Points: Virtually no limit to the number of points
Materials: Extendable materials library, specifying absorption, Scatter and Transparency coefficient. Built-in material editor

RESULTS (properties in italics: auditorium and combined editions only)
Ray-tracing: Dynamic display of ray-tracing
3D Billiard: Interactive display for visualisation of wavefronts
Quick Estimate: Fast estimation of reverberation time based on diffuse-field assumptions (Sabine, Eyring, and Arau-Puchades formulae)
Global Estimate: Estimate of reverberation time taking room shape, position of absorbing materials and source position into account
Single Point Response: Detailed results and auralisation options for a selected receiver
Multi-point Response: Acoustical parameters for a specified number of receivers
Grid Response: Map of room acoustical parameters as well as statistics for the grid receivers
Reflector Coverage: 3D display of early reflection hits for selected surfaces (1–5 order as desired)

Case: Power Station

Prediction of Noise in Industrial Environments
Elsamproject, the Danish Power Project Agency, has verified ODEON’s prediction accuracy. In a turbine hall at a power plant (also illustrated in Fig. 2 and Fig. 3), the A-weighted sound-pressure level was measured at twelve receiving points and compared to the levels estimated by ODEON. The room and its machinery were modelled by 54 surfaces. The sound sources were modelled by 30 surface sources (the surfaces of the two turbines) and four point sources (ball bearings). Relevant data for radiated sound power were measured with the intensity method. Test results show very high correlation between measured and estimated results, the average deviation being less than 1 dB.

Fig. 22
Comparison of measured and simulated sound-pressure levels (please refer to Fig. 2 and Fig. 3), showing very high correlation. This figure demonstrates a graph facility included in ODEON that allows easy comparison of measured and simulated parameters. Measured data can be imported from a text file or pasted directly from the measurement made with the DIRAC Room Acoustics Software Type 7841.
Specifications – ODEON Room Acoustics Modelling Software Types 7835, 7836 and 7837 (continued)

ROOM ACOUSTIC PARAMETERS (properties in italics: audiorium and combined editions only)
• Sound Pressure Level, SPL
• A-weighted Sound Pressure Level, SPL(A)
• Rate of Spatial Decay, DL2
• Reverberation Time, T30
• Early Decay Time, EDT
• Speech Transmission Index, STI
• Centre Time, Ts
• Level rel. 10 m free-field, G
• Clarity, C50
• Deutlichkeit, D50
• Early Lateral Energy Fraction, LF50
• Early Support, S1 early
• Late Support, S1 late
• Total Support, S1 total
• A-weighted, Late Lateral Sound Pressure Level, LLSP(A)

AURALISATION
Input:
Anechoic or semi-anechoic sound file in .wav format. Mono, stereo as well as multichannel recordings can be handled
Mixer:
Multiple sources and multiple signals can be included in one simulation
Processing:
Convolution of sound files with BRIRs (Binaural Room Impulse Responses), BFormat impulse responses and/or Surround impulse responses. All types of impulse responses are filtered using full filtering in nine-octave bands. For the binaural filtering a set of HRTFs (Head Related Transfer Functions) is applied for each reflection
Output:
Binaural (2-channel) .wav file optimised for headphone playback – open-type headphones recommended
1st and 2nd order BFormat files (Ambisonics) output is an option for the advanced user

Ordering Information
Including the difference in features between the editions.

INDUSTRIAL EDITION TYPE 7835
Intended for environmental acoustics where SPL, SPL(A), T30 and STI are the important results. The Industrial edition allows modelling of point sources, line sources and surface sources, making it possible to model large and complex sound sources.

Single Point Response, Reflector Coverage and some auditoria parameters (see specifications) are not included.

AUDITORIUM EDITION TYPE 7836
Intended for calculation of large sets of room acoustical parameters. A number of graphical tools are built in including a reflectogram, a 3D reflection paths’ display, and reverberation-curve displays. The Auditorium edition provides built-in auralisation features. Unlike the industrial edition, the Auditorium edition is not capable of modelling line and surface sources.

TRADEMARKS
IntelliCAD is a registered trademark of IntelliCAD Technology Consortium. Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. Pentium is a registered trademark of Intel Corporation or its subsidiaries in the United States and/or other countries. AutoCAD and 3ds max are registered trademarks of Autodesk, Inc./Autodesk Canada Inc. in the USA and/or other countries.

Brüel & Kjær reserves the right to change specifications and accessories without notice

HEADQUARTERS: DK-2850 Nærum · Denmark · Telephone: +45 4580 0500
Fax: +45 4580 1405 · www.bksv.com · info@bksv.com

Australia (+61) 2 8869 0000 · Austria (+43) 1 88574 00 · Brazil (+55) 11 5188-8161
Canada (+1) 514 689-6225 · China (+86) 10 680 2996 · Czech Republic (+420) 26 702 1100
Finland (+358) 9-755 90 · France (+33) 1 69 80 71 00 · Germany (+49) 421 17 87 0
Hong Kong (+852) 2548 7486 · Hungary (+36) 1 2115 83 05 · Ireland (+353) 1 897 4083
Italy (+39) 02 576 88 01 · Japan (+81) 3 5716 1612 · Republic of Korea (+82) 2 3471 0605
Netherlands (+31) 318 65 62 90 · Norway (+47) 68 77 11 55 · Poland (+48) 22 816 75 56
Portugal (+351) 214 16 89 04 · Singapore (+65) 6377 4512 · Slovak Republic (+421) 2 443 0701
Spain (+34) 91 589 08 20 · Sweden (+46) 33 225 622 · Switzerland (+41) 44 840 7035
Taiwan (+886) 2 2502 7255 · United Kingdom (+44) 14 38 739 000 · USA (+1) 800 332 2040

Local representatives and service organisations worldwide