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Summary
This paper describes a set of analytical solutions used to evaluate the pressure response inside an empty paral-
lelepiped closed space subjected to a harmonic point source. The model allows different absorption coefficients
to be defined for the various walls, as well as frequency variation. The computations are first performed in the
frequency domain and Inverse Fourier Transforms are subsequently applied to obtain impulse responses. The
time-aliasing phenomenon is avoided by using complex frequencies to attenuate the response at the end of the
time frame. This effect is later taken into account by re-scaling the response in the time domain. The model
developed was applied to different scenarios for which reverberation times were computed using the Schroeder
approach. Pulses with varying characteristic frequencies were modeled so that the influence of the excitation
frequency on the reverberation times could be studied. These results were then compared with those provided by
the simplified models of Sabine, Eyring, Millington, Fitzroy and Arau-Puchades. Experimental measurements in
situ were also compared with those provided by the numerical model.

PACS no. 43.55.Br

1. Introduction

The acoustic design of closed spaces requires the study
of pressure wave propagation in a frequency domain that
ranges from low frequencies to frequencies up to ����kHz.
The propagation inside an enclosed space depends on the
frequency of excitation, the material properties of the wall
surfaces such as absorption and diffusion factors, air ab-
sorption, and indoor environmental conditions such as the
temperature, air pressure and humidity. Given the com-
plexity of the problem and the amount of computational
effort required, different numerical schemes for predicting
the sound propagation inside an enclosed room have been
proposed and developed over the years.

Ray tracing and image model techniques are frequently
used in an attempt to overcome the computational cost
limitations, and they are currently applied to the study
of acoustic wave propagation in closed and open spaces
[1, 2, 3, 4, 5, 6].

With the ray tracing technique, generally applied in the
high frequency domain, a number of finite rays are fol-
lowed between the source and the receivers. Although the
response can be computed in a reasonable time, it is not
possible to ensure that all the rays contributing to an ac-
curate response are taken into account, which introduces
an element of uncertainty into the results [7]. Modeling
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diffuse reflection effects with sufficient detail, using room
acoustics prediction methods based on geometrical acous-
tics, has been found to be difficult. Hodgson [8] used a ray
tracing model that takes diffuse surface reflection into ac-
count according to Lambert’s law [9] to predict the sound
field in empty rooms. Predicted and measured sound de-
cays have been compared [10]. It was concluded that the
effects of diffuse surface reflection are negligible in small
or proportionate rooms, while in large disproportionate
rooms they can be considerable. Dalenbäck later proposed
an algorithm based on approximate cone tracing, handling
diffuse reflection by splitting up the cones incident on dif-
fusing surfaces [11].

The image model technique employs virtual sources
(image sources) to compute the acoustic field. These
sources are placed so that they can simulate the reflec-
tions caused by the reflecting walls. This technique is reli-
able, but the computations involving models with complex
geometry can become very complicated, and entail high
computational costs. In general all surfaces are assumed
to give only specular reflections.

This technique has already been applied in the time do-
main by several authors, including Gibbs and Jones [12]
and Allen and Berkley [2]. Allen and Berkley computed
the response between two points in a small rectangular
room, convolved with any type of input signal, such as the
sound of speech. The calculated impulse response is built
up as a ”histogram” of image sources received at different
time delays. Borish subsequently extended the use of the
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image model technique to more complex geometries, such
as a polyhedron with any number of sides [13].

Different computer codes have been proposed to predict
sound levels and reverberation times based on both ray
tracing and image source techniques [14, 15, 16]. Dance
et al. [17] used different computer approaches and classi-
cal simplified formulae to study the accuracy of reverbera-
tion time predictions in a room with an uneven distribution
of surface absorption. Their computations have only been
performed for ��� kHz. It was found that the Eyring and
Millington classical formulae could not accurately predict
the reverberation times in a room where different absorp-
tive surface properties were ascribed to the walls.

Several comparisons of room simulation software have
been performed, as reported by Bork [18]. This work con-
firms that computer simulation is strongly dependent on
the input data and the sensitivity of the operator to the
absorption data of the surfaces, as well as the diffusivity
properties of the wall material. The deviations occurred in
the low frequency calculations, where the diffraction ef-
fects are important, but disregarded in the geometrical cal-
culations. It is suggested that other methods, such as the
Boundary Elements Method, could be used to compute the
results at frequencies below ���Hz [19].

Well-established numerical techniques, such as the fi-
nite element method (FEM) and finite difference method,
have not been widely used to compute the propagation
of sound, because of the high computation cost entailed.
They have failed because the domain being analysed has
to be fully discretized, and very fine meshes are needed to
solve excitations at high frequencies.

Other methods, such as the Boundary Element Method
(BEM), are more efficient in terms of computer cost as
they only require the discretization of the boundaries [20].
But they nevertheless involve a large computational effort,
particularly for very high frequencies. The solution be-
comes simpler in two-and-a-half-dimensional spaces (or
2-1/2-D for short), where the medium is two-dimensional
(2D), but the dynamic source is three-dimensional (3D),
such as a point source. The results are arrived at by using
a spatial Fourier transform in the direction in which the
geometry does not vary, which allows the solution to be
obtained as a summation of 2D responses for a continu-
ous variation of spatial wavenumbers [21, 22]. In the case
of a frequency domain formulation, an additional Fourier
transformation in the time domain is required.

The Fourier transformations are achieved by discrete
summations over frequencies, which is the mathematical
equivalent of adding periodic sources at temporal intervals
TD � �����, with �� being the frequency steps. In
order to avoid contamination of the response by the peri-
odic sources, known as time-aliasing effects, the acoustic
signals are computed using complex frequencies ��c �
� � i��. The use of complex frequencies would not be
necessary if small frequency increments, ��, were used
to allow the full dynamic response to develop within the
time window. The influence of the complex part ��� of the
frequency is removed in the time domain, re-scaling the

response using an exponential function e�t [23]. This tech-
nique is frequently employed by seismologists using inte-
gral transform methods and/or boundary elements [24].

The Boundary Element Method (BEM) has already
been used to simulate the propagation of waves within,
and between, fluid-filled boreholes [25]. These models
are frequently applied in the seismic prospecting tech-
niques known as acoustic logging and cross-hole survey-
ing, used to determine the characteristics of the elastic
medium in the vicinity of the boreholes. The Boundary
Element Method (BEM) could be regarded as the best tool
for modelling and analysing wave propagation in an un-
bounded medium, because it automatically satisfies the far
field conditions. However, this method requires the prior
knowledge of the Green’s functions, which relate the field
variables, as pressure and displacements, to the response to
unit point loads applied somewhere in the medium. Differ-
ent Greens’ functions have been developed to allow com-
plex frequencies to be used, and to obviate the need for
discretizing surfaces, as with the half space model [26, 27].

In the case of an air filled enclosure, the problem is more
complicated, given the low velocity of the sound wave
propagation. FEM/BEM models have already been used
in the study of room acoustics at low frequencies in cases
where other numerical techniques are less well able to take
the diffraction effects into account [19].

In our work, the pressure field produced by a point
source inside a parallelepiped closed room was calculated
using an analytical function, defined by means of the im-
age model technique. The Allen and Berkley [2] model is
followed, but in the frequency domain, and the impulse
time responses are obtained by means of inverse Fourier
transforms. The computations make use of complex fre-
quencies, following the technique described earlier.

First, the analytical function is derived, assuming the ex-
istence of perfect reflecting surfaces. The resulting expres-
sion is theoretically interesting in itself, because it allows
the sound pressure signal to be defined within an enclosed
rectangular space, which is useful as a benchmark solution
for numerical applications. Furthermore, it can be used as
a Green’s function in numerical techniques which employ
integral transform methods and/or boundary elements. The
next step involves a mathematically simplified manipula-
tion of the analytical function to allow the use of absorp-
tion that varies in the space and frequency domains, which
makes the model useful in comparison with other tech-
niques, applied directly in the time domain. That is, each
frequency response is computed taking into account the
absorption of the various walls, which may be frequency
dependent. The time results are then synthesised using in-
verse Fourier transform, modelling a Ricker pulse. The in-
troduction of frequency dependence absorption would not
be as straightforward to implement in a time domain for-
mulation.

In the present paper, these final equations are used to
obtain the reverberation times from the impulse responses
using the Schroeder approach for different characteristic
frequency excitation pulses.
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The paper is organized as follows: first the analytical
incident field generated by a harmonic point source is pre-
sented and the response solution (Green’s function) is ob-
tained for a rectangular closed space, assuming the exis-
tence of perfectly reflecting walls; then, simplified analyt-
ical functions are derived to incorporate wall absorption
effects, and a brief section is included to illustrate the nu-
merical procedure leading to time domain solutions. The
main part of the article is devoted to simulating the prop-
agation of sound generated by point sources inside an ac-
tual empty, enclosed space; reverberation times are com-
puted and compared with those obtained using the simpli-
fied models devised by Sabine, Eyring, Millington, Fitzroy
and Arau-Puchades, and, finally, the numerical results are
compared with those provided by experimental measure-
ments in situ.

2. Incident field generated by a point
source

A harmonic point pressure load in the form ��x�x����y�
y����z�z��e

i�t, acting at �x�� y�� z�� in an infinite homo-
geneous acoustic space generates a pressure field defined
by the equation:
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In these expressions ��x�, ��y� and ��z� are Dirac-delta
functions,� is the frequency of the load,A is the wave am-
plitude, c is the propagation velocity of the pressure waves,
and i �

p��.
The insertion of perfectly reflecting barriers in the

medium further modifies the acoustic pressure field. This
effect can be obtained by using virtual sources placed so as
to confirm the boundary conditions required (nil pressure
flows). The first order image sources correspond to the first
reflections originated by the reflecting walls, while high
order image sources represent multiple reflections on the
different walls. The number of virtual sources to be used in
the calculations is defined so that the signal responses can
be correctly computed in the time frame, which is deter-
mined by the frequency increment �TD � ���f�. Thus,
the contributions of the virtual sources placed away from
the receiver c��f are not taken into account. This proce-
dure does not introduce any type of error in the computed
time impulse response within the time window defined,
TD.

After some mathematical manipulations, the following
expression is derived, defining the pressure field inside a
closed rectangular room with dimensions d�� d� and d�,
along the x-, y- and z-directions, respectively
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where NSH, NSV, NSZ represents the number of sources
used in the x-, y- and z-directions respectively, that are
needed for the correct definition of the acoustic signal.The
existence of an exponential factor ei�t in this equation is
implicit. In this expression
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3. Sound energy absorption

The above expression assumes the existence of perfectly
reflecting walls. However, only part of the incident energy
is reflected if the walls have some absorption characteris-
tics. In the case of a plane incident sound wave, the relation
between the absorbed energy and the incident energy can
be given by �� jR�j, where R is the reflection coefficient,
which is defined as the ratio of the reflected and incident
sound pressure at the interface. The reflection coefficient
for an incident sound plane wave falling obliquely on a
plane interface is complex. The phase change of the re-
flected wave may vary from �� to �	��. As an example, in
a porous material layer, the phase angle of the reflection
coefficient is close to zero when the surface admits high
values of flow resistance at lower frequencies, whereas for
a soft surface the reflection coefficient may undergo a �	��

phase change when the flow resistance is low at higher fre-
quencies [28]. Our work uses a point source, which can be
seen as a sum of plane waves striking the wall from all
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directions, making the solution of the problem complex.
To simplify the solution, the impedance is assumed to be
real, and the pressure reflection coefficient is computed as
R � �p�� �, where � is the fraction of the incident
sound energy absorbed by the wall, ignoring the incidence
angle.

In the numerical model described above, if the walls
are not perfectly reflective, the response is obtained con-
sidering the application of pressure reflection coefficients
R each time the pulse produced by a virtual source hits
the wall. In the numerical examples presented here, two
distinct situations are taken into account: either assum-
ing the reflected pulse remains in-phase with the incident
pulse (R �

p
�� � ), or assuming a �	�� phase shift

(R � �p�� �). Since the computations are performed
in the frequency domain, different reflection coefficients
can be used for different frequencies. When constant re-
flection coefficients are used, they can be understood as
global medium coefficients. Furthermore, different reflec-
tion coefficients can be ascribed to each wall, simulating a
variety of absorptive materials. Equation (2) has been re-
formulated so as to accommodate the existence of different
reflection coefficients
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In this expression Rijk � Ri��R�j�R��k, with
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where Rce, Rfl, Rre, Rfr, Rri and Rle correspond to the
reflection coefficients of the ceiling, floor, rear wall, front
wall, right wall and left wall, respectively.

It must be noted that equation 3 only takes into account
specular reflections, ignoring the diffuse component of the
reflected energy.
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Figure 1. Ricker wavelet pulse: a) Time response; b) Spectrum.

4. Signals in the time domain

The computations are performed in the frequency domain,
as mentioned above, with an increment ��, and using
complex frequencies to avoid a non-causal event occur-
ring before the first true wave arrivals (i.e., aliasing phe-
nomenon). The range of frequencies is defined by the type
and duration of the pulse. If a Dirac delta pulse is used, the
spectrum of frequencies will be infinite, which leads to an
impracticable computation demand. Other types of pulse
would be more appropriate. This explains why the type
of pulse modelled will determine the computation cost of
the problem. Here, we have chosen the Ricker pulse, be-
cause it decays rapidly in the time and frequency domains,
which both requires less computational effort and makes
interpretation of the time signals easier.

The pressure field in the time domain is computed by
applying an inverse Fourier transform to the frequency re-
sponse. The time-dependent excitation load function is de-
fined as a Ricker wavelet pulse in the form

u
�
	
�
� A

�
�� �	�

�
e��

�

� (4)

where A is the amplitude, 	 � �t� ts��t�, t refers to time,
ts is the time at which the maximum occurs, while � t� is
the characteristic period of the wavelet.
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Figure 2. Geometry of the model.

Its Fourier transform is given by
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in which 
 � �t���.
The multiplication of this source function by the trans-

fer function, defined by the previous computations in the
frequency domain, allows the response of a Ricker pulse
excitation to be found. The range of frequencies goes up
to three times the characteristic frequency of the pulse. The
contribution to the response behind this range of frequen-
cies is close to zero. Figure 1 shows the source signature
in the time domain and its frequency spectrum, obtained
for a pulse with a characteristic frequency of ����Hz.

5. Applications

All the applications in this work use a rectangular closed
room with dimensions d� � 	�	�m, d� � ����m and
d� � �
��
m. This was an empty room in the University
of Coimbra - Portugal, made of solid walls. At present, the
room serves as an excellent laboratory, useful for compar-
ing numerical results with those provided by in situ mea-
surements. The acoustic behavior of this room is first stud-
ied using the numerical model described above. Then, the
reverberation times obtained are compared with those pro-
vided by the simplified formulas. Different scenarios are
simulated: that ascribed to the walls’ surfaces, absorption
(which varies from low to high values, and for even and
uneven distributions), in an attempt to understand the be-
havior of our model. Finally, the in situ measurements are
compared with numerical computations.

5.1. Numerical examples

The numerical model assumes that the acoustic space is
illuminated by a point pressure source placed at O (x� �
����
m; y� � ��
m; z� � ���m). The waves generated
propagate in all directions with a velocity of ���m/s. The
three-dimensional pressure wavefield generated is com-
puted using the analytical function defined in equation (3),

Table I. Absorption coefficients.

Ceiling Floor Rear Front Right Left

Case 1 0.05 0.05 0.05 0.05 0.05 0.05
Case 2 0.1 0.1 0.1 0.1 0.1 0.1
Case 3 0.3 0.3 0.3 0.3 0.3 0.3
Case 4 0.5 0.5 0.5 0.5 0.5 0.5
Case 5 0.7 0.7 0.7 0.7 0.7 0.7
Case 6 0.05 0.05 0.05 0.05 0.7 0.05
Case 7 0.05 0.05 0.7 0.05 0.05 0.05
Case 8 0.7 0.05 0.05 0.05 0.05 0.05

Table II. Range of computed frequencies.

�f (Hz) TD�s� f� NF fmax

Case 1 0.3 3.33 0.3 65536 19660.8
Case 2 0.375 2.67 0.375 32768 12288.0
Case 3 0.75 1.33 0.75 16384 12288.0
Case 4 0.75 1.33 0.75 16384 12288.0
Case 5 0.75 1.33 0.75 16384 12288.0
Case 6 0.375 2.67 0.375 32768 12288.0
Case 7 0.375 2.67 0.375 32768 12288.0
Case 8 0.375 2.67 0.375 32768 12288.0

at two receivers placed at (x � ����
m; y � ����m; z �
����
m) and (x � ����m; y � ����m; z � ����
m),
respectively, as illustrated in Figure 2.

Eight simulations are performed, ascribing different ab-
sorption coefficients for the walls, ceiling and floor as
listed in Table I.

Constant absorption coefficients for all walls are at-
tributed in cases 1 to 5. Within these simulations, the ab-
sorption coefficients range from low values, � � ���
,
to higher values, � � ���, as we move from case 1 to
case 5. Cases 6 to 8 are similar to case 1, but the ab-
sorption coefficient of the right, rear wall and ceiling has
been changed to � � ���. The calculations are performed
in the frequency domain, in the range �f�� fmax�, with a
frequency increment of �f (Hz), allowing analysis in the
time domain to be defined up to TD, as listed in Table II.
An inverse Fourier transform is applied to the response to
obtain the signal in the time domain, using Ricker pulses
with different characteristic frequencies: ��
Hz, �
�Hz,

��Hz, ����Hz, ����Hz, ����Hz. As mentioned above,
the numerical calculations have been performed for two
situations: assuming the reflected pulse to remain in-phase
with the incident pulse (R �

p
�� �), or assuming a �	��

phase shift (R � �p�� �).
The estimation of the reverberation time for each re-

sponse is obtained by integrating the energy of the signal
using the Schroeder approach,

S
�
t
�
�

Z TD

�

p��	� d	 �
Z t

�

p��	� d	� (6)

where p is the pressure in the time domain and S��� is
the total energy over the total time range, TD. The results
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Figure 4. Reverberation times provided by the numerical model and by the simplified formulas: a) Case 1, absorption = 0.05; b) Case
2, absorption = 0.1; c) Case 3, absorption = 0.3; d) Case 4, absorption = 0.5; e) Case 5, absorption = 0.7.

have been plotted against s��� on a dB scale. The results
obtained are compared with those given by applying the
simplified models, given in the Appendix.

Next, the methodology described above is demonstrated
in the calculation of the reverberation time at receiver 1,
when the case 2 absorption coefficients are ascribed to
the walls, floor and ceiling. Figure 3a presents the evo-
lution of the pressure over time, generated by a source
pulse with a characteristic frequency of 
��Hz. Figure 3b
gives the results of the energy integration, using the pro-
cedure described above (equation 6). The resulting plot
shows a smooth reduction in the energy level as time ad-
vances. The reverberation times are computed as indicated
in ISO 3382 [29].

Figure 4 summarizes the results obtained at receivers 1
and 2, when the numerical model is applied to cases 1 to
5, for both the in-phase and �	�� phase reflection coeffi-
cients. The amplitude range of the vertical axis (reverber-
ation times) is kept constant to permit easier interpretation
of the results. The reverberation times calculated by the
simplified models of Fitzroy, Millington, Eyring, Sabine
and Arau-Puchades are also listed below these plots. These
models provide reverberation times for harmonic sources
but do not take into account the position of the receivers.

The numerical results displayed in Figure 4 show that the
reverberation times depend both on the characteristic fre-
quency of the pulse excited and on the position of the re-
ceivers, even when the material properties of the walls re-
main constant for the whole frequency domain of the time
signal. This behavior is even more pronounced if the ab-
sorption of the room is reduced, when the reverberation
time varies significantly with the frequency of the excita-
tion source, and the position of the receivers assumes more
importance.

The results also confirm that when the reflection coeffi-
cients are assumed to change phase each time a pulse hits
a wall surface, the reverberation times are smaller at lower
excitation frequencies than those obtained when no phase
change occurs. At higher frequencies, the reverberation
times provided by the two models are closer to each other.
These results can be explained by the fact that the time
signals are a sequence of pulses that correspond to the in-
cident pulse, and a train of pulses, which have been succes-
sively reflected on the wall surfaces during the time period.
At lower frequencies, two successive pulses may not arrive
at the receivers with a sufficient time lapse to avoid their
overlapping. Thus, the resulting pulse is smaller when the
phase of the two pulses evidences a phase change of �	��.
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Figure 5. Reverberation times provided by the numerical model and by the simplified formulas: a) Case 6; b) Case 7; c) Case 8.

Figure 3. Responses at receiver 1 (case 2): a) time pressure re-
sponse; b) energy integration plot.

Meanwhile, at higher frequencies the pulses are narrower
in the time domain, and the overlapping phenomenon may
not occur. Two successive reflected pulses may have a

phase difference, but their amplitude may remain similar
to that obtained when no change of phase occurs. So, at
higher frequencies the energy of the signals at a specific
receiver tends to exhibit similar energy decay, leading to
similar reverberation times.

Analysis of the different simplified formulae results re-
veals that they tend to approximate as the absorption co-
efficients diminish. When the formulas’ results are com-
pared with those given by the numerical computations, a
very good agreement is found at low frequencies (��
Hz)
for the model assuming the existence of phase change.
For higher absorption coefficients (Case 5), the numerical
model approaches Sabine’s model at lower frequencies.
The numerical results depart from the simplified formu-
lae calculations as the absorption of the room decreases,
particularly for higher frequencies. The model which as-
sumes no phase change does not appear to be suitable for
simulating this room.

Figure 5 illustrates the responses obtained for an un-
even distribution of surface absorption, Cases 6 to 8. Here,
the Case 1 absorption coefficients, ascribed to the walls,
floor and ceiling, are changed to accommodate, first, an
absorption coefficient of the right wall, � � ��� (Case 6),
then an absorption coefficient of the rear wall, � � ���
(Case 7), and finally an absorption coefficient, � � ���,
for the ceiling. The simplified models give markedly dif-
ferent predictions. Of the various models, Fitzroy’s model
predicts higher reverberation times. The numerical compu-
tations reveal similar features to the ones registered above.
Only the results obtained by the model using phase change
are displayed. At lower frequencies, the results approach
those given by Sabine’s model for Cases 7 and 8, while the
results obtained for Case 6 fall within the range of results
provided by the simplified formulas. As Dance et al. [17]
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Figure 6. Reverberation times measured.

noted, the Millington formula predicts reverberation times
which differ from both the numerical model and from the
other simplified formulas.

At higher frequencies, our results agree with those pro-
vided by Fitzroy’s model for Case 7, while higher rever-
beration times are computed numerically for Cases 6 and
8. Furthermore, our results indicate that the position of the
receivers is less important when the ceiling has higher ab-
sorption, while the position of the receivers is more rele-
vant when higher absorption is ascribed to the rear wall.

5.2. Experimental results

As the problem is quite complex, in situ tests are fre-
quently used to measure reverberation times. Nowadays,
the methods for measuring them are regulated by interna-
tional standards such as the ISO 3382 [29].

The experimental work entailed measuring reverbera-
tion times in situ. The data acquisition was provided by
a Symphonie system unit, from 01dB MVI Technologies
Group, directly onto the computer hard disk via a PC card
interface, using building acoustics measurement and pro-
cessing software, dBBATI32. The test signal used was a
MLS (Maximum Length Sequence) noise signal. The re-
sponse duration was set to 
�� s, and the average number
was set to 	 to diminish the effect of background noise.
Thus, measurements were performed individually at each
receiver position for ���� s. Omnidirectional microphones
were used, connected directly to the Symphonie system
unit.

The sound source (Brüel&Kjær type 4224) employed
was a dual-concentric, single way loudspeaker mounted
in a rectangular box, placed at position O. As this sound
is not an omnidirectional source, different measurements
were performed placing the source in different directions.
The final reverberation times, illustrated in Figure 6, were
computed taking the average of these measurements.

5.3. Comparison with numerical simulations

Synthetic impulse responses were computed using the nu-
merical model described above, taking the absorption co-
efficients predicted by the inverse use of Sabine’s model
(see Table III), applied to the values measured.
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Figure 7. Numerical model results a) absorption coefficient fre-
quency dependence used; b) Reverberation times computed.

Table III. Absorption coefficients defined by the inverse use of
Sabine’s mode.

f (Hz) 125 250 500 1000 2000 4000

� 0.038 0.032 0.038 0.033 0.036 0.05

The computations were performed in the frequency
range from ����Hz to �
�����	Hz, with a frequency in-
crement of ����Hz, defining a time window for the analy-
sis of ���
 s. The absorption coefficient dependence in the
full frequency domain, was then held to be defined by con-
necting the values of the absorption coefficients defined in
Table III with straight lines. Figure 7a shows the absorp-
tion curve defined, using a logarithmic scale.

After computing the impulse responses, the reverbera-
tion times were then calculated using the procedure de-
scribed above, and assuming a phase shift (see Figure 7b).
These results agree with those measured in situ at lower
frequencies, while they diverge for higher frequencies.
Some of these discrepancies may be attributed to the exis-
tence of diffuse surface reflections, not taken into account
by our numerical model. Hodgson [8, 10], when compar-
ing the sound decay predicted by a ray tracing technique
with experimental measurements, concluded that the im-
portance of the diffuse effects grows when disproportion-
ate rooms (with one dimension very different from the oth-
ers) are used and as the frequency increases. Furthermore,
our model does not take air absorption into account.

Precise knowledge of the material’s absorption and dif-
fusivity properties would allow the proposed model to be
improved if a diffuse field absorption coefficient were to
take into account both the diffuse and specular reflec-
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tions. These material absorption and diffusivity properties
should be based on in situ measurements for both absorp-
tion and diffusivity, as a number of authors have proposed
[30, 31].

6. Conclusions

This work has described analytical solutions for defin-
ing the pressure response inside an empty parallelepiped
closed space subjected to a harmonic point source, using
an image source technique in the frequency domain. The
model provided synthetic responses, which were then used
to compute reverberation times, adopting the Schroeder
approach.

The results computed for a large room have been com-
pared with those provided by the simplified models of
Sabine, Eyring, Millington, Fitzroy and Arau-Puchades,
which are obtained for harmonic pressure sources and do
not take into account the position of the receivers. Further-
more, these simplified models predict constant reverbera-
tion times for different frequency harmonic sources if the
absorption coefficients of the surfaces are kept constant.
The numerical results confirm that the reverberation time
varies significantly with both the frequency of the excita-
tion source and the position of the receivers.

The simplified formulas’ results tend to approximate for
lower absorption coefficients. The results provided by our
model, using a �	�� phase change, agree with the simpli-
fied formulas at lower frequencies, while they diverge for
higher frequencies. As the absorption increases, however,
the numerical results approach those given by Sabine’s
model, even for high frequencies.

In addition, measurements inside an empty room with
concrete walls were then taken using an appropriate chain
of measurement. The reverberation times were then com-
pared with those yielded by the numerical model, us-
ing absorption coefficients predicted by the inverse use
of Sabine’s model on the measured results. Good agree-
ment was found at lower frequencies, while the numerical
results diverged as the frequency of excitation increased.
These differences may be the result of the presence of dif-
fuse effects not taken into account in the numerical model
but which are more important for higher frequencies.

Appendix

Reverberation time models:

Sabine model [32],

RT�� � �����

VPN

i�� Si�i
� (A1)

Eyring model [33],

RT�� � �����

V

�S ln��� �a�
� (A2)

Millington model [34],

RT�� � �����

V

�PN
i��

�
Si ln��� �i�

� � (A3)

Fitzroy model [35],

RT�� �
�����
V

S�

�
�d�d�

� ln��� �XY �
(A4)

�
�d�d�

� ln��� �XZ�
�

�d�d�
� ln��� �Y Z�

�
�

Arau-Puchades model [36],

RT�� �
h �

�axN log e

i��d�d���Sh �

�ayN log e

i��d�d���S
�
h �

�azN log e

i��d�d���S
� (A5)

where RT�� is the time required for an interrupted steady-
state signal in a space to decay �� dB, V is the volume of
the room in cubic meters, N is the number of different ma-
terials, Si is the area of the material i, �i is the absorption
coefficient of the material i,

�a �

NX
i��

Si�i

�
NX
i��

Si �

�ij is the average absorption coefficient of the wall ij.

S � �d�d� � �d�d� � �d�d��

�ax, �ay and �az are the mean decay rate absorption coeffi-
cients in the direction x, y and z, respectively, N � c�lm
with lm frequently assumed to be �V�S.
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