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Preface

The science of acoustics deals with the creation of sound, sound transmission
through solids, and the effects of sound on both inert and living materials. As a
mechanical effect, sound is essentially the passage of pressure fluctuations through
matter as the result of vibrational forces acting on that medium. Sound possesses
the attributes of wave phenomena, as do light and radio signals. But unlike its
electromagnetic counterparts, sound cannot travel through a vacuum. In Sylva
Sylvarum written in the early seventeenth century, Sir Francis Bacon deemed sound
to be “one of the subtlest pieces of nature,” but he complained, “the nature of sound
in general hath been superficially observed.” His accusation of superficiality from
the perspective of the modern viewpoint was justified for his time, not only for
acoustics, but also for nearly all branches of physical science. Frederick V. Hunt
(1905–1967), one of America’s greatest acoustical pioneers, pointed out that “the
seeds of analytical self-consciousness were already there, however, and Bacon’s
libel against acoustics was eventually discharged through the flowering of a clearer
comprehension of the physical nature of sound.”

Modern acoustics is vastly different from the field that existed in Bacon’s time
and even 20 years ago. It has grown to encompass the realm of ultrasonics and
infrasonics in addition to the audio range, as the result of applications in materi-
als science, medicine, dentistry, oceanology, marine navigation, communications,
petroleum and mineral prospecting, industrial processes, music and voice synthe-
sis, animal bioacoustics, and noise cancellation. Improvements are still being made
in the older domains of music and voice reproduction, audiometry, psychoacous-
tics, speech analysis, and environmental noise control.

This text—aimed at science and engineering majors in colleges and universities,
principally undergraduates in the last year or two of their programs and graduation
students, as well as practitioners in the field—was written with the assumption that
the users of this text are sufficiently versed in mathematics up to and including the
level of differential and partial differential equations, and that they have taken the
sequence of undergraduate physics courses that satisfy engineering accreditation
criteria. It is my hope that a degree of mathematical elegance has been sustained
here, even with the emphasis on engineering and scientific applications. While
the use of SI units is stressed, very occasional references are made to physical
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viii Preface

parameters expressed in English (or Imperial) units. It is strenuously urged that
laboratory experience be included in the course (or courses) in which this text
is being used. The student of acoustics will thus obtain a far keener appreciation
of the topics covered in “recitation” classes when he or she gains “hand on”
experience in the use of sound—level meters, signal generators, frequency
analyzers, and other measurement tools.

Many of the later chapters in the text are self-contained in the sense that an
instructor may skip certain segments in order to concentrate on the agenda most
appropriate to the class. However, mastery of the materials in the earlier chapters,
namely, Chapters 1–6, is obviously requisite to understanding of the later chapters.
Chapters such as those dealing with musical instruments or underwater sound
propagation or the legal aspects of environmental noise can be skipped in order to
accommodate academic schedules or to allow concentration on certain topics of
greater interest to the instructor (and, hopefully, his or her class) such as ultrasound,
architectural acoustics, or other topics. Problems of different levels of difficulty
are included at the end of nearly all of the chapters. Many of the problems entail
the theoretical aspects of acoustics, but a number of “practical” questions have
also been included.

As an author, I hope that I have successfully met the challenge of providing
a modern, fairly comprehensive text in the field for the benefit of both students
and practitioners, whether they are scientists or engineers. In using parts of this
book in prepublication editions in teaching acoustics classes, I have benefited from
feedback and suggestions from my students. A number of them have proven to be
quite eagle-eyed, as they have supplied a continuous stream of recommendations
and corrections, even after the publication of the first edition. It is impossible to
acknowledge them all, but Gregory Miller and José Sinabaldi come to mind as
being among the most assiduous. A number of my colleagues and friends have
gone through the chapters of the first edition. The real genesis of the first edition
occurred when Harry Himmelblau saw the prepublication copy when I was a sum-
mer visiting professor at Caltech’s Jet Propulsion Laboratory, and he urged me to
consider publication. In particular I must acknowledge Paul Arveson, now retired
from the Naval Surface Warfare Center, Carderock of Bethesda, Maryland, who
went through the first three chapters with a fine-toothed comb, M. G. Prasad of
Stevens Institute of Technology who made a number of extremely valuable sug-
gestions for Chapter 9 in instrumentation, and Edith Corliss who greatly encourage
me on Chapter 10 dealing with the mechanism of hearing. Dr. Zouhair Lazreq,
who did his postdoctorate under my tutelage, also looked over some of the chap-
ters, Martin Alexander has been helpful in obtaining illustrations for Chapter 9 in
both editions from Brüel and Kjær; Dr. Volker Irmer of Germany’s Federal Envi-
ronmental Agency introduced me to the European Union’s noise regulations and
other international codes, and Armand Lerner arranged to have materials forwarded
from Eckel Corporation of Cambridge, Massachusetts. James E. West, formerly
of Lucent Bell Laboratories (and now at the Johns Hopkins University) and past
president (1998–1999) of the Acoustical Society of America, was instrumental
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in providing photographs of the anechoic chamber. I am also indebted to Caleb
Cochran of the Boston Symphony Orchestra, Steve Lowe of the Seattle Symphony
Orchestra, Elizabeth Canada of the Kennedy Center, Sandi Brown of the Minnesota
Orchestral Association, Rachelle B. Roe of the Los Angeles Philharmonic, Thomas
D. Rossing of Northern Illinois University, Ann C. Perlman of the American Insti-
tute of Physics, Karen Welty of Abbott Laboratories, Tom Radler of Hohner, Inc.,
and others, too many to list here, for their help in providing photographs, certain
figures, and/or permission to reproduce the figures.

I regarded the preparation of this second edition as a splendid opportunity to
update The Science and Applications of Acoustics. A number of features have
been added to this new edition. Besides the obvious updating of information on
acoustic research and applications throughout the text, a section on prosthetic
hearing devices was added to Chapter 10; and the original Chapter 17 was split
into two chapters, one covering music and music instrumentation and the other
dealing with audio processors and sound reproduction. The topic of ultrasound
has also been expanded to the extent that two chapters became necessary, with the
latter chapter treating the increasingly important topic of medical and industrial
applications. An introduction to nonlinear acoustics is provided in Chapter 21.

I also must take this opportunity to thank many of my fellow acousticians for
their comments and suggestions for the second edition. It is hoped that all of
the errors in the first edition has been weeded out and there are precious few, if
any, in this volume. Suggestions for improving the text have come from M. G.
Prasad, Stevens Institute of Technology; Yves Berthelot, Georgia Institute of
Technology; Mark Hamilton, University of Texas at Austin; Neville H. Fletcher,
Australian National University; Uwe Hansen, Indiana State; Frank J. Fahy,
University of Southhampton; Carleen M. Hutchins, Violin Family Association; and
others.

Springer-Verlag’s Dr. Hans Koelsch and Ronald Johnson served ably as the
editor and acquisitions editor, respectively. Komila Bhat supervised the editing pro-
cess and Natacha Menar proved to be instrumental in expediting this publication;
their contribution surely helped to improve this second edition. It was a pleasure
to work with them. I am still grateful for the past contributions of Dr. Thomas von
Foerster and Steven Pisano, who both worked with me at Springer-Verlag on the
first edition. Dr. Robert Beyer, the editor of this AIP series dealing with acoustics,
provided a great deal of encouragement and inspiration. He has my unbounded
admiration (and that of virtually every acoustician) for the range of his knowledge
and extraordinary wisdom. I deem it a rare privilege to know such a person.

In the preparation of the second edition, my chief source of inspiration and
support continues to come from my wife, Geri. My past and present works were
stimulated by the radiance of her presence.

Daniel R. Raichel
Fort Collins, Colorado
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1
A Capsule History of Acoustics

Of the five senses that we possess, hearing probably ranks second only to sight
in regular usage. It is therefore with little wonder that human interest in acoustics
would date to prehistoric times. Sound effects entailing loud clangorous noises
were used to terrorize enemies in the course of heated battles; yet the gentler aspects
of human nature became manifest through the evolution of music during primeval
times, when it was discovered that the plucking of bow strings and the pounding of
animal skins stretched taut made for rather interesting and pleasurable listening.
Life in prehistoric society was fraught with emotion, just as in the present time,
so music became a medium of expression. Speech enhanced by musical inflection
became song. Body motion following the rhythm of accompanying music evolved
into dance. Animal horns were fashioned into musical instruments (the Bible
described the ancient Israelites’ use of shofarim, made from horns of rams or
gazelles, to sound alarms for the purpose of rousing warriors to battle). Ancient
shepherds amused themselves during their lonely vigils playing on pipes and reeds,
the precursors of modern woodwinds.

Possibly the first written set of acoustical specifications may be found in the Old
Testament, Exodus XXVI:7:

And thou shalt make curtains of goats’ hair for a tent over the tabernacle . . . .The length of
each curtain shall be thirty cubits and the breadth of each curtain shall be four cubits. . . .

Additional specifications are given in extreme detail for the construction and
hanging of these curtains, which were to be draped over the tabernacle walls to
ensure that the curtains would hang in generous sound-absorbing folds. More fine
details on the construction of the tabernacle followed. Absolutely no substitution
of materials nor deviation from prescribed methods was permitted.

With the advent of metal forming skills, newer wind instruments were con-
structed of metals. The march evolved from ceremonial processions, on grand
military and ceremonial occasions. Patriotic fervor often was elevated to a state of
higher pitch by the blare of martial music, indeed to the point of sheer madness on
the part of the citizenry, even in modern times as epitomized during the 1930s by
the grandiose thunder of Nazi goose-stepping marches through Berlin’s boulevards
to the accompaniment of the crowds’ roar.

1



2 1. A Capsule History of Acoustics

With sound as a major factor affecting human lives, it was only natural for interest
in the science of sound, or acoustics, to emerge. In the twenty-seventh century
BCE, Lin-lun, a minister of the Yellow Emperor Huangundi, was commissioned
to establish a standard pitch for music. He cut a bamboo stem between the nodes
to make his fundamental note, resulting in the “Huang-zhong pipe”; the other
notes took their place in a series of twelve standard pitch pipes. He also took
on the task of casting twelve bells in order to harmonize the five notes, so as
to enable the composing of regal music for royalty. Archeological studies of the
unearthed musical instruments attested to the high level of instrument design and
the art of metallurgy in ancient China. Approximately 2000 bce, another Chinese,
the philosopher Fohi, attempted to establish a relationship between the pitch of a
sound and the five elements: earth, water, air, fire, and wind. The ancient Hindus
systematized music by subdividing the octave into 22 steps, with a large whole
tone containing four steps, a small tone assigned three, and a half tone containing
two such steps. The Arabs carried matters further by partitioning the octave into
17 divisions. But the ancient Greeks developed musical concepts similar to those
of the modern Western world. Three tonal genders—the diatonic, the chromatic,
and the enharmonic—were attributed to the gods.

Observation of water waves may have influenced the ancient Greeks to surmise
that sound is an oscillating perturbation emanating from a source over large dis-
tances of propagation. It cannot have failed to attract notice that the vibrations of
plucked strings of a lute can be seen as well as felt. The honor of being the earliest
acousticians probably falls to the Greek philosopher Chrysippus (ca. 240 bce),
the Roman architect-engineer Vitruvius (also known as Marcus Vitruvius Pollio,
ca. 25 bce), and the Roman philosopher Severinus Boethius (480–524). Aristotle
(384–322 bce) stated in rather pedantic fashion that air motion is generated by
a source “thrusting forward in like movement the adjoining air, so that sound
travels unaltered in quality as far as the disturbance of the air manages to reach.”
Pythagoras (570–497 bce) observed that “air motion generated by a vibrating body
sounding a single musical note is also vibratory and of the same frequency as the
body;” and it was he who successfully applied mathematics to the musical conso-
nances described as the octave, the fifth and the fourth, and established the inverse
proportionality of the length of a vibrating string with its pitch. The forerunner of
the modern megaphone was used by Alexander the Great (400 bce) to summon
his troops from distances as far as 15 km.

The principal laws of sound propagation and reflection were understood by
the ancient Greeks, and the echo figured prominently in a number of classical
tales. Quintillianus demonstrated with small straw segments the resonance of a
string in air. Vitruvius, after making use of the spread of circular waves on a
water’s surface as an example, went on to explain that true sound waves travel
in a three-dimensional world not as circles, but rather as outwardly spreading
spherical waves. He also described the placement of rows of large empty vases
for the purpose of improving the acoustics of ancient theaters. While there may be
some question if such vases have actually been employed in these theaters (since
archeological excavations have failed to disclose their shards), it does presage
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knowledge of room acoustics on Vitruvius’s part. These vases would have the effect
of low-frequency absorption, similar to that of special panels that are used today
as absorbers. As these amphitheaters were constructed in stony recesses which
provide little or no low-frequency absorption, such vases would definitely improve
the acoustics of the ancient theaters. There is evidence of Lucius Mummius, who,
after destroying Corinth’s theater, brought its bronze vessels to Rome and made
a dedicatory offering from the proceeds of their sale to the goddess Luna in her
temple at Rome.

Aristotle’s eschewal of experiments (which he deemed unworthy of a scientist)
to establish the validity of hypotheses essentially caused the stagnation of all
natural sciences, including acoustics, such was the sway of his authority until the
end of the Middle Ages.

Leonardo da Vinci (1452–1519) knew as the ancients did that “there cannot be
any sound when there is no movement or percussion of the air.” His observations led
him to correlate the waves generated by a stone cast into water with the propagation
of sound waves as similar phenomena. He also ascertained that wave motion of a
sound has a definite value of velocity, and he noted that “the stroke of one bell is
answered by a feeble quivering and ringing of another bell nearby; a string sounding
on a lute, compels to sound on another lute, nearby, a string of the same note,”
thus anticipating by nearly a century Galileo Galilei’s discovery of sympathetic
resonance.

Almost no further progress in acoustics was made until the seventeenth century
when a relationship was established between pitch and frequency. Marin Mersenne
(1588–1648), a French natural philosopher and Franciscan friar, may be considered
to be the “father of modern acoustics.” In Harmonie universelle, published in
1636, he rendered the first scientifically palpable description of an audible tone
(84 Hz), and he demonstrated that the absolute frequency ratio of two vibrating
strings, radiating a musical note and its octave, is of the frequency ratio 1:2. An
analog with water waves is drawn: the belief was registered that the air motion
generated by musical sounds is oscillatory in nature, and it was observed that
sound travels with a finite speed. Sound is also known to bend around corners,
suggestive of diffraction effects which are also commonly observed in water waves.
Mersenne measured the velocity of sound by counting the number of heart beats
during the interval occurring between the flash of a shot and the perception of the
sound.

Independently of Mersenne, Galileo Galilei (1564–1642), in his Mathematical
Discourses Concerning the New Sciences (1638), supplied to date the most lucid
statement and discussion of frequency equivalence. It is interesting to note that
the wave viewpoint was not accorded unanimous acceptance among the early
scientists. Pierre Gassendi (1582–1655), a contemporary of Galileo and Mersenne,
argued for a ray theory whereby sound is attributed to a stream of atoms emitted
by the sounding body; the velocity of sound is the speed of atoms in motion, and
the frequency is the number of atoms emitted per unit time. He also attempted to
demonstrate that sound velocity was independent of pitch by comparing results of
the crack of a rifle with those for the deep roar of a cannon.
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Robert Boyle (1626–1691) with the help of his assistant Robert Hooke (1635–
1703) performed a classic experiment (1660) on sound by placing a ticking watch
in a partially evacuated glass chamber. He proved that air is necessary, either for the
production or emission of sound. In this respect he disproved Athenasius Kircher’s
(1602–1680) negative experiment in which the latter enclosed a bell in a vacuum
container and excited the bell magnetically from the exterior. Kirchner’s results
were erroneous because he did not take the precaution to prevent the conduction of
sound through the bell’s supports to the surroundings. Francis Hausksbee (1666–
1713) repeated the Boyle experiment (in a modified form) before the Royal Society.

Mention should be made here of Joseph Sauveur (1653–1713) who suggested
the term acoustics (from the Greek word for sound) for the science of sound. In
describing his research on the physics of music at the College Royal in Paris, he
introduced terms such as fundamental, harmonics, node, and ventral segment.1 It
is also an interesting footnote to history that Sauveur may have been born with
defective hearing and speaking mechanisms; he was reported to have been a deaf–
mute until the age of 7. He took an immense interest in music even though he had
to rely on the help of his assistants to compensate for his lack of keen musical
discernment in conducting acoustic experiments.

Franciscus Mario Grimaldi (1613–1663) published Physicomathesis de lumine,
coloribus et tride, which dealt with experimental studies of diffraction, much of
which was to apply to acoustics as well as to light, and in 1678 Hooke announced his
law relating force to deformation, which established the foundations of vibration
and elasticity theories.

Kircher’s publication Phomugia, die neue Hall- und Tonkunst (The New Art of
Sound and Tone), issued in 1680, provides us a rather amusing insight into the world
of misconception, nostrums, and plain scientific hokum that were prevalent at the
time. While delving into the phenomena of echoes and whispering galleries, the
text recommended music as the only remedy against tarantula bites and provided
a discourse on wines. In the chapter on wines, Kircher claimed that old wine has
purified itself and acquired a deep soul. If old wine is poured into a glass, which
is then struck, a sound will emanate. On the other hand, new wine was deemed
to be “jumpy” as a child and bereft of a sound. Hence, recent wine in a glass
will not sound. Another misconception widely believed at the time was that sound
could be trapped in a little box and preserved indefinitely, the idea of attenuation
or absorption of sound being completely alien then. It was even proposed by a
Professor Hut of the music academy at Frankfurt that a communications tube be
constructed to transmit speech over long distances.

Ernst F. F. Chladni (1756–1827), author of the highly acclaimed Die Akustik, is
often credited for establishing the field of modern experimental acoustics through

1 Nearly 20 years earlier, in 1683, Narcissus Marsh, then the Bishop of Ferns and Leighlin in the
Protestant Church, published an article “An Introductory Essay to the Doctrine of Sounds, Containing
Some Proposals for the Improvement of Acousticks” in the Philosophical Transactions of the Royal
Society of London. He was using the term “acousticks” to denote direct sound as distinguished from
reflected and diffracted sound.
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his discovery of torsional vibrations and measurements of the velocity of sound
with the aid of vibrating rods and resonating pipes. The dawn of the eighteenth
century saw the birth of theoretical physics and applied mechanics, particularly
under the impetus of archrivals Isaac Newton (1642–1726) and Gottfried Wilhelm
Leibniz (1646–1716). Newton’s theoretical derivation of the speed of sound (in
the Principia) motivated a spate of experimental measurements by Royal Soci-
ety members John Flamsteed (1646–1719), the founder of the Greenwich Ob-
servatory and the first Astronomer Royal, and his eventual successor (in 1720),
Edmund Halley (1656–1742); also by Giovanni Domenico Cassini (1625–1712),
Jean Picard (1620–1682), and Olof Römer (1644–1710) of the French Acadêmie
des Sciences; and nearly half century later in 1738 by a team led by César François
Cassini de Thury (1714–1762), a grandson of the aforementioned G. D. Cassini
who headed the earlier 1677 measurement team.

Newton’s estimate was found to be in error, for in his observations he had erred
by assuming an isothermal (rather than an isentropic) process as being the prevalent
mode for acoustic vibrations.2 Temperature was found to influence the speed of
sound in independent separate experiments by Count Giovanni Lodovico Bianoni
(1717–1781) of Bologna and Charles Marie de la Condamine (1701–1773). Other
acoustic developments included the evolution of the exponential horn by Richard
Helsham (1680–1758); this device loads the sound source heavily, thus causing
the source to concentrate its energy more than it could without the horn and directs
the output more effectively. Real understanding of this phenomenon did not come
about until John William Strutt, Lord Rayleigh (1845–1919) treated the problem
of source loading, and Arthur Gordon Webster (1863–1923) the theory of horns.

Each of the optical phenomena of refraction, diffraction, and interference was
elucidated during the seventeenth century. But all of these phenomena were soon
realized to apply to acoustics as well as to light. Willbrod Snell (or Snellius)
(1591–1626) composed an essay in 1620 treating the refraction of light rays in a
transparent medium such as water or glass, but he somehow neglected to publish
his manuscript which was later unearthed and used by Christian Huygens (1629–
1695) in his own works, which secured posthumous fame for Snell, in spite of a
publication of the same law by the stellar René Descartes (1596–1650) who, it
turned out, had made two erroneous assumptions, which were corrected by Pierre
de Fermat (1601–1665). Fermat’s principle derives from the assumption that the
light always travels from a source point in one medium to a receptor point in the
second medium by the path of least time. Diffraction was first observed by the Jesuit
mathematician Francesco Maria Grimaldi (1618–1663) of Bologna. His experi-
ments were repeated by Newton, Hooke, and Huygens; and soon this phenomenon
that light does not always travel in straight lines but can diffuse slightly around cor-
ners constituted a core issue in the controversy between the wave and corpuscular
theories of light. But it took nearly 200 years following Newton’s era to resolve the

2 Actually, what Newton really did was to assume that the “elastic force” of the fluid is proportional
to its condensation, which is now realized, in the context of modern thermodynamics, to be the
equivalence of the isothermal process.
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conflict by embracing elements of both theories. Newton essentially squelched the
wave theory until its revival by Thomas Young (1773–1829) and Augustin Jean
Fresnel (1788–1817), both of whom, independently of each other, elucidated the
principle of interference. On his analysis of diffraction, Fresnel drew heavily on
Huygen’s principle in which successive positions of a wavefront are established
by the envelope of secondary wavelets.

Armed with the analytical tools afforded by the advent of calculus by Newton and
Leibniz, the French mathematical school treated problems of theoretical mechan-
ics. Among the major contributors were Joseph Louis Lagrange (1736–1813), the
Bernoulli brothers James (1654–1705) and Johann (1667–1748), G. F. A. l′Hôpital
(Marquis de St. Mesme) (1661–1704), Gabriel Cramer (1704–1752), Leonhard
Euler (1707–1783), Jean Le Rond d’Alembert (1717–1783), and Daniel Bernoulli
(1700–1783). And the next generation provided a further flowering of genius:
Joseph Louis Lagrange (1736–1813), Pierre Simon Laplace (1749–1827), Adrian
Marie Legendre (1736–1833), Jean Baptiste Joseph Fourier (1768–1830), and
Siméon Denis Poisson (1781–1840). The nineteenth century was also dominated
by discoveries in electricity and magnetism by Michael Faraday (1791–1867),
James Clerk Maxwell (1831–1879), Heinrich Rudolf Hertz (1857–1894), and by
the theory of elasticity, principally developed by Clause L. M. Navier (1785–
1836), Augustin Louis Cauchy (1789–1857), Rudolf J. E. Clausius (1822–1888),
and George Gabriel Stokes (1890–1909).

These developments constituted the foundation for understanding the physical
and eventually the physiologcial aspects of acoustics. In the attempt to grasp the
nature of musical sound, Simon Ohm (1789–1854) advanced the hypothesis that
the ear perceived only a single, pure sinusoidal vibration and that each complex
sound is resolved by the ear into its fundamental frequency and its harmonics.
Hermann F. L. von Helmholtz (1821–1894) arguably deserves the credit for laying
the foundations of spectral analysis in his classic Lehre von den Tonempfindungen
(Sensation of Sound). The monumental two-volume Theory of Sound, released in
1877 and 1878 by the future Nobel laureate, Lord Rayleigh, laid down in a fairly
complete fashion the theoretical foundations of acoustics.

When the newly constructed Fogg Lecture Hall was opened in 1894 at Harvard
University, its acoustics was found to be so atrocious so as to render that facil-
ity almost useless. This prompted Harvard’s Board of Overseers to request the
physics department that something be done to rectify the situation. The task was
assigned to a young Harvard researcher, Wallace Clement Sabine (1868–1919),
and he discovered soon enough that excessive reverberations tend to mask the lec-
turer’s words. In a series of papers (1900–1915) evolving from his studies of the
lecture hall, he almost single-handedly elevated architectural acoustics to scientific
status. Sabine helped establish the Riverbank Acoustical Laboratories3 at Geneva,
Illinois. Just prior to his scheduled assumption of his duties at Riverbank, Sabine
succumbed at the young age of 50 to cancer. His distant cousin, Paul Earls Sabine

3 Riverbank is possibly the first research facility set up specifically for study and research in acoustics.
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(1879–1958), also a Harvard physicist, took on the task of running the laboratory.
The development of test procedures, methodology, and standardization in testing
the acoustical nature of products arose from the pioneering efforts of the younger
Sabine. A third member of the family, Paul Sabine’s son Hale Johnson Sabine
(1909–1981), began his career in architectural acoustics at the tender age of 10
by assisting his father at Riverbank, and his efforts centered on control of noise
in industry and institutions. Both father and son, Paul and Hale, served terms as
president of the Acoustical Society of America.

The genesis of ultrasonics occurred in the nineteenth century with James P.
Joule’s (1818–1889) discovery in 1847 of the magnetostrictive effect, the alter-
ation of the dimensions of a magnetic material under the influence of a magnetic
field, and in 1880 with the finding by the brothers Paul-Jacques (1855–1941) and
Pierre (1859–1906) Curie that electric charges result on the surfaces of certain
crystals subjected to pressure or tension. The Curies’ discovery of the piezoelec-
tric electric effect provided the means of detecting ultrasonic signals. The inverse
effect, whereby a voltage impressed across two surfaces of a crystals give rise
to stresses in the materials, now constitutes the principal method of generating
ultrasonic energy.

The study of underwater sound stemming from the necessity for ships to avoid
dangerous obstacles in water supplied the impetus for development of ultrasonic
applications. Until the early part of the twentieth century ships were warned of
hazardous conditions by bells suspended from lightships. Specially trained crew
members listened for these bells by pressing microphones or stethoscopes against
the hulls. In the effort to counteract the German submarine threat during World
War I, Robert Williams Wood (1868–1955) and Gerrard in England and Paul
Langevin (1872–1946) in France were assigned the task of developing counter
surveillance methods.

The youthful Russian electrical engineer, Constantin Chilowsky (1880–1958),
collaborated with Langevin in experiments with an electrostatic (condenser)
projector and a carbon-button microphone placed at the focus of a concave mirror.
In spite of troubles encountered with leakages and breakdowns due to the high
voltages necessary for the operation of the projectors, Langevin and Chilowsky
were able by 1916 to obtain echoes from the ocean bottom and from a sheet
of armor plate at a distance of 200 m. A year later Langevin came up with the
concept of using a piezoelectric receiver and employed one of the newly developed
vacuum-tube amplifiers—the earliest application of electronics to underwater
sound equipment—and Wood constructed the first directional hydrophone geared
to locate hostile submarines. The first devices to generate directional beams of
acoustic energy also constitute the first use of ultrasonics. Reginald A. Fessenden
(1866–1932), a Canadian engineer, working independently, developed a moving
coil transducer operating at frequencies in the range of 500–1000 Hz to generate
underwater signals. In the course of their underwater sound investigations, Wood
and his co-worker Alfred L. Loomis (1887–1975), who also was a trained lawyer,
and Langevin observed that small water creatures could be stunned, maimed, or
even destroyed by the effects of intense ultrasonic fields.
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World War I ended before underwater echo-ranging could be fully deployed to
meet the German U-boat threat. The years of peace following World War I wit-
nessed a slow but nevertheless steady advance in applying underwater sound to
depth-sounding by ships. Improvements in electronic amplification and process-
ing, magnetostrictive projectors, piezoelectric transducers provided refinements in
echo-ranging. The advent of World War II heightened research activity on both
sides of the Atlantic, and most of the present concepts and applications of under-
water acoustics traced their origins to this period. The concept of target strength,
noise output of various ships at different speeds and frequencies, reverberation in
the sea, and evaluation of underwater sound through spectrum analysis were quan-
titatively established. It was during this period that underwater acoustics became
a mature branch of science and engineering, backed by vast literature and history
of achievement.

The invention of the triode vacuum tube and the advent of the telephone and radio
broadcasting served to intensify interest in the field of acoustics. The development
of vacuum tube amplifiers and signal generators rendered feasible the design and
construction of sensitive and reliable measurement instruments. The evolution of
the modern telephone system in the United States was facilitated by the progress
of communication acoustics, mainly through the remarkable efforts of the Bell
Telephone Laboratories.

The historic invention of the transistor (1949) at the Bell Laboratories in Murray
Hill, New Jersey, gave rise to a whole slew of new devices in the field of electronics,
including solid state audio and video equipment, computers, spectrum analyzers,
electric power conditioners, and other gear too numerous to mention here.

Experiments and development of theory in architectural acoustics were con-
ducted during the 1930s and the 1940s at a number of major research centers,
notably Harvard, MIT, and UCLA. Vern O. Knudsen (1893–1974), eventually the
chancellor of UCLA, carried on Sabine’s work by conducting major research on
sound absorption and transmission. The most notable of his younger associates
was Cyril M. Harris (b. 1917), who was to become the principal consultant on
the acoustics of the Metropolitan Opera House in New York, the John F. Kennedy
Center in the District of Columbia, the Powell Symphony Hall in St. Louis, and a
number of other notable edifices.

Sound decay, in terms of reverberation times, was discovered to be a decisive
factor in gauging the suitability of enclosed areas for use as listening chambers.
The impedance method of rating acoustical materials was established to predict the
radiative patterns of sonic output, and prediction of sound attenuation in ducts was
established on a scientific footing. The architectural acoustician now has a wide
array of acoustical materials to choose from and to tailor the walls segmentwise
in order to effect the proper acoustic environment.

Acoustics also engendered the science of psychoacoustics. Harvey Fletcher
(1884–1990) led the Bell Telephone Laboratories in describing and quantifying
the concepts of loudness and masking, and there, many of the determinants of
speech communication were also established (1920–1940). Fletcher, now regarded
as “the father of psychoacoustics,” worked with the physicist Robert Millikan at
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the University of Chicago, on the determination of the electron charge. Fletcher
indeed performed much of the famed oil drop experiment, to the extent that many
physicists feel that the student should have shared the 1923 Nobel Prize in physics
with his professor who received the award for this effort. At Bell Labs, Fletcher also
developed the first electronic hearing aid and invented stereophonic reproduction.
Sound reproduction also constituted the domain of Harry F. Olson (1902–1982),
who directed the Acoustical Laboratory at RCA and developed modern versions
of loudspeakers. Warren P. Mason’s (1900–1986) major work in physical acous-
tics essentially laid down the modern foundations of ultrasonics, and Georg von
Bekésy (1849–1972) earned the Nobel Prize for his research on the mechanics of
human hearing. Acoustics penetrated the fields of medicine and chemistry through
the medium of ultrasonics: ultrasonic diathermy became established and certain
chemical reactions were found to become accelerated under acoustic conditions.

The outbreak of World War II served to greatly intensify acoustics research at
major laboratories in Western Europe and in the United States, particularly in view
of the demand for sonar detection of stealthily moving submarines and for reliable
speech communication in cacophonous environments such as propeller aircraft
and armored vehicles. This research not only has reached great proportions, it has
continued unabated to this day, at major universities and government institutions,
among them being the U.S. Naval Research Laboratory, Naval Surface Warfare
Center, MIT, Purdue University, Georgia Institute of Technology, and Pennsylvania
State University.

Prominent among the researchers were Richard Henry Bolt (1911–2002) and
Leo L. Beranek (b. 1914) who teamed up after World War II to found a ma-
jor research corporation, Bolt, Beranek & Newman (now BBN Technologies);
Phillip M. Morse of MIT [who authored and co-authored with Karl Uno Ingard
(b. 1921) major texts in physical acoustics]; R. Bruce Lindsay (1900–1985) of
Brown University; and Robert T. Beyer, who contributed to nonlinear acoustics,
also at Brown. In 1947 Eugen Skudrzyk (1913–1990) began research in nearly all
areas of acoustics at the Technical University of Vienna and went on to Pennsylva-
nia State University in the United States, he wrote possibly the best comprehensive
text on physical acoustics since Lord Rayleigh’s Theory of Sound.

Karl D. Kryter (b. 1914) of California dealt with the physiological effects of noise
on humans, and Carleen Hutchins (b. 1911) is still providing great insight into the
design and construction of musical string instruments, in her dual role as investigat-
ing acoustician and craftsperson seeking to emulate the old Cremona masters in her
hometown of Montclair, New Jersey. Laser intereferometry was applied by Karl H.
Steson (b. 1937) and by Lothar Cremer (1905–1990) to visualize vibrations of the
violin body. Sir James Lighthill (1924–1998), who held the Lucasian chair (once
occupied by Newton) in mathematics at Cambridge University, laid down the foun-
dations of modern aeroacoustics, building on the foundations of Lord Rayleigh’s
earlier research. UCLA’s Isadore Rudnick (1917–1997) performed major experi-
ments in superfluid hydrodynamics, involving sound propagation in helium at cryo-
geneic temperatures and also conducted studies of acoustically induced streaming
modes of vibrations of elastic bodies and attenuation of sound in seawater. At
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the Applied Physics Laboratory at the University of Washington, Lawrence A.
Crum (b. 1941) directs major research on sonofluorescence as well as the de-
velopment of ultrasound diagnostic and therapeutic medical devices. Kenneth S.
Suslick (b. 1952) and his co-workers at the University of Illinois are making major
contributions in the field of sonochemistry. Whitlow W. L. Au at the University of
Hawaii is conducting studies on the characteristics of cetacean acoustics, including
the target discrimination capabilities of dolphins and whales.

With acoustic research continuing apace, the number of great acoustcians living
surely exceeds that of deceased ones.

It can truly now be said that the U.S. Navy has done more (and is still doing
more) than any other institution to further acoustics research at its widespread facil-
ities, including Naval Research Laboratory (NRL) and the Naval Surface Warfare
Center (NSWC). Much magnificent work was done under the cloak of security
classification during the days of the Cold War, with the consequence that many
deserving researchers do not bask in the glory that have been publicly accorded
professional societies’ medal honorees and Nobel Prize laureates.

Robert J. Bobber (b. 1918) of NRL facility in Orlando paved the way in underwa-
ter electroacoustics measurements. Acoustics radiation constituted the domain of
Sam Hanish, late of the NRL in the District of Columbia. At NSWC’s David Taylor
Basin in Bethesda, Maryland, Murray Strausberg (b. 1917) continues to make ma-
jor contributions in the field of propeller noise, which entails the study of cavitation
and hydroacoustics as he did for the past three decades; David Feit (b. 1937) ranks
as a leading expert in the field of structural acoustics; and William K. Blake reigned
preeminent in the category of aero-hydroacoustics (Blake, 1964). Herman Medwin
(b. 1920) of the Navy Postgraduate School at Monterey, California, conducted ma-
jor research in acoustical oceanography. As a senior research physicist at the U.S.
Naval Surface Weapons Center, headquarters in Silver Spring, Maryland, Robert
Joseph Urick (1916–1996) elucidated the characteristics of underwater acoustical
phenomena, including sonar effects. He later taught the principles of underwater
sound at the Catholic University of America in Washington, DC.

Acoustics is no longer the esoteric domain of interest to a few specialists in
the telephone and broadcasting industries, the military, and university research
centers. Legislation and subsequent action have been demanded internationally to
provide quiet housing, safe and comfortable work environments in the factory and
the office, quieter airports and streets, and protection in general from excessive
exposure to noisy appliances and equipment.

The wiser architects are increasingly using acoustical engineers to ensure en-
vironmental harmony with the esthetic aspects of their designs. Acoustic instru-
mentation is being used in industry to facilitate manufacturing processes and to
ensure quality control. Acoustics has even invaded the living room through the
medium of high fidelity reproduction, giving rise to a spate of new equipment such
as Dolby processors, digital processors, compact disc (and more lately DVD) play-
ers, multi-speaker “Surround-Sound” environment conditioners, music synthesizer
circuit boards for personal computers. The escalating applications of ultrasound
provide new diagnostic and therapeutic tools in the medical field, more reliable
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characterization of materials, better surveillance methodologies, and improved
manufacturing techniques.

And what does the future hold in acoustics? The continuing miniaturization of
electronic circuitry is now resulting in digitized hearing aids that can circumvent
the “cocktail party effect” (the tendency of background noise to make it difficult
for the sensorneurally impaired listeners to focus on a conversation). Even newer
diagnostic and therapeutic processes entailing acoustical signals are being devel-
oped and tested at major medical centers. More sensitive and versatile transducers
that can withstand harsher environments lead to new acoustical devices such as
sonic viscometers, undersea probes, and portable voice-recognition devices. And
if we can gain a greater understanding of how cetaceans make use of their natural
sonars to assess the submarine environment and perhaps to communicate with
each other, we could be well on the way to constructing far more sophisticated
megachannel acoustical analyzers. The generation of acoustical waves in the giga-
hertz range can rival or exceed the optical microscope for resolution with greater
penetrating power. The repertoire of what is to come should truly constitute an
amazing cornucopia of beneficence to humanity.

References

Beranek, Leo J. 1995. Harvey Fletcher: Friend and scientific critic, Journal of the Acoustical
Society of America 97(5):3357.

Beyer, Robert T. 1995. Acoustic, acoustics. Journal of the Acoustical Society of America
98(1): 33–34.

Beyer, Robert T. 1999. Sounds of Our Times. New York: Springer-Verlag. [A fascinating
history of acoustics over the past 200 years, with many allusions to even earlier history.
This text picks up where Frederick Vinton Hunt left off in his unfinished, meticulously
researched work which was published posthumously (seen below).]

Blake, William K. 1964. Aero-hydroacoustics for Ships, 2 Vols. Bethesda, MD: David
Taylor Basin publication DTNSRDC-84/010, June 1964.

Bobber, Robert J. 1970. Underwater Electroacoustic Measurements. Washington, DC:
Naval Research Laboratory.

Chladni, E. F. F. 1802. Die Acustik. Leipzig: Breitkopf & Hartel.
Clay, Clarence S. and Medwin, Herman. 1977. Acoustical Oceanography: Principles and

Applications. New York: John Wiley & Sons.
Fletcher, Steven Harvey. 1995. Harvey Fletcher: A son’s reflections. Journal of the Acous-

tical Society of America 97(5 Pt. 2): 3356–3357.
Galileo, Galilei. 1638 (translation published in 1939). Dialogues Concerning Two New Sci-

ences, Translated by Crew, H. and De Salvio, A. Evanston, IL: Northwestern University
Press.

Hanish, Sam. 1981. A Treatise on Acoustic Radiation. Washington, DC: Naval Research
Laboratory.

Harris, Cyril M. 1995. Harvey Fletcher: Some personal recollections. Journal of the Acous-
tical Society of America 97(5 Pt. 2): 3357.

Helmholtz, Hermann F. L. von. 1877. Lehre con den Tonempfindungen. Braunschweig,
Wiesbaden: Vieweg.



12 1. A Capsule History of Acoustics

Hertz, J. H. (ed.). 1987. The Pentateuch and Haftorahs. London: Soncino Press.
Hunt, Frederick V. 1992 (reissue). Origins in Acoustics. Woodbury, NY: Acoustical Society

of America. (Although left incomplete by the author at the time of his death, this text is
one of the most definitive accounts by one of the great modern acoustical scientists of
the history of acoustics leading up to the eighteenth century.)

Junger, Miguel C., Feit, David. 1986. Sound, Structure, and Their Interaction. Cambridge,
MA: The MIT Press.

Kopec, John W. 1994. The Sabines at Riverbank. Proceedings, Wallace Clement Sabine
Centennial Symposium. Woodbury, NY: Acoustical Society of America, pp. 25–28.

Lindsay, R. Bruce. 1966. The story of acoustics. Journal of the Acoustical Society of
America 39(4): 629–644.

Lindsay, R. Bruce (ed.). 1972. Acoustics: Historical and Philosophical Development.
Benchmark Papers in Acoustics. Stroudsburg, PA: Dowden, Hutchinson & Ross, Inc.
(A most interesting compendium of selected papers by major contributors to acoustical
science, ranging from Aristotle to Wallace Clement Sabine. A must-read for the serious
student of the history of acoustics).

Lindsay, R. Bruce. 1880. Acoustics and the Acoustical Society of America in Historical
Perspective. Journal of the Acoustical Society of America 68(1): 2–9.

Mersenne, Marin. 1636. Harmonie universelle. Paris: S. Cramoisy; English translation:
Hawkins, J. 1853. General History of the Practice and Science of Music. London: J. A.
Novello, pp. 600–616, 650 ff.

Newton, Sir Isaac. 1687. Philosophiae Naturalis Principia Mathematica. London: Joseph
Streater for the Royal Society.

Pierce, Allan D. 1989 (reissue). Acoustics: An Introduction to its Physical Principles and
Application. Woodbury, NY: Acoustical Society of America.

Raman, V. V. 1973. Where credit is due: Sauveur, the forgotten founder of acoustics.
Physics Teacher pp. 161–163.

Shaw, Neil A., Klapholz, Jesse, Gander, Mark R. 1994. Books and Acoustics, espe-
cially Wallace Clement Sabine’s Collected Papers on Acoustics. Proceedings, Wallace
Clement Sabine Centennial Symposium. Woodbury, NY: Acoustical Society of America,
pp. 41–44.

Skudrzyk, Eugen. 1971. The Foundations of Acoustics—Basic Mathematics and Basic
Acoustics. New York: Springer-Verlag. (A text of classic proportions. Nearly one quarter
of this volume lays the mathematical foundations requisite to analysis of acoustical
phenomena.)

Strutt, John William (Lord Rayleigh). 1877. Theory of Sound. London: Macmillan & Co.
Ltd. 2nd edition revised and enlarged 1894, reprinted 1926, 1929. Reprinted in two
volumes, New York: Dover, 1945. (These volumes should be in every acoustician’s
library.)

Wang, Ji-qing. 1994. Architectural Acoustics in China, Past and Present. Proceedings,
Wallace Clement Sabine Centennial Symposium. Woodbury, NY: Acoustical Society of
America, pp. 21–24.

Webster, Arthur G. 1919. Proceedings of the National Academy of Science 5:275.



2
Fundamentals of Acoustics

2.1 Wave Nature of Sound and the Importance of Acoustics

Acoustics refers to the study of sound, namely, its production, transmission through
solid and fluid media, and any other phenomenon engendered by its propagation
through media. Sound may be described as the passage of pressure fluctuations
through an elastic medium as the result of a vibrational impetus imparted to that
medium. An acoustic signal can arise from a number of sources, e.g., turbulence
of air or any other gas, the passage of a body through a fluid, and the impact of a
solid against another solid.

Because it is a phenomenon incarnating the nature of waves, sound may contain
only one frequency, as in the case of a pure steady-state sine wave, or many
frequency components, as in the case of noise generated by construction machinery
or a rocket engine. The purest type of sound wave can be represented by a sine
function (Figure 2.1) where the abscissa represents elapsed time and the ordinate
represents the displacement of the molecules of the propagation medium or the
deviation of pressure, density, or the aggregate speed of the disturbed molecules
from the quiescent (undisturbed) state of the propagation medium.

When the ordinate represents the pressure difference from the quiescent pres-
sure, the upper portions of the sine wave would then represent the compressive
states and the lower portions the rarefaction phases of the propagation. A sine wave
is generated in Figure 2.2 by the projection of the trace of a particle A traveling in
a circular orbit. This projection assumes the pattern of an oscillation, in which the
particle A’s projection or “shadow” A′ onto an abscissa moves back and forth at a
specified frequency. Frequency f is the number of times the sound pressure varies
from its equilibrium value through a complete cycle per unit time. Frequency is
also denoted by the angular (or radian) frequency

ω = 2π f = 2π

T
(2.1)

expressed in radians per second. The period T is the amount of time for a sin-
gle cycle to occur, i.e., the length of the time it takes for a tracer point on the
sine curve to reach a corresponding point on the next cycle. The reciprocal of

13
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Figure 2.1. Plot of a sine wave y(t) = sin 2π sin ft over slightly more than two periods
of T = 1/ f s, where f is the frequency of the sine wave. y(t) may be the displacement
function x/x0, velocity ratio v/v0, pressure variation p/p0, or condensation variation s/s0,
where the subscript 0 denotes maximum values.

Figure 2.2. The oscillation of a particle A′ in a sinusoidal fashion is generated by the
circular motion of particle A moving in a circle with constant angular speed ω. A′ is
the projection of Acos ωt = Acos θ onto the diameter of the circle which has a radius
A. The projection of point A to the right traces a sine wave over an abscissa representing
time t . The projections for three points at times t1, t2, and t3 are shown here. The amplitude
of the oscillation is equal to the radius of the circle, and the peak-to-peak amplitude is
equal to the diameter of the circle.
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period T is simply the frequency f . The most common unit of frequency used
in acoustics (and electromagnetic theory) is the hertz (abbreviated Hz in the SI
system), which is equal to one cycle per second. An acoustic signal may or may
not be audible to the human ear, depending on its frequency content and intensity.
If the frequencies are sufficiently high (>20 kilohertz, which can be expressed
more briefly as 20 kHz), ultrasound will result, and the sound is inaudible to the
human ear. This sound is said to be ultrasonic. Below 20 Hz, the sound becomes
too low (frequency-wise) to be heard by a human. It is then considered to be
infrasonic.

Sound in the audio frequency range of approximately 20 Hz–20 kHz can be heard
by humans. While a degree of subjectivity is certainly entailed here, noise conveys
the definition of unwanted sound. Excessive levels of sound can cause permanent
hearing loss, and continued exposure can be deleterious, both physiologically and
psychologically, to one’s well-being.

With the advent of modern technology, our aural senses are being increasingly
assailed and benumbed by noise from high-speed road traffic, passing ambulances
and fire engine sirens, industrial and agricultural machinery, excessively loud radio
and television receivers, recreational vehicles such as snowmobiles and unmuffled
motorcycles, elevated and underground trains, jet aircraft flying at low altitudes,
domestic quarrels heard through flimsy walls, and so on.

Young men and women are prematurely losing their hearing acuity as the re-
sult of sustained exposure to loud rock concerts, discotheques, use of personal
cassette and compact disk players and mega-powered automobile stereo systems.
In the early 1980s, during the waning days of the Cold War, the Swedish navy
reported considerable difficulty in recruiting young people with hearing suffi-
ciently keen to qualify for operating surveillance sonar equipment for tracking
Soviet submarines traveling beneath Sweden’s coastal waters. Oral communi-
cation can be rendered difficult or made impossible by background noise; and
life-threatening situations may arise when sound that conveys information be-
comes masked by noise. Thus, the adverse effects of noise fall into one or
more of the following categories: (1) hearing loss, (2) annoyance, and (3) speech
interference.

Modern acoustical technology also brings benefits: it is quite probable that the
availability (and judicious use) of audiophile equipment has enabled many of us,
if we are so inclined, to hear more musical performances than Beethoven, Mozart
or even the long-lived Haydn could have heard during their respective lifetimes.
Ultrasonic devices are being used to: dislodge dental plaque; overcome the effects
of arteriosclerosis by freeing up clogged blood vessels; provide noninvasive medi-
cal diagnoses; aid in surgical procedures; supply a means of nondestructive testing
of materials; and clean nearly everything from precious stones to silted conduits.
The relatively new technique of active noise cancellation utilizes computerized
sensing to duplicate the histograms of offending sounds but at 180 degrees out
of phase, which effectively counteracts the noise. This technique can be applied
to aircraft to lessen environmental impact and to automobiles to provide quieter
interiors.
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2.2 Sound Generation and Propagation

Sound is a mechanical disturbance that travels through an elastic medium at a
speed characteristic of that medium. Sound propagation is essentially a wave phe-
nomenon, as with the case of a light beam. But acoustical phenomena are me-
chanical in nature, while light, X rays, and gamma rays occur as electromagnetic
phenomena. Acoustic signals require a mechanically elastic medium for prop-
agation and therefore cannot travel through a vacuum. On the other hand, the
propagation of an electromagnetic wave can occur in empty space. Other types of
wave phenomena include those of ocean movement, the oscillations of machin-
ery, and the quantum mechanical equivalence of momenta as propounded by de
Broglie.1

Consider sound as generated by the vibration of a plane surface at x = 0 as shown
in Figure 2.3. The displacement of the surface to the right, in the +x direction,
causes a compression of a layer of air immediately adjacent to the surface, thereby
causing an increase in the density of the air in that layer. Because the pressure of that
layer is greater than the pressure of the undisturbed atmosphere, the air molecules
in the layer tend to move in the +x direction and compress the second layer which,
in turn, transmits the pressure impulse to the third layer and so on. But as the plane
surface reverses its direction of vibration, an opposite effect occurs. A rarefaction
of the first layer now occurs, and this rarefaction decreases the pressure to a value
below that of the undisturbed atmosphere. The molecules from the second layer
now tend to move leftward, in the −x direction, and a rarefaction impulse now
follows the previously generated compression impulse.

This succession of outwardly moving rarefactions and compressions constitutes
a wave motion. At a given point in the space, an alternating increase and decrease
in pressure occur, with a corresponding decrease and increase in the density. The
spatial distance λ from one point on the cycle to the corresponding point on the next
cycle is the wavelength. The vibrating molecules that transmit the waves do not, on
the average, change their positions, but are merely moved back and forth under the
influence of the transmitted waves. The distances these particles move about their
respective equilibrium positions are referred to as displacement amplitudes. The
velocity at which the molecules move back and forth is termed particle velocity,
which is not to be confused with the speed of sound, the rate at which the waves
travel through the medium.

The speed of sound is a characteristic of the medium. Sound travels far more
rapidly in solids than it does in gases. At a temperature of 20◦C sound moves at
the rate of 344 m/s (1127 ft/s) through air at the normal atmospheric pressure of

1 The de Broglie theory assigns the nature of a wave to the momentum of a particle of matter in motion
in the following way:

mv = hν

c

where mv represents the moment of the particle, h Planck’s constant = 6.625 × 10–27 erg s, c the
velocity of light = 3 × 108 m/s, and ν the radial frequency of the wave attributable to the particle.
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Figure 2.3. Depiction of rarefaction and condensation of air molecules subjected to the
vibrational impact of a plane wall located at x = 0. The degree of darkness is proportional
to the density of molecules. Lighter areas are those of rarefactions. Mini-plots of the
local variations of molecular displacement Ψ, pressure p, condensation s = (ρ − ρ0)/ρ0,
and particle displacement ξ are given as functions of x for a given instant of the sound
propagation. Note that wavelength λ represents the distance between corresponding points
of adjacent cycles.

101 kPa (14.7 psia or 760 mmHg). Sound velocities are also greater in liquids than
in gases, but remain less in order of magnitude than those for solids. For an ideal
gas the velocity c of a sound wave may be computed from

c =
√
γ p

ρ
=

√
γ RT (2.2)

where γ is the gas constant equivalent to the thermodynamic ratio of specific
heats, cp/cv , p the quiescent gas pressure, and ρ the density of the gas. R is the
thermodynamic constant characteristic of the gas and T is the absolute temperature
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of the gas. For air at 20◦C, the sound propagation speed c is found from

c =
√
γ RT =

√
1.4 [287 N · m/(kg K)](20 + 273.2) K = 343.2 m/s

A simple relation such as Equation (2.2) does not exist for acoustic velocity in
liquids, but the propagation velocity does depend on the temperature of the liquid
and, to a lesser degree, on the pressure. Sound velocity is approximately 1461 m/s
in deaerated water. For a solid the propagation speed can be found approximately
from

c =
√

E

ρ
(2.3)

where E represents the Young’s modulus (or modulus of elasticity) of the material
and ρ the material density. As an example, considered cast iron with a specific
gravity of 7.70 and a modulus of elasticity of 105 GPa. Applying Equation (2.3)
and recalling that 1 N is equal to 1 kg m/s2, we find that

c =
√

105(10)9 N/m2

7700 kg/m2
= 3692 m/s

which does represent the propagation speed of sound in that material. Appendix A
lists the speed of sound for a variety of materials.

The strength of an acoustic signal, as exemplified by loudness or sound pressure
level (SPL), directly relates to the magnitudes of the displacement amplitudes and
pressure and density variations, as we shall see later in Chapter 3.

When the procession of rarefactions and condensations occurs at a steady si-
nusoidal rate, a single constant frequency f occurs. If the sound pressure of a
pure tone was plotted against distance for a given instant, the wavelength λ can
be established as being the peak-to-peak distance between two successive waves.
The wavelength λ is related to frequency f by:

λ = c

f
(2.4)

where c represents the propagation speed. From Equation (2.4), it can be seen
that higher frequencies will result in shorter wavelengths in a given propagation
medium.

2.3 Thermodynamic States of Fluids

In the treatment that follows this section, we eschew the details of molecular
motion and intermolecular forces by describing relevant effects in terms of macro-
scopic thermodynamic variables: pressure p, density ρ, and absolute temperature
T . These variables relate to each other through an equation of state

p = p(ρ, T )
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which is usually established experimentally. The implication of the equation of
state is that only two of the variables are independent; this is to say if the values
of two of the independent thermodynamic variables are given for a fluid, the
specific value of any other thermodynamic property is automatically established.
The equation of state for an ideal gas,

p

ρ
= RT (2.5)

can be derived from simple kinetic theory. Here,

R = gas constant, energy per unit mass per degree
R = �/M
� = universal gas constant, energy per mole per degree

= 8.314.3 kJ/kg mol K = 1545.5 ft lbf/lb mol R
= 1.986 Btu/lbmmol R

M = molecular weight of gas, kg/kg mol or lbm/lbm mol

Each kilogram-mole of the gas contains N0 = 6.02 × 1026 molecules. N0 con-
stitutes Avogadro’s number for the MKS system of dimensional units. With �

η rep-
resenting the mass of a single-gas molecule, M = N0

�
η, the number of molecules

per unit volume is N = ρ/�η. The equation of state for the ideal gas can now be
rewritten as:

p = N
�
N0

T = NkT

where k is the Boltzmann constant = �/N0 = 1.38 ×10–26 kJ/K.
In liquids and gases under extreme pressures, the relationships between the

thermodynamic variables p, T , ρ, X (here X is the quality or the fractional mass
of gas comprising a saturated liquid–gas mixture, e.g., X = 1.00 represents a fully
saturated gaseous state and X = 0 represents the fully saturated liquid state) are
not so simple, but the fact remains that these parameters are fully dependent upon
each other, and specifying two thermodynamic parameters (including enthalpy,
entropy, etc.) will fully specify the thermodynamic state of the fluid.

2.4 Fluid Flow Equations

In the Eulerian description of fluid mechanics the field variables, such as pressure,
density, momenta, and energy, are considered to be continuous functions of the
spatial coordinates x , y, z and of time t . Because velocity has three components
in three-dimensional space and only two independent thermodynamic variables
need to be selected to fix the thermodynamic state of the fluid (we chose p and
ρ), we have a total of five field variables for which we need five independent
equations. We can take advantage of conservation laws to establish these equations,
namely the conservation of mass, which supplies one equation; the conservation of
momentum along each of the three principal axes, which provides three equations;
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Qz+Δz = (ρw)z+Δz

Δy

Qz = (ρw)z

Qy+ Δy = (ρv)y+Δy

Qx+Δx = (ρu)x+Δx

Qx = (ρu)x

Qy = (ρv)y

Δx

Δz

x

y

z

Figure 2.4. Flow Q(v, t) into and out of a control volume V = xyz depicted for
the derivation of the equation of continuity.

and the conservation of energy (or the equation of state, in the derivation of the
actual wave equation)2 that constitutes the fifth equation.

2.5 Conservation of Mass

In Figure 2.4, consider a parallelepiped serving as a control (or reference) volume,
dV = dx dy dz, through which fluid flows. Conservation of matter dictates that the
net flow into this volume equals the gain or loss of fluid inside the volume, i.e.,

mexit − menter =
(

m

tvolume

)
V →dv

Let the velocity V of the fluid resolve into u, v, w, the velocity components in the
x , y, and z directions, respectively. In vector terminology

V = ui + vj + wk

2 It can be argued that because the equation of state derives from the principles of conservation of
momentum and energy in classic kinetic theory, it effectively becomes the equivalent of the energy
conservation principle in the extraction of the acoustic wave equations for a fluid, in conjunction with
the equations of continuity and momentum.



2.5 Conservation of Mass 21

where i, j, k represent the unit vectors along the x , y, z coordinates. The mass flux
Q(x, t) is defined as the flow of the mass of fluid per unit time per unit area, which
is represented by

Q(x, t) = ρ(x, t) u(x, t)

The rate of mass per unit time flowing into the control volume dV in the direction
is given by

ṁx = Q(x, t)dAx = (ρu)x,t dAx = (ρu)x,t dy dz (2.6)

at position x and the rate of mass per unit time ṁx+x leaving dV at x +x by

ṁx+x = Q(x +x, t)dAx = (ρu)x,t dAx (ρu)x,t dydz (2.7)

Then subtracting Equation (2.6) from Equation (2.7) yields the net flow in the x
direction

ṁx+x − ṁx = dAx [(ρu)x+x − (ρu)x ] = dAx
∂(ρu)

∂x
dx = ∂(ρu)

∂x
dV (2.8)

Similarly for mass flow in they and z directions

ṁ y+y − ṁ y = ∂(ρv)

∂y
dV (2.9)

ṁz+z − ṁz = ∂(ρw)

∂z
dV (2.10)

Summing the net mass flows Equations (2.8)–(2.10) and equating them to the
change of mass in the control volume:

∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= −∂ρ

∂t
(2.11)

Equation (2.11) is the equation of continuity, a general statement of the conserva-
tion of matter for compressible fluid3 flow. In vector notation Equation (2.11) may
be written as

∂ρ

∂t
− ∇ · (ρV) = 0 (2.12)

wherein the gradient symbol represents

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

3 If density ρ is constant, the fluid is said to be incompressible. As ρ is no longer a spatial or a time
function, Equation (2.11) simplifies to:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0
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in the rectangular coordinate system. In the cylindrical coordinate system the
gradient operator ∇ appears as

∇ = ∂

∂r
+ 1

r

∂

∂φ
+ ∂

∂z

and in the spherical coordinate system as

∇ = ∂

∂r
+ 1

r

∂

∂ϑ
+ 1

r sinϑ

∂

∂φ

2.6 Conservation of Momentum

In order to develop the equations of momentum for a fluid, let us consider the
motion of a fluid particle with a velocity field Vp = Vt (x, y, z, t). At a later time
t + dt , the velocity becomes Vp′ = Vt+dt (x + dx, y + dy, z + dz, t + dt). The
change in velocity is given by:

dV = (Vp′ − Vp) = ∂V
∂x

dx + ∂V
∂y

dy + ∂V
∂z

dz + ∂V
∂t

dt

and the total acceleration of the particle is therefore expressed as

ap = dV
dt

= ∂V
∂x

dx

dt
+ ∂V
∂y

dy

dt
+ ∂V
∂z

dz

dt
+ ∂V
∂t

(2.13)

But dx/dt = u, dy/dt = v, and dz/dt = w. Equation (2.13) now can be written as:

ap = dV
dt

= u
∂V
∂x

+ v
∂V
∂y

+ w
∂V
∂z

+ ∂V
∂t

= DV
Dt

(2.14)

Here, the operator

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

represents the total or convective derivative of fluid mechanics. While Equation
(2.14) is a vector expression, we can rephrase it into scalar terms. With reference
to a rectangular coordinate system the scalar components of Equation (2.14) are
written as

ax = Du

Dt
= ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

ay = Dv

Dt
= ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

az = Dw

Dt
= ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

No acceleration or deceleration of the fluid will occur unless forces are acting
upon it. Two types of forces act on the fluid element as shown in Figure 2.5, namely,
body forces and surface forces. Gravity constitutes a body force that pervades
throughout the volume of the fluid. Surface forces include both normal forces
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Figure 2.5. A fluid element acted on by normal and tangential stresses.

(pressure) and tangential (shear) forces. A normal force is denoted by the symbol
σmm , where m denotes the direction of the normal. Because σmm is dimensionally
expressed in force per unit area, it must be multiplied by the area normal to it in
order to obtain the force.

A shear stress acts along the plane of the surface. It is represented by the symbol
τmn , where the force produced by the shear is normal to coordinate m and parallel
for coordinate n, and either m or n may represent the principal coordinate x, y, or
z, provided that m �= n. If m = n, then τmm really represents the normal force σmm

and thus is no longer a tangential force. The shear stress is multiplied by the area
it is acting on to yield the shear force. For example, a shear τxy multiplied by area
(dx dy) represents the shear force normal to the x-axis and parallel to the y-axis,
as shown in Figure 2.5 for a fluid element displayed in Cartesian coordinates.

In order to determine the net force Fx in the x-direction, all of the forces in the
x-direction must be summed. From Figure 2.5 we can write

dF x = ρgx dxdydz +
(

−σxx + σxx + ∂σxx

∂x
dxdydz

)

+
(
τyx + ∂τyx

∂y
dx − τyx

)
dxdz +

(
τzx + ∂τzx

∂z
dx − τzx

)
dxdz

which simplifies to

dF x =
(
ρgx + ∂σxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dxdydz (2.15)
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We can easily apply the force summation procedure to the other two principal axes:

dFy =
(
ρgy + ∂τxy

∂x
+ ∂σyy

∂y
+ ∂τzy

∂z

)
dxdydz (2.16)

dFz =
(
ρgz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z

)
dxdydz (2.17)

From Newton’s second law of motion,

dF = d(ma) = ρdV
DV
Dt

we can now formulate the differential momentum equations by combining the
scalar components of Equation (2.13) with Equations (2.15)–(2.17) with the fol-
lowing results:

ρgx + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
= ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂u

∂z

)
(2.18a)

ρgy + ∂τxy

∂x
+ ∂σyy

∂y
+ ∂τzy

∂z
= ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
(2.18b)

ρgz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
= ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
(2.18c)

In order to use Equations (2.18a)–(2.18c), the expressions for the stresses should
be stated in terms of the velocity field. If a Newtonian fluid is assumed, the viscous
stresses are proportional to the rate of shearing strain (i.e., the rate of angular de-
formation). Without going into details, we express the stresses in terms of velocity
gradients and viscosity coefficient μ as follows:

τxy = τyx = μ

(
∂v

∂x
+ ∂u

∂y

)
(2.19a)

τyz = τzy = μ

(
∂w

∂y
+ ∂v

∂z

)
(2.19b)

τzx = τxz = μ

(
∂u

∂z
+ ∂w

∂x

)
(2.19c)

σxx = −p − 2

3
μ · V + 2μ

∂u

∂x
(2.19d)

σyy = −p − 2

3
μ · V + 2μ

∂v

∂y
(2.19e)

σzz = −p − 2

3
μ · V + 2μ

∂w

∂z
(2.19f)

Here the term p is the local thermodynamic pressure, which is essentially an
isotropic parameter at any given point in the fluid. If we assume the fluid to be
frictionless, then μ = 0, and we are left with Equations (2.19d)–(2.19f) in the
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following format:

σxx = σyy = σzz = −p

and, neglecting the gravitational body force ρgi (where i = x, y, z), we recast
Equations (2.18a)–(2.18c) as

−∂p

∂x
= ρ

Du

Dt

−∂p

∂y
= ρ

Dv

Dt

−∂p

∂z
= ρ

Dw

Dt

2.7 Conservation of Energy

The energy content W of a fluid is the sum of the macroscopic kinetic energy
ρ|V |2/2 and the internal energy ρE of the fluid. In a gas, the microscopic kinetic
energy (i.e., the thermal energy of the molecules) comprises the major portion
of the internal energy, so the potential energy between molecules is negligible in
comparison. Denoting the energy flux by S we write equation for the conservation
of energy as

∂W

∂t
+ ∂S

∂x
= 0 (2.20)

The internal energy of a volumetric element can be increased through heat flow
from the surrounding fluid or from external sources and by the work of compression
−∫

pdV by the surrounding fluid pressure. This energy balance and the fact that
the internal energy is a thermodynamic state that can be fully specified by two
independent thermodynamic variables constitute the first law of thermodynamics.

With the conservation equations discussed above and the equation of state, we
have all the necessary equations to obtain solutions for the three components of
velocity V, ρ, p and absolute temperature T . Because the fluid equations are non-
linear, solutions are not easy to come by, even with the aid of supercomputers to
map the complex motions of atmospheric eddies, turbulent jet flows, capillary flow,
and so on. Exact solutions exist principally for a few simple problems. Neverthe-
less, through the derivation of these equations, we have established the foundation
for the derivation of acoustic field equations for fluids.

2.8 Derivation of the Acoustic Equations

We begin with the following assumptions:

(1) the unperturbed fluid has definite values of pressure, density, temperature, and
velocity, all of which are assumed to be time independent and denoted by the
subscript 0.
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(2) the passage of an acoustic signal through the fluid results in small perturba-
tions of pressure, temperature, density, and velocity. These perturbations are
expressed as p0 + p, ρ0 + ρ, u, and so on. The unperturbed velocity u0 is set
to zero; the unperturbed fluid does not undergo macroscopic motion, and u
constitutes the perturbation velocity in the x-direction. Also, p 	 p0, ρ 	 ρ0,
and T 	 T0.

(3) the transmission of the sound through the fluid results in low values of spatial
temperature gradients at audio frequencies, resulting in almost no heat transfer
between warmer and cooler regions of the plane wave. Thus the ongoing
thermodynamics process may be considered an adiabatic process (at ultrasonic
frequencies there is virtually no time for heat transfer to occur).

Under the above conditions we obtain an expansion of the continuity equation
in the x-direction as follows:

∂[(ρ0 + ρ)u]

∂x
= −∂(ρ0 + ρ)

∂t
= u

∂ρ

∂x
+ ρ0

∂u

∂x
which, by discarding second-order terms, reduces to

∂ρ

∂t
= −ρ0

∂u

∂x
(2.21)

Here we consider ρ0 ≈ ρ0 + ρ, also recalling that the quiescent density ρ0 does
not vary in time and space. Treating in the same fashion the one-dimensional
momentum equation

∂(p0 + p)

∂x
= (ρ0 + ρ)

(
∂u

∂t
+ u

∂u

∂x

)
yields

∂p

∂x
= ρ0

∂u

∂t
(2.22)

In an adiabatic process involving an ideal gas,

pρ−γ = constant.

Here γ represents a thermodynamic constant, characteristic of the gas, equal to
the ratio of the specific heats cp/cv . The numerator of this thermodynamic ratio
is the specific heat at constant pressure, and the denominator, the specific heat at
constant volume. By differentiation,

ρ−γ dp − γ pρ−γ−1dρ = 0

and rearranging

dp

p
= γ

dρ

ρ

we have for this situation
dp

p0
= γ

dρ

ρ0



2.8 Derivation of the Acoustic Equations 27

The above expression can be differentiated with respect to time:

1

p0

∂p

∂t
= γ

ρ0

∂ρ

∂t
(2.23)

Combining Equations (2.21) and (2.23),

∂p

∂t
= γ p0

ρ0

∂ρ

∂t
= γ p0

∂u

∂x

and then differentiating with respect to time t we obtain

∂2p

∂t2
= γ p0

∂2u

∂t∂x
Differentiating Equation (2.22) with respect to x results in

∂2p

∂x2
= ρ0

∂2u

∂x∂t
Equating the above two cross-differential terms to each other, as we consider them
to be equivalent regardless of their order of differentiation, we obtain the result

∂2p

∂x2
= ρ0

γ p0

∂2 p

∂t2
= 1

c2

∂2p

∂t2
(2.24)

where

c2 = γ p0

ρ0
= γ RT

Here c, R, and T are respectively the propagation velocity of sound, the gas
constant, and absolute temperature of the (ideal) gas. In three-dimensional form
the wave equation (2.17) appears as

∇2 p = 1

c2

∂2 p

∂t2
(2.25)

We also could have eliminated p in favor of u by reversing the differentiation
procedure between Equations (2.22) and (2.23), in which situation we would get

∂2u

∂x2
= 1

c2

∂2u

∂t2
(2.26)

for the one-dimensional situation, and

∇2V = 1

c2

∂2V
∂t2

(2.27)

in the three-dimensional case. It is also a straightforward matter to derive the wave
equation in terms of density, resulting in the following expressions:

∂2ρ

∂x2
= 1

c2

∂2ρ

∂t2
(2.28a)

for the one-dimensional case and

∇2ρ = 1

c2

∂2ρ

∂t2
(2.28b)

for three dimensions.
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Equations (2.24)–(2.28) are second-order partial differential equations in x and
t . Ordinarily we need two initial conditions and two boundary conditions for a fully
defined solution for each of the equations, but we need not define these conditions
in order to ascertain the nature of the general solutions. The general solution to
Equation (2.24) may be written as

p(x, t) = F(x − ct) + G(x + ct) (2.29)

The function F(x – ct) represents waves moving in the positive x-direction and
G(x + ct) represents waves moving in the opposite direction. All solutions to
Equation (2.24) must be of the form represented in Equation (2.29); otherwise any
p that does not adhere to this form cannot constitute a solution. Because Equations
(2.26) and (2.28a) are functionally the same as Equation (2.24), their respective
general solutions take on the same cast as that of Equation (2.29):

u(x, t) = Φ(x − ct) + Γ (x + ct) (2.30)

ρ(x, t) = Θ(x − ct) + Y (x + ct) (2.31)

The arbitrary functions F , G,Φ,Γ,Θ, Y can be assumed to have continuous deriva-
tives of the first and second order. Because of the manner in which the constant
c appears in relation to x and t inside these functions, it must have the physical
dimensions of x/t , so c must be a speed, which is indeed the experimentally deter-
mined rate at which the sound wave is propagated through a medium. No matter
how it is shaped, the propagating wave (or its counterpart, the backward traveling
wave) moves without changing its form. To prove this, consider the sound pressure
level at x = 0 and time t = t1 for a wave moving in the positive x-direction. Thus
p = fá(t1). At time = t1 + t2, the sound wave will have traveled a distance x =
ct2. The sound pressure will now be

p = fα(t1 + t2) = fα

(
t1 + t2 − ct2

t2

)
= fα(t1)

This means the sound pressure has propagated without change.
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Problems for Chapter 2

1. Write the expression for a simple sine wave having a frequency of 10 Hz
and an amplitude of 10−8 cm. What is the frequency expressed in radians per
second? Plot the expression on graph paper or, better yet, on a computer with
the aid of a program such as Excel©, Mathcad©, MathLab©, etc.
Repeat the process for a frequency of 20 Hz and for 50 Hz.

2. If the frequency of a pure cosine wave is 100 Hz and the velocity of the wave
front is 330 m/s, what is the wavelength of this signal? Express the frequency
in radians per second.

3. Air may be considered to be a nearly ideal gas with the ratio of specific heat
γ = 1.402. At 0◦C its density is 1.293 kg/m3. Predict the speed of sound c for
the normal atmospheric pressure of 101.2 kPa (1 Pa = 1 N/m2).

4. Nitrogen is known to have a molecular weight of 28 kg/kg mol. Predict the
speed of sound at 0◦C, 20◦C, and 50◦C, with the assumption that nitrogen
behaves as an ideal gas. Repeat the problem for pure oxygen which has a
molecular weight of 32.

5. Compute the speed of sound (in ft/s) traveling through steel that has a Young’s
modulus of 30 × 106 psi and a specific gravity of 7.7. Why does it differ from
cast iron?

6. A solid material is known to have a density of 8.5 g/cm3. Sound velocity
traveling through this material was measured as being 4000 m/s. Determine
the Young’s modulus in GPa for this material.

7. Find the speed of sound (in m/s) traveling through aluminum that typically
has a Young’s modulus of 72.4 GPa and a specific gravity of 2.7.

8. For distilled water, the speed of sound c in m/s can be predicted within 0.05%
as a function of pressure P and temperature T from the experimentally deter-
mined formula

c(P, t) = 1402.7 + 488t − 482t2 + 135t3 + (15.9 + 2.8t + 2.4t2)(Pa/100)

where Pa is the gauge pressure in bars (1 bar = 100 kPa) and t = 0.01T , with
temperature T in degrees Celsius. Find the speed of sound for the water at
20◦C and 1 bar. What will be the wavelength of a 200-Hz sine-wave signal
traveling through water? If the same signal travels through air at the speed of
331 m/s, what will be the corresponding wavelength?

9. Explain why density and pressure are in phase and that both are out of phase
with particle velocity.

10. When does the maximum amplitude of a pure sine wave occur with respect to
the particle velocity and the instantaneous pressure?
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11. A molecule exposed to a pure cosine sound wave undergoes a particle dis-
placement y, with maximum amplitude A, according to

y = A cosωt

Find the corresponding particle velocity and show that the expressions for both
displacement and velocity constitute solutions to a wave equation.

12. Demonstrate that y(x, t) = A1 cos(x − ct) + B1 sin(x + ct) + A2 cos2 2(x −
ct) + B2 sin2 3(x + ct) constitutes a solution to the wave equation. Which
portion of the solution represents wave travel in the +x direction and which
portion denotes propagation in the –x-direction?

13. If the density of a medium subject to wave propagation varies in the following
manner:

ρ = ρ0ei(x−ct)

express the corresponding pressure p(x ,t) in terms of quiescent pressure p0

and density ρ0.



3
Sound Wave Propagation
and Characteristics

3.1 The Nature of Sound Propagation

When energy passes through a medium resulting in a wave-type motion, several
different types of waves may be generated, depending upon the motion of a par-
ticle in the medium. A transverse wave occurs when its amplitude varies in the
direction normal to the direction of the propagation. This type of wave has been
used to describe the transmission of light and alternating electric current. But the
situation is almost completely different in the case of sound waves, which are prin-
cipally longitudinal, in that the particles oscillate back and forth in the direction
of the wave motion, with the result the motion creates alternative compression and
rarefaction of the medium particles as the sound passes a given point. The net fluid
displacement over a cycle is zero, since it is the disturbance rather than the fluid
that is moving at the speed of sound. The fluid molecules do not move far from
their original positions.

Additionally, waves may also fall into the category of being rotational or tor-
sional. The particles of a rotational wave rotate about a common center; the curl
of an ocean wave roaring onto a beach provides a vivid example. The particles
of torsional waves move in a helical fashion that could be considered a vector
combination of longitudinal and transverse motions. Such waves occur in solid
substances, and shear patterns often result. These are referred to as shear waves,
which all solids support.

3.2 Forward Propagating Plane Wave

In Equation (2.29), which is the general solution to the one-dimensional wave
equation, we consider only the wave moving in the +x direction with the solution
for a monofrequency wave represented by

p(x, t) = F(x − ct) = pm cos k(x − ct) (3.1)

where pm is the peak amplitude of the sound pressure; k, the wave number which
equals 2π/λ; and λ, the wavelength. Figure 3.1 shows the variation of sound

31
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Figure 3.1. Variation of pressure from quiescent state along the x-axis for time instants
t = 0, t = T/4, t = T/2, t = 3T/4, where T = 1/ f is the period for a complete cycle to
occur.
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pressure p for different time intervals t = 0, t = T/4 = 1/(4 f ) = (1/2)π/ω, t =
T/2 = 1/(2 f ) = π/ω, t = 3/(4 f ) = 3T/4 = (3/2)(π/ω), and t = T = 1/ f =
2π/ω.

3.3 Complex Waves

The concept of simple sinusoidal waves lacks specificity to be of practical value
in noise control, but complex periodic waveforms can be broken into two or more
sinusoidal harmonically related waves. In Figure 3.2, a complex waveform re-
solves into a sum of harmonically related waves. The harmonic relationship in this
example is such that the frequency of one harmonic is twice that of the other. The
lowest-frequency sine term is the fundamental, and the next highest frequency the
second harmonic, the next the third harmonic, and so on. Sound pressure waves ra-
diating from pumps, gears, and other rotating machinery are usually complex and
periodic, with distinguishable discrete tones or pure tones. These sinusoidal waves
can be broken down or synthesized into simple sinusoidal terms. In the analysis
of the noise emanating from rotating machinery, there are often 8 to 10 harmonics
present with frequencies which are integer-ordered multiples of the fundamental
frequency. Even aperiodic sounds such as the hiss of a pressure valve of an auto-
clave, the broadband whine of a jet engine, or the pulsating sound of a jackhammer
can be resolved and described in terms of sums of simple sinusoids. Integer har-
monic relationships associated with periodic sound waves do not occur in these
sounds, and the composition entails more than a simple series. But the principle
of synthesis still applies.

Figure 3.2. The resolution of a complex waveform into a set of harmonically related
sinusoidal waves. The fundamental wave and the second harmonic sine wave add up
algebraically to form the complex wave.
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A general equation can be written to incorporate the elements of the sound
pressure level associated with complex periodic noise sources as

p(t) = A1 sin(ωt + φ1) + A2 sin(2ωt + φ2)

+ A3 sin(3ωt + φ3) + · · · + An sin(nωt + φn)

=
n∑
1

An sin(nωt + φn) =
n∑
1

Cneiωt (3.2)

where

An = amplitude of the nth harmonic

φn = phase angle of the nth harmonic

Cn = complex amplitude of the nth harmonic

Equation (3.2) constitutes a form of the Fourier series, an analytical tool developed
nearly two centuries ago by the French physicist Jean Baptiste Joseph Fourier to
characterize complex functions and used by him to predict tides. Fourier’s concept
of complex wave synthesis constitutes one of the most powerful analytical and
diagnostic tools available to the present-day acoustician.

When two or more sound waves become superimposed upon each other, they
combine in a linear manner, i.e., their amplitudes add algebraically at any point in
space and time. The superposition generally results in a complex wave that can be
synthesized into basic sinusoidal spectrum components. Two special phenomena
resulting from superposition are of special interest, namely, beat frequency and
standing waves.

Consider the superposition of two sound waves of equal amplitudes but slightly
differing frequencies. With A0 denoting the amplitude of each wave and ω1 �� ω2,
the total superimposed pressure becomes

p(t) = A0(sinω1 t + sinω2 t)

Applying the trigonometric identity

sinα + sinβ = 2 cos
(α − β)

2
sin

(α + β)

2
the total pressure assumes the form

p(t) = 2 A0 cos
(ω1 −ω2)t

2
sin

(ω1 +ω2)t

2

= 2 A0 cos 2π
( f1 − f2)t

2
sin 2π

( f1 + f2)t

2
(3.3)

where ω = 2π f .
From Equation (3.3) the resultant wave may be considered a complex sound

wave with a frequency of ( f1 + f2)/2, as indicated by the sine factor and which
is the average of the two superimposed waves. The amplitude is

p′(t) = 2 A0 cos 2π
( f1 − f2)t

2
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Figure 3.3. Addition of wavesA and B with equal amplitudes but slightly differing fre-
quencies. The sum of the two sine waves yields an envelope C which has a beat frequency
equal to the difference between the frequencies of the superimposed waves A and B.

When the argument of the cosine assumes integer values of π , the amplitude of
the complex wave is a maximum that is equal to 2A0. Continuing the reasoning
further, it is established that the amplitude of the complex wave vanishes when the
argument of the cosine takes on integer odd values of π/2, i.e.,

2π
( f1 − f2)t

2
= (2n − 1)π

2
(n = 1, 2, 3, . . .) (3.4)

A graph of the envelope of this transient amplitude modulation is given in
Figure 3.3. The modulation or beat frequency is simply the frequency difference
( f1 – f2) between the two superposed waves. To demonstrate this, let us solve
Equation (3.4) for those times tn when the amplitude of the superimposed sound
pressure is zero,

tn = 2n − 1

2( f1 − f2)
(n = 1, 2, 3, . . .)

Now consider in a general fashion the time difference between two consecutive
beats, namely, the nth and the (n + 1)th:

tn+1 − tn = 2(n + 1) − 1

2( f1 − f2)
− 2n − 1

2( f1 − f2)

= 1
f1 − f2

(3.5)
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Figure 3.4. Addition of waves A and B with slightly different frequencies but unequal
amplitudes. Envelope C that results from adding waves A and B shows beats in which the
minimum strength is not zero.

The time duration between beats is, by definition, the period Tb of the beat fre-
quency; and the reciprocal of the period defined in Equation (3.5) yields the beat
frequency fb:

fb = f1 − f2 (3.6)

In the more general case when the amplitudes of the superposed equations are not
equal, the amplitude of the superposed wave varies between the sum and difference
of the component waves, as shown in Figure 3.4. The periodic variation in ampli-
tude generates a rhythmic pulsating sound, and when the frequency difference is
only a few hertz, say 4 or 5, the human ear can readily discern the beat.

3.4 Standing Waves

When a sound wave is superposed upon another wave of the same frequency but
traveling in a different direction, a standing-wave sound field is generated. As an
illustration, consider the superimposition of two sound waves traveling in opposite
directions as given by

p1(t) + p2(t) = A1 sin(2π ft − kx) + A2 sin(2π ft + kx) (3.7)

The first sine term in Equation (3.7) represents a sound wave traveling in the
positive x-direction with amplitude A1 and frequency f . The second sine term
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represents a sine wave traveling in the negative x-direction with amplitude A2 and
identical frequency f . Using trigonometric identities for the sum and difference
of angles, we rewrite Equation (3.7) as follows:

p1(t) + p2(t) = A1 sin 2π ft cos kx − A1 cos 2π ft sin kx

+ A2 sin 2π ft cos kx + A2 cos 2π ft sin kx

For waves of equal amplitudes we obtain the following simplification:

p1(t) = +p2(t) = 2 A1 cos kx sin 2π ft (3.8)

Equation (3.8) may now be considered to be a simple sinusoidal function of time
whose amplitude depends on the spatial location x of the observer. When the
argument of the cosine assumes odd integer values of π/2, i.e.,

kx = π

2
,

3π

2
,

5π

2
, . . . . ,

(2n − 1)π

2
(n = 1, 2, 3, . . .)

the sound pressure vanishes, and there are nodal points in space where no sound
occurs. Solution of the preceding equation for xn yields the spatial locations of
these nodes:

xn = (2n − 1)π

2k
(n = 1, 2, 3, . . .)

and since k = ω/c = 2π/λ, we obtain

xn = (2n − 1)λ

4
(n = 1, 2, 3, . . .)

We thus note that the location of the nodes is simply related to the wavelength
of the superimposed waves. By taking the difference between successive nodal
locations, it can be demonstrated that the nodes occur every half wavelength, i.e.,

xn+1 − xn = 2[(n + 1) − 1]λ

4
− (2n − 1)λ

4
= λ

2

We can also establish from Equation (3.8) that the antinodes or points of maximum
sound pressure in the standing wave occur when the argument of the cosine assumes
integers values of π , i.e.,

kx = nπ (n = 1, 2, 3, . . .)

The amplitude of the antinodes is simply 2A1. These antinodes or points of maxi-
mum sound pressure are stationary, located halfway between the nodes and spaced
one-half wavelength apart.

Example Problem 1
Consider a case where a hydraulic pump radiates a 600-Hz sound wave that is
reflected back from a tile wall located at 1 m away from the wall. What is the
spacing of the nodes or position of minimum sound for the fundamental tones and
its second harmonic?
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Solution
We first calculate the wavelength of the first harmonic from the relationship λ =
c/ f , with the speed of sound being taken at 344 m/s at room temperature:

λ = c

f
= 344

600
= 0.573 m

The spacing between the nodes occurs every half wavelength, or distance intervals
of 0.287 m. With the hydraulic pump positioned in close proximity to the wall,
the amplitude of the antinodes will be nearly twice as large, as a result of the
summation of the radiated and the reflected waves. For the second harmonic at
1200 Hz, the spacing of the nodes will be 0.143 m, since its wavelength is half that
of the fundamental. This example points out the necessity for caution in taking
measurements in close proximity to highly reflecting surfaces, which can yield
highly misleading results. In many situations reflective surfaces are not in close
proximity and the amplitudes of reflected waves are relatively small compared to
the original waves, so the variation in the amplitudes of the standing waves are
correspondingly small and thus can be neglected.

3.5 Huygens’ Principle

While originally conceived in the seventeenth century to explain optical phenom-
ena, Huygens’ principle applies equally to sound propagation. The principle states
that advancing wavefronts can be considered to be point sources of secondary
wavelets. Figure 3.5 illustrates the Huygens’ construction of a wave front at time

Figure 3.5. Construction of a wavefront at time t +t from its previous state at time t ,
according to Huygens’ principle.
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t +t from a wavefront at earlier time t . The new wavefront is the envelope of radii
ct centered at points on the preceding wavefront. Thus, a plane wave remains
a plane wave and a spherical wave remains a spherical wave with ever-enlarging
radius.

3.6 The Doppler Effect

When a sound source moves, the acoustic radiation pattern changes, thereby pro-
ducing changes to the generated frequencies as perceived by a stationary observer.
When an acoustic source generating a frequency f approaches an observer at ve-
locity v, then during a single period T (=1/ f ) a signal emitted at the onset of the
period travels a distance cT. But the signal is emitted at the end of the period from
the source that is closer to the observer by a distance vT . The distance between
the crests, i.e., the wavelength λ, has been reduced to

λ = cT − vT = c − v

f
(3.9)

The resulting frequency heard by the observer is not the source’s output frequency
but that increased by the resulting drop in the wavelength, that is to say,

fd = c

λ
= f c

c − v
= f

1 − v/c
(3.10)

Here fd is the frequency perceived by the observer. When the source approaches
at a velocity v, the observer hears a higher-frequency sound which represents the
original frequency multiplied by a factor (1 – v/c)−1. On the other hand, when
v assumes a negative value, which means the source is pulling away from the
observer, fd assumes a lower value than that of the source frequency f , since the
velocity v in Equation (3.10) assumes a negative value.

Example Problem 2
A train emits a 250-Hz signal while traveling at the rate of 200 km/h. What are the
apparent frequencies in approaching the observer and retreating from the observer
at the railroad crossing?

Solution
From Equation (3.10)

v = (200,000 m/h)/(3600 s/h) = 55.6 m/s

fd = 250 Hz (1 − 55.6/344)−1 = 298 Hz for approach

fd = 250 Hz (1 + 55.6/344)−1 = 215 Hz for retreat

If an observer stands on a line making an angle θ with a source’s direction of motion
at speed V , the approach velocity of the source is v = V cos θ , and Equation (3.10)
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modifies to:

fd = f

1 − V cos θ

c

(3.11)

The relative frequency increases or diminished, when θ exists as an acute or obtuse
angle.

3.7 Reflection

When sound impinges upon a surface, a portion of its energy is absorbed by the
surface and the remainder bounces back or becomes reflected from the surface. A
perfectly hard surface will reflect back all of the energy. A classic example of the
reflection phenomenon is the echo which has intrigued and mystified humanity for
centuries.

As waves impinges on a hard, smooth surface, the waves are reflected with shape
and propagation characteristics unaltered, in accordance with Huygens’ principle.
Consider the impingement of a series of plane waves on reflecting surface A-A′ in
Figure 3.6. The arrows normal to the wavefronts, or rays, which represent the direc-
tions of propagation, are drawn to represent the impingement and the consequent
reflection of the wavefront. It follows from the application of Huygens’ principle
and geometry that the angle of incidence is equal to the angle of reflection, where
the angles are defined between a normal to the reflecting plane and the incident and
the reflected rays, respectively. In Figure 3.7, the geometric ray construction is ren-
dered for a diverging spherical wave incident upon a plane surface. The direction
of the reflected sound can at least be qualitatively determined. It should be pointed
out here that standing wave interference patterns will occur from these reflections.

It is of interest to consider the sound field resulting from reflection. Consider the
sound waves in Figure 3.6 to be sinusoidal. As the incident or reflected wavefront

Figure 3.6. Geometric depiction of a plane-wave reflection. Angle of reflection θ r is equal
to angle of incidence θ i .
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Figure 3.7. Construction for a spherical wave from point S incident upon plane surface
α–α′. Point S′ is an imaginary point that is the mirror image of point S on the other side
of plane α–α′.

intersects any normal to the wavefront, a scissorlike effect occurs, not unlike ocean
waves breaking obliquely along a beach. The intersection of these waves along
the normals constitutes a projection of the incident and reflected waves. From the
concept of wave motion, the distance between crests along the normal may be estab-
lished as a projected wavelength λ′, which relates to the incident wave as follows:

λ′ = λ

cos ϑ1
= λ sec ϑ1 (3.12)

In obeying the laws of reflection, the reflected wave also scissors back along
the normal in the opposite direction, producing a traveling wave with a projected
wavelength also equal to λ′. Hence, there occurs along any normal line the su-
perimposition of two waves traveling in opposite directions with wavelength λ′.
From the concept of standing waves it can be inferred that nodes and antinodes
occur along the normal line, and, moreover, the spacing between the nodes and
antinodes needs only to be modified by the factor sec θ1 of Equation (3.12).

Consider a complex periodic wave that impinges upon a fully reflective plane
surface. A standing wave sound field will exist. The distance d ′ between peaks
along the normal ensues from Equation (3.12) in the following manner:

d ′ = λ′

2
= λn sec θ1

where λn is the wavelength of the nth harmonic and θ i the angle of incidence of
the propagating wavefronts. From the last equation it will be noted for the special
case of θ i = 0 (normal incidence), the nodal spacing reduces to λ/2, according
to Equation (3.12). As the angle of incidence increases, the spacing between the
nodes likewise increases, and in the limit θ i = π/2, there is no reflected wave, and
thus the standing wave field vanishes.
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The phenomenon of sound wave reflection finds many applications. The time it
takes for a sound wave pulse to travel from a transducer at sea level to the ocean
bottom and for the echo to travel back gives a measure of the depth of the water.
Further, comparison of the spectral characteristics of the reflected wave with those
of the generated waves provides an ample measure of the geological composition
of the ocean bottom, for example, silt, rock, sand, coral, and so on. Reflected sound
is also used in an analogous way by geologists to gauge the depth and composition
of stratified layers in the earth crust, to locate oil, natural gas, and mineral deposits.

3.8 Refraction

A phenomenon more familiar in optics than in acoustics is that of refraction, in
which the direction of the advancing wavefront is bent away from the straight
line of travel. Refraction occurs as the result of the difference in the propagation
velocity as the wave travels from one medium to a different medium.

In the optical situation, refraction occurs suddenly when light waves cross the
sharp interface between the atmosphere and glass at the surface of a lens, because
light travels more slowly in glass than it does in air. At audible frequencies of
sound waves, the wavelengths are so long that the apparatus would have to be
extremely large in order to render observable acoustic refractions. However, at ul-
trasonic frequencies, which correspond to extremely short wavelengths, refraction
constitutes the operating principle of the acoustic microscope. The device func-
tions as indicated in Figure 3.8. A piezoelectric transducer Pz , under the impetus

M

Figure 3.8. A schematic of an acoustic microscope. Voltage V causes the piezoelectric
crystal Pt to launch a short train of waves into lens L . The propagation velocity of the
waves slows down in liquid medium M , and the waves are focused toward point S on
the surface of the specimen. Reflected waves follow the same paths in reverse, reaching
the piezoelectric transducer that now has been switched into the detector mode.
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of an input voltage V to the opposite faces of the piezoelectric crystal, delivers
a short train of ultrasonic waves into the lens L , which may consist of a small
block of sapphire, which incorporates a spherical hollow in the face facing liquid
medium M . The waves travel much faster in the crystal than in the adjoining liq-
uid. As a result the central portion of each wave is retarded relative to the outer
parts. All of the wavefront enter the liquid at the same time, but the refractive
effect causes almost all of the nearly spherical waves to focus at the central point
of curvature. The strength of the reflection depends on the nature of the speci-
men surface at the focal point S. The operating mode of the lens and transducer
now changes from the role of an emitter to that of a receptor. The lens gathers
the reflected signal and the transducer detects the signal. In this fashion this de-
vice resembles radar and sonar systems. As information is obtained from only
one point at a time, the specimen must be moved in a raster pattern on the focal
plane of the microscope while an image is progressively accumulated in a computer
memory.

If water is used as a medium, a 3-MHz signal, with a propagation velocity of
1480 m/s, would have a wavelength of 500 μm = 0.5 mm, which would amount
to a rather coarse resolution. Clearly, higher-frequency signals are called for, but
such signals become strongly absorbed in water. A medium with a lower value of
c and, more importantly, less absorption than water constitutes another possibility.
An attractive choice turned out to be liquid helium, used with instruments that
generate signals up to the 8-GHz frequency range. The wavelengths are as small
as 0.03 μm.

In Figure 3.9, a geometrical ray construction illustrates the refraction of sound
passing from one medium to another. Application of Huygens’ principle leads to

Figure 3.9. A sound wave passing from medium 1 to medium 2. In this case the speed of
sound c2 in medium 2 is greater than the speed of sound c1 in medium 1.
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the basic laws of refraction, the most useful of which is

sin θi

c1
= sin θr

c2
(3.13)

where

θ i = angle of incidence

θr = angle of refraction

c1, c2 = speeds of sound in medium 1 and medium 2, respectively.

Equation (3.13) should be recognized as the analog to the Snell law for light
refraction. While the analysis of refraction does not figure prominently in noise
control, we cannot overlook the fact that zones of severe temperature differences
do occur in the atmosphere and oceans. When sound travels from zone to zone,
often across regions of severe temperature gradients, the direction of propagation
changes measurably to an extent that cannot be ignored.

For example, the surface of the Earth heats up more rapidly on a sunny day than
the atmosphere. Due chiefly to conduction, the temperature of the air close to the
ground rises correspondingly. Because the speed of sound is higher in the warmer
lower layer, sound waves traveling horizontally are refracted upward. Similarly on
a clear night the Earth’s crust cools more quickly, and a layer of cooler air forms
and bends the sound waves downward toward the surface. Thus the noise from an
industrial plant would be refracted downward at night and would seem louder to a
homeowner residing near the plant than during the day (when upward refraction
occurs), which is often the situation.

Nonuniform sound speed also constitutes a very important factor in underwater
acoustics owing to the persistent presence of temperature and salinity and pressure
gradients in the ocean. It is not unusual to find a minimum in c at some depth,
usually in the order of 1 km, with higher values above and below that stratum.
Interesting possibilities can occur, one of which is communication through sound
channels in which trapped signals traveling horizontally retain their strength more
effectively than if they had been able to spread in all directions. Another is the
existence of shadow zones, where sound waves from a particular source never
arrive, so they provide good places for submarines to hide.

3.9 Diffraction

In Figure 3.10, sound waves impinge upon a barrier. Some of the sound is reflected
back, some continues onward unimpeded, and some of the sound bends or diffracts
over the top. The barrier does not provide a sharply delineated acoustical shadow.
Another example of diffraction is bending of sound around a building corner. We
usually can hear voices on the other side of a wall that is approximately 3 m
high.
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Figure 3.10. Impingement of sound waves on a partial barrier, with a resulting sound
diffraction and a shadow zone.

The analytical treatment of sound barriers is covered in Chapter 12, but it suf-
fices for now to say qualitatively that sound at lower frequencies tends to diffract
over partial barriers more easily than sound at higher frequencies. Moreover, the
sharpness and extent of the shadow zone behind the barrier depend on the relative
positions of the source and receiver. The closer the source is to the barrier, the
longer is the shadow zone on the other side of the barrier, i.e., the more sound
reduction obtained.

3.10 Octave and One-Third Octave Bands
in the Audio Range

For analytical purposes, the audio range of frequencies are divided into 10 standard
octave bands with center frequencies fC = 31.5, 63, 125, 250, and 500 Hz, and 1,
2, 4, 8, and 16 kHz. Each octave band-center frequency fC is double the preceding
one and each bandwidth doubles the preceding one. The lower and upper limits of
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Table 3.1. Octave Bands.

Lower Band Limit Center Frequency Upper Band Limit
fL fC fU

22.4 Hz 31.5 Hz 45 Hz
45 63 90
90 125 180

180 250 355
355 500 710
710 1 kHz 1.4 kHz

1.4 kHz 2 2.8
2.8 4 5.6
5.6 8 11.2

11.2 16 22.4

each octave band are given by

fL = fC√
2

fU =
√

2 fC (3.14)

Because

fC =
√

fL fU (3.15)

we see that the center frequency fC constitutes the geometric mean of the upper
band limit fU and lower band limit fL . The bandwidth BW for full octaves is
defined by

BW = fU − fL = fC

(√
2 − 1√

2

)
= fC√

2
(3.16)

and thus the ratio BW/fC is shown to constitute a constant. In order to avoid the
use of irrational numbers the octave bands have been standardized in the field of
acoustics, according to Table 3.1.

One-third octave bands are formed by subdividing each octave band into
three parts. The successive center frequencies increase in intervals by cube root
of 2, and the upper and lower frequencies are related to the center frequency as
follows:

fL = fC
6
√

2
, fU = 6

√
2 fC , fC =

√
fL fU (3.17)

From Equations (3.16) and (3.17), the ratio BW/fC is also a constant for the third-
octave bands,

BW
fC

= 6
√

2 − −6
√

2 (3.18)

Table 3.2 lists the standardized one-third octave limits and center frequencies.
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Table 3.2. One-Third Octave Band.

Lower Band Limit Center Frequency Upper Band Limit
fL (Hz) fC (Hz) fU (Hz)

18.0 20 24.4
22.4a 25 28.0
28.0 31.5a 35.5
35.5 40 45a

45a 50 56
56 63a 71
71 80 90a

90a 100 112
112 125a 140
140 160 180a

180a 200 224
224 250a 280
280 315 355a

355a 400 450
450 500a 560
560 630 710a

710a 800 900
900 1,000a 1,120

1,120 1,250 1,400a

1,400a 1,600 1,800
1,800 2,000a 2,240
2,240 2,500 2,800a

2,800a 3,150 3,550
3,550 4,000a 4,500
4,500 5,000 5,600a

5,600a 6,300 7,100
7,100 8,000a 9,000
9,000 10,000 11,200a

11,200a 12,500 14,000
14,000 16,000a 18,000
18,000 20,000 22,400a

a Octave marking points.

While one-third octave bands generally suffice in providing adequate informa-
tion, there are cases where one-tenth and even one-hundredth octaves are applied.
For 1/nth octaves, successive center frequencies are related as follows:

fn+1 = 21/n fn (3.19)

3.11 Root-Mean-Square Sound Pressure and the Decibel

Sound consists of small positive pressure disturbances (compression) and negative
pressure disturbances (rarefaction) measured as deviations from the equilibrium
or quiescent pressure value. The mean-pressure deviation from equilibrium is
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always zero, since the mean rarefaction equals the mean compression. A simple
way to measure the degree of disturbance is to square the values of the sound
pressure disturbance over a period of time, thereby eliminating the counter-effects
of negative and positive disturbances by rendering them always positive. The root-
mean-square sound pressure prms can be defined by

prms =
√

(p)2 =
√∫ τ

0 p2dt∫ τ
0 dt

(3.20)

where τ is the time interval of measurement and p the instantaneous pressure. For
a simple cosine wave over an interval of period T = 2π /ω, there results

prms =
√∫ T

0
p2

m cos2 k(x − ct) dt

T
= pm√

2
. (3.21)

The sound pressure as portrayed by the oscillation of the pressure above and
below the atmospheric pressure is detected by normal human ear at levels as low
as approximately 20 μPa (the SI unit of pressure is the pascal, abbreviated Pa,
equivalent to 1.0 N/m2).1 Because prms could vary over a wide range of orders
of magnitude, it would be cumbersome to use it as the measure of loudness. At
the threshold of pain, prms would reach approximately 40,000,000 μPa! The blast-
off pressure in the vicinity of the launching pad of a Titan rocket can exceed
up to a thousandfold the threshold of pain (i.e., 40 kPa). It is therefore more
convenient to use the decibel as the folding-scale measure of loudness. This unit is
defined by

L p = 10 log

(
prms

p0

)2

= 20 log

(
prms

p0

)
(3.22)

where

L p = sound pressure level (dB)

log = common (base-ten) logarithm

p0 = 20 × 10−6 Pa = the reference pressure.

From the context of Equation (3.22) it can be established that the doubling of
a root-mean-square pressure corresponds to approximately 6 dB increase in the
sound pressure level. In order to determine the sound pressure level from a given
value of L p, Equation (3.22) can be rewritten as

prms

p0
= 10

L p
20

or

prms = 20 × 10
L p
20 −6

1 One standard atmosphere equals 101.325 kPa.
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Figure 3.11. Sound pressure levels and corresponding pressures of various sound sources.

Figure 3.11 illustrates the range of the decibel scale in terms of measured values
of common sound sources. The audible range of sound, which encompasses music
and speech, is shown delineated in Figure 3.12 in terms of sound pressure levels
and frequencies.

3.12 Decibel Additions, Subtracting, and Averaging

Most sound pressure levels do not arise from single sources, nor do they remain
constant in time. Mathematical procedures must be used to add, subtract, and
average decibels. From the definition of Equation (3.22) it is apparent that decibels
from single-noise sources do not add or subtract directly. If we wish to add sound
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Figure 3.12. Sound pressure levels for audible range, music range, and the range of speech
versus frequency. (Source: Brüel & Kjær Instruments, Inc.)

pressure levels (abbreviated to SPLs) L p1, L p2, L p3, . . . L pn , we must obtain the
antilogs of these SPLs to convert them into squares of rms pressures which can
then be added directly to yield the square of total rms pressure, that in turn yields
the total dB. Because (

pi

pref

)2

= log−1

(
L pi

10

)

the total sound pressure level L pt becomes

L pt = 10 log

[
n∑

i=1

(
pi

pref

)2
]

(3.23)

or, in terms of the sound pressure levels,

L pt = 10 log

[
n∑

i=1

log−1

(
L pi

10

)]
= 10 log

(
n∑

i=1

10L pi/10

)
(3.24)

Example Problem 3
Find the total sound pressure level due to L p1 = 96 dB, L p2 = 87 dB, and L p3 =
90 dB.
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Solution
Applying Equation (3.24) we have for this case

L pt = 10 log(1096/10 + 1087/10 + 1090/10)

= 97 dB

In certain situations, it is desirable to subtract an ambient or background noise
from the total sound pressure level L pt in order to establish the sound pressure
level L ps due to a particular source. Subtraction of decibels is analogous to the
procedure for their addition. The total sound pressure level L pt is converted into
the mean-square pressure ratio, as in Equation (3.23), and the background noise
level L pB is measured simply by turning off the noise source. The mean-square
pressure ratio due to the background noise is obtained from

L pB = 10 log

(
pB

pref

)2

or (
pB

pref

)2

= log−1

(
L pB

10

)
= 10L pB /10

The sound pressure level L ps of the source is found from

L ps = 10 log
(
10L pt/10 − 10L pB/10

)
(3.25)

Example Problem 4
Measurements indicated L pt = 93 dB at a specific location with a lathe in opera-
tion. When the lathe is shut down the background noise measures at 85 dB. What
is the sound level due to the lathe?

Solution
According to Equation (3.25), the noise level due to the lathe is

L ps = 10 log(1093/10 − 1085/10)

= 92 dB

A requirement may arise occasionally to find the average decibels in order to
determine the average sound pressure level L p. In some situations we may wish
to measure the SPL at a single location several times and determine an average
value for engineering evaluation purposes. The procedure for averaging decibels is
based on the same premise for the summation and subtraction of decibels, namely,
the application of Equation (3.22). Equation (3.24) for the addition of decibels is
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modified by dividing the sum by n, the number of levels taken into consideration,
in order to obtain the average value of L p:

L p = 10 log

(
1

n

n∑
n=1

10
L pi
10

)
(3.26)

Example Problem 5
Determine the average sound pressure level L p for a series of measurements taken
at different times: 96, 88, 94, 102, and 90 dB.

Solution
Using Equation (3.26) we write

L p = 10 log

[
1

5
(1096/10 + 1088/10 + 1094/10 + 10102/10 + 1090/10)

]
= 97 dB

3.13 Weighting Curves and Associated Sound Levels

Human perception of loudness depends on the frequency of a sound. A noise
having most of its energy concentrated in the middle of the audio spectrum (e.g.,
in the region of 1 kHz) is perceived as being louder than noise of equal energy
but concentrated either in the low-frequency region (say, 40 Hz) or in the high-
frequency region (near 15 kHz). This frequency effect becomes more apparent with
soft sounds than is the case with loud sounds, which provides the raison d’être
for the presence of a loudness control on some audio amplifiers. This control
supplies a loudness contour at low volumes, which applies greater amplification
to the high- and low-frequency contents of the program material relative to the
middle-frequency components.

Frequency weighting takes typical human hearing response into account when
the loudness generated by all of the audible frequency components present is
to be represented by a single value. Rather than describing the sound level in
each frequency band, we can use the A-weighted sound level to report the over-
all loudness. The A-weighted sound level is obtained from the conversion chart
of Table 3.3, which also lists the B and C weightings in 1/3-octave bands.
A-weighting is almost exclusively used in measurements that entail human re-
sponse to noise. Sound level that is measured with A-weighting is reported in
terms of dB(A) or simply dBA rather than the generic decibel dB. Similarly,
B-weighted and C-weighted measurements are designated as dB(B) (rarely used)
and dB(C), respectively. In the conversion table, it will be noted that all of the
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Table 3.3. Conversion of Sound Levels from Flat Response
to A, B, C Weightings.

Frequency A weighting B weighting C weighting
(Hz) (dB) (dB) (dB)

10 −70.4 −38.2 −14.3
12.5 −63.4 −33.2 −11.2
16 −56.7 −28.5 −8.5
20 −50.5 −24.2 −6.2
25 −44.7 −20.4 −4.4
31.5 −39.4 −17.1 −3.0
40 −34.6 −14.2 −2.0
50 −30.2 −11.6 −1.3
63 −26.2 −9.3 −0.8
80 −22.5 −7.4 −0.5

100 −19.1 −5.6 −0.3
125 −16.1 −4.2 −0.2
160 −13.4 −3.0 −0.1
200 −10.9 −2.0 0
250 −8.6 −1.3 0
315 −6.6 −0.8 0
400 −4.8 −0.5 0
500 −3.2 −0.3 0
630 −1.9 −0.1 0
800 −0.8 0 0

1,000 0 0 0
1,250 +0.6 0 0
1,600 +1.0 0 −0.1
2,000 +1.2 −0.1 −0.2
2,500 +1.3 −0.2 −0.3
3,150 +1.2 −0.4 −0.5
4,000 +1.0 −0.7 −0.8
5,000 +0.5 −1.2 −1.3
6,300 −0.1 −1.9 −2.0
8,000 −1.1 −2.9 −3.0

10,000 −2.5 −4.3 −4.4
12,500 −4.3 −6.1 −6.2
16,000 −6.6 −8.4 −8.5
20,000 −9.3 −11.1 −11.2

weighting curves show an adjustment of 0 dB for the 1-kHz frequency band. The
A-weighting was introduced for sound levels below 55 dB, B-weighting for levels
between 55 dB and 85 dB, and C-weighting was for levels exceeding 85 dB, all
of which corresponded, respectively, to human response to low, moderate, and
loud sounds. C-weighting is relatively “flat” in the mid-range frequencies, with
less than 1 dB subtracted from actual dB levels measured in the frequency bands
from 63 Hz through 4 kHz. The weighting curves are also shown graphically in
Figure 3.13.
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Figure 3.13. Frequency responses for the A-, B-, and C-weighting networks.

Example Problem 6
Find the total A-weight sound level L for the octave-band sound pressure levels
given below:

Band-Center Frequency (Hz) Sound Pressure Level (Hz)

31.5 73
63 68

125 72
250 68
500 80

1000 88
2000 95
4000 83
8000 97

16,000 92
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Solution
Use Table 3.3 to obtain the dB conversion from a flat response to dB(A) for each
of the octave bands. This results in

73 dB at 31.5 Hz = 73 − 39.4 = 33.6 dB(A)

68 dB at 63 Hz = 68 − 26.2 = 41.8 dB(A)

72 dB at125 Hz = 72 − 16.1 = 55.9 dB(A)

68 dB at 250 Hz = 68 − 8.6 = 59.4 dB(A)

80 dB at 500 Hz = 80 − 3.2 = 76.8 dB(A)

88 dB at 1 kHz = 88 − 0 = 88 dB(A)

95 dB at 2 kHz = 95 + 1.2 = 96.2 dB(A)

83 dB at 4 kHz = 83 + 1.0 = 84 dB(A)

97 dB at 8 kHz = 97 − 1.1 = 95.9 dB(A)

92 dB at 16 kHz = 92 − 6.6 = 85.4 dB(A)

The dB(A) values in each of the bands can be summed up for the total sound level
L p, through the use of Equation (3.24).

3.14 Performance Indices for Environmental Noise

As the result of the passage of the Noise Control Act of 1972 by the U.S. Congress,
the Environmental Protection Agency (EPA) issued two major documents pub-
lished in April 1974, in accordance with Section 5 of the Act. One document dealt
principally with the criteria for time-varying community noise levels and the other
document is concerned with definitions of performance indices for noise levels.
These indices are generally represented as single-number criteria, serving as in-
ternationally recognized, simple means of assessing the noise environment. Three
performance indices are described in this section. Because they utilize A-weighted
measurements, these three statistically based methods of quantifying noise expo-
sures tend to have good correlation with human response. These indices are L N ,
which presents the levels exceeded N percent of the measurement time; Leq, the
equivalent continuous sound pressure level in dB(A); and Ldn , the day–night sound
level average in dB(A).

L N may be measured with the use of an amplitude-distribution analyzer. An
output of the device can provide a histogram, an example of which is shown
in Figure 3.14. The time in any chosen band can be read as a percentage of the
total observation time. The cumulative distribution curve in the figure indicates the
probability of exceeding each range of decibel levels. In noise-abatement planning,
criteria are often specified in terms of sound levels that are exceeded 10%, 50%,
and 90% of the time. These levels are customarily represented as L10, L50, and
L90, respectively.
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Figure 3.14. A histogram showing probability of exceedance for plant noise.

Example Problem 7
From perusal of Figure 3.14, estimate the sound levels that are exceeded 10%,
50%, and 90% of the time. Also establish the percentage of the total observation
time that the sound was between 65 and 67 dB(A).

Solution
The probability-of-exceedance curve in Figure 3.14 is read to yield ≈69 dB(A)
(exceeded 10% of the time), L50 ≈ 63 dB(A) (exceeded 50% of the time), and
L90 ·≈ 58 dB(A) (exceeded 90% of the time).

Equivalent sound level Leq is the sound energy averaged over a given period of
time T , i.e., it is the rms or mean level of the time-varying noise. It is defined by

Leq = 10 log

(
1

T

∫ T

0

p2

p2
ref

dt

)
(3.27)

where p2 = p2(t) is the mean-square (time-varying)sound pressure and pref =
20 μPa. Equation (3.27) can be more conveniently rewritten in terms of sound
level L = L(t) using the relationship of Equation (3.22):

Leq = 10 log

(
1

T

∫ T

0
10L p/10 dt

)
(3.28)

In order to facilitate digital processing in the measurement of Leq through the use
of an integrating sound level meter, the integral form of Equation (3.28) is replaced
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by the equivalent summation:

Leq = 10 log

(
1

N

N∑
n=1

10Ln/10

)
(3.29)

Here Ln is acquired instrumentally for each of N equal intervals to yield Leq, in
the course of digital processing of discrete samples.

Example Problem 8
Find Leq in the case where Ln = 90.5, 95, 103, 88, and 98 dB(A) are obtained as
the respective average levels for five short, equal time intervals.

Solution
From Equation (3.29)

Leq = log

[
1

5
(1090.5/10 + 1095/10 + 10103/10 + 1088/10 + 1098/10)

]
= 97.9 dB(A)

The day–night equivalent sound pressure level, Ldn, essentially a modification of
Leq, was conceived for the purpose of evaluating community noise problems. The
modification consists of a nighttime penalty of 10 dB imposed on measurements
between 10 P.M. and 7 A.M. With time t given in hours, Equation (3.28) now
becomes

Ldn = 10 log

⎡
⎣ 1

24

⎛
⎝ 10 P.M.∫

7 A.M.

10L/10 dt +
7 A.M.∫

10 P.M.

10(L+10)/10 dt

⎞
⎠
⎤
⎦ (3.30)

When the equivalent sound levels Leqd and Leqn are known for the day and night
periods, respectively, the following version of Equation (3.30) can be used to
compute the day–night sound level:

Ldn = 10 log

[
1

24

(
15 × 10Leqd/10 + 9 × 10(Leqn+10)/10

)]
(3.31)

Example Problem 9
Find Ldn for the situation where the daytime equivalent sound level is 82 dB(A)
and the nighttime equivalent sound level is 76 dB(A).

Solution
Inserting the appropriate values in Equation (3.31) we obtain

Ldn = 10 log

[
1

24
(15 × 10

82
10 + 9 × 10

(76+10)
10 )

]
= 84 dB(A)
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3.15 Particle Displacement and Velocity

Invoking Equation (2.21) and inserting the wave equation solution (3.1), we obtain
the expression for the particle velocity u:

u = − 1

ρ

∫
∂ρ

∂x
dt = − pm

ρc
cos k(x − ct)

u = p

ρ c
(3.32)

where ρ = quiescent density of air = 1.18 kg/m3 at a normal room temperature of
22◦C and atmospheric pressure of 101.3 kPa and c = speed of sound = 344 m/s.
The term ρc is the characteristic or acoustic impedance for a wave propagating in
air in a free-field condition. The value of ρc at standard conditions of temperature
and pressure is 40.7 rayls or 407 MKS rayls. The dimensional unit rayl is defined
as follows:

1 rayl = 1.0 dyne s/cm3

The particle displacement x for a cosine wave function can be found by simply
integrating Equation (3.32) with respect to time:

x = pm

ρc2
sin k(x − ct)

It is interesting to note that at 0 dB, the threshold of human hearing, the oscillation
of an air molecule covers an rms amplitude that is approximately only one-tenth
the diameter of a hydrogen atom.

The particle acceleration is obtained from the differentiation of Equation (3.32)
with respect to time, and for a cosine wave function the acceleration is

du

dt
= p

ρ
sin k(x − ct)

3.16 Correlated and Uncorrelated Sound

Correlated sound waves occur when they have a precise time and frequency re-
lationship between them. An example of correlated sound waves is the output of
two identical loudspeakers located in the same plane, consisting of a pure tone
supplied by a single amplifier connected to both loudspeakers. Most of the sound
waves that we hear are generally uncorrelated.

Consider two sound waves which are detected at a point in space:

p1 = P1 cos (ω1t + φ1) (3.33a)

p2 = P2 cos (ω2t + φ2) (3.33b)
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or in terms of complex exponential functions

p1 = Re
[
P1ei(ω1t +φ1)

]
(3.33c)

p2 = Re
[

P
i(ω2 t+φ2 )
2

]
(3.33d)

where

p = instantaneous sound pressure

P = amplitude of sound pressure

ω = angular frequency

φ = phase angle

The instantaneous sound pressure resulting from the superimposition of the two
waves is given by the sum of the two instantaneous sound pressures, and the
root-mean-square sound pressure of the combined waves can be found from

p2
rms = 1

T

T∫
0

(p1 + p2 )2 dt (3.34)

where T represents the averaging time, which should be an integer number of
periods at both frequencies. In real measurements it suffices to have the averaging
time cover many periods so that contributions from fractional periods become
insignificant. This condition is met if T  1/ flower, where flower is the lower of
the two frequencies. Inserting Equations (3.33a) and (3.33b) or Equations (3.33c)
and (3.33d) into Equation (3.34) and integrating, we obtain

p2
rms = P1

2 + P2
2

2
= p2

rms1 + p2
rms2 forω1 �= ω2 (3.35)

p2
rms = P1

2 + P2
2

2
+ P1 P2 cos(φ1 φ2) forω1 = ω2 (3.36)

Consider the case of two 4-kHz signals that are in phase at the receiving point.
Each of the signals has a sound pressure level of 60 dB. From Equation (3.36) for
sound waves of the same frequency, the root-mean-square pressure is given by

p2
rms = P2

1 + P2
2

2
+ P1 P2 cos 0 = 2P2

1 = 4 p2
rms

The increase in sound pressure level as the result of adding an identical in-phase
pure tone is

L P − L P1 = 10 log

(
p2

rms

p2
ref

)
− 10 log

(
p2

rms1

p2
ref

)
= 10 log

(
4p2

rms1

p2
rms1

)
= 10 log 4 ≈ 6 dB

The combined signals result in a 4-Hz signal with an SPL of 66 dB. If the amplitudes
would be out of phase by π radians (or 180◦) and the frequencies are equal, the
sound pressure would theoretically be zero at the observation point.
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Figure 3.15. Complex exponentials portrayed as rotating vectors.

Let us now determine the effect of adding two 60-dB signals, which have fre-
quencies of 1000 and 1100 Hz, respectively. Because the frequencies are not equal,
the root-mean-square sound pressure is double that of one wave. The sound pres-
sure level increases by

10 log

(
p2

rms

p2
rms1

)
= 10 log 2

or approximately 3 dB. The combined SPL is 63 dB.
We gain a further insight into the phenomenon of beat frequency if we visual-

ize the complex exponential functions (3.33c) and (3.33d) as rotating vectors in
Figure 3.15. Without loss of generality we can define time t = 0 as the instant
when both vectors lie along the positive real axis, resulting in the maximum sound
pressure. The two vectors will be opposed along the real axis when (ω2 − ω1)t =
2π . The envelope of the pressure–time curve yields a period τ = 2π/(ω2 − ω1) =
1/( f2 – f1). The term ( f2 − f1) is, of course, the beat frequency, which has been
previously discussed in Section 3.3.

3.17 Sound Intensity

An acoustic signal emanates from a point source in a spherical pattern over an
increasingly larger area. When a closed surface completely surrounding the source
is defined, the sound power W radiated by the source can be established from

W =
∫

S
I · dS (3.37)

where

I = sound intensity,W/m2

d S = element of surface area,m2

S = surface area surrounding source
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Here the surface integral in Equation (3.37) is the integral of the sound intensity I
normal to the element dS of the surface area. The integration can be executed over a
spherical or hemispherical surface enclosing the source. If the source of power W is
mounted on an acoustically hard surface (i.e., a surface which is totally reflective),
the sound waves expand within a hemisphere. Other surfaces, such as those of a
parallelopiped (representing, for instance, the walls of a room), are often used in
practical applications. When the integration is performed over a spherical surface
of radius r for a nondirectional source, sound intensity is related to sound power
by

I (r ) = W

S
= W

4π r2
(3.38)

where S denotes the area of a sphere having radius r . Equation (3.38) constitutes
the inverse-square law of sound propagation, which accounts for the fact that sound
becomes weaker as it travels in open space away from the source, even if viscous
effects of the medium are disregarded. For sound radiation within a hemisphere,
with the sound source mounted at the origin above a totally reflective surface,
Equation (3.38) becomes

I = W

2π r2

Intensity, which represents the transfer of sound wave energy, equals the product
of sound pressure and particle velocity,

I = p · u (3.39)

and for a simple cosine spherical wave, the pressure p(r, t) is given as a solution
to the spherical coordinate form of Equation (2.25)

p(r, t) = A

r
cos k(r − ct)

A is a constant amplitude with its physical units in N/m. From Equation (2.22) the
velocity is

u(r, t) = − 1

ρ

∫ [
A

r
k sin k(r − ct) + A

r2
cos k(r − ct)

]
dt

= − 1

ρ

[
− k A

kcr
cos k(r − ct) − A

r2 kc
sin k(r − ct)

]
or

u(r, t) = A

ρcr
cos k(r − ct)

[
1 + 1

kr
tan k(r − ct)

]
(3.40)

At large values of kr Equation (3.40) becomes

u(r, t) ≈ p(r, t)

ρc
k2 r2  1 (3.41)
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and for k2r2 	 1:

u(r, t) ≈ A

kρcr2
sin k(r − ct) ≈ p(r, t)

ρckr
� 90◦ re p(r, t) (3.42)

The difference between Equations (3.41) and (3.42) connotes, respectively, the far
field and near field effects of a spherical wave. As r approaches the center of the
spherical source the sound pressure and particle velocity becomes progressively
more out of phase, approaching 90◦ as the limit. In the near field the sound intensity
is not simply related to the root-mean-square value of the sound pressure.

A sound source is generally directional, and the sound intensity does not have
the same value at all points on the surface. In order to evaluate the integral of
Equation (3.37) it is necessary to execute an approximation by segmenting the
surface into a finite number of sub-elements, each subtending an area Si and to
establish the sound intensity on each sub-element in a direction normal to that
element. A summation procedure over all of the surface sub-elements will yield
the total sound power

W =
∑

i

Ii Si (3.43)

where

Ii = sound intensity averaged over the i th element of area Si ,W/m2

Si = i th element of area, m2

Equation (3.43) can be expressed logarithmically as

Lw = 10 log

(
I

I0

)
+ 10 log

(
S

S0

)

Lw = L I + 10 log

(
S

S0

)

where

Lw = sound power level, dB re 10−12 W

L I = sound intensity level, dB re 10−12 W/m2

S = area of surface, m2

S0 = reference area = 1.0 m2

I0 = reference sound intensity, internationally set at 10−12 W/m2

3.18 The Monopole Source

A monopole can be described as an idealized point generating a spherical sound
wave. A pulsating sphere can be considered a good approximation of a point source
when its radius is small compared with the wavelength of the sound it generates.
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The three-dimensional Equation (2.25) is expressed in spherical coordinates, with-
out angular dependence, as

∂2 p

∂ t2
= c2

(
∂2 p

∂ r2
+ 2

r

∂p

∂r

)
(3.44)

The solution to Equation (3.44) must be of the form

p = 1

r
[F1(ct − r ) + F2(ct + r )]

with the term F1(ct − r ) describing waves moving away from the source. We
discard the term F2(ct + r ) which describes waves traveling toward the source.
With time t = 0 in order to eliminate a phase angle, a harmonic solution to the
spherical wave equation (3.44) is given by

p = A

r
cos[k(ct − r )]

where A is a constant and k the wave number equal to ω/c. The root-mean-square
sound pressure p2

rms at a distance r from the source is given by

p2
rms = 1

T

∫ T

0

p2 dt = A2

r2 T

∫ T

0
cos[k(ct − t)]dt = A2

2 r2
(3.45)

Here T = 1/ f = 2π/ω or the period needed to complete one cycle. If many fre-
quencies are present, p2

rms and the root-mean-square pressure can be measured
fairly accurately if the integration time is sufficiently large compared with the
period of the lowest frequency. The sound power of the spherical source can be
found by the use of Equation (3.37) as follows:

W =
∫∫

s
I · n d S (3.46)

Equation (3.46) represents the sound power of a source where

I = 1

T

∫ T

0
ρu dt (3.47)

constitutes the vector sound intensity; u represents the particle velocity vector, S
any closed surface about the source, n the unit normal to surface S, and T the
averaging time. The surface S for a spherical wave is defined by a sphere of radius
r about the source, so that Equation (3.46) becomes

W =
∫∫

S
Ir d S (3.48)

The magnitude of the sound intensity Ir is directed radially, i.e., it runs parallel
to unit normal n. When sufficiently far from the source, the sound pressure and
particle velocity are in-phase. Applying Equation (3.39) yields

Ir = prms urms = p2
rms

ρc
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where ρ is the mass density of the propagation medium. With the sound source
being isotropic (i.e., omnidirectional, with no angular-dependent variations), and
integration of Equation (3.46) over 4π steradians, the sound power is given by

W = Ir S = 4π r2 Ir = 4πr2 p2
rms

ρc
(3.49)

If sound power is measured in half-space, i.e., if the source lies on a reflective
surface, then integration occurs over 2π steradians and

W = 2πr2 p2
rms

ρc
(3.50)

Here, W denotes the sound power of the source in watts, I the sound intensity
(W/m2) in the direction of wave propagation, and r the distance from the center
of the source.

For a spherical wave in full space, root-mean-square sound pressure and sound
intensity in the direction of wave propagation are related to the sound power of
the source by

p2
rms = ρcW

4π r2
(3.51a)

I = W

4π r2
(3.51b)

The tendency of the sound intensity in Equation (3.51b) to decrease with increasing
distance from the source is called the inverse square law.

3.19 The Spherical Wave: Sound Pressure Level
and Sound Intensity Level

Combining Equations (3.51a) and (3.51b) with the definition of sound pressure
level given by Equation (3.22), we express the sound pressure Lp in terms of sound
power W of the source and distance r from the source:

L p = 10 log

(
p2

rms

p2
ref

)
= 10 log

(
ρcW

4πr2 p2
ref

)

= 10 log(ρcW ) − 20 log r + 83 (3.52)

where pref = 20 μPa. The sound intensity level L I in the direction of spherical
propagation is found from

L I = 19 log

(
I

Iref

)
= 10 log

(
W

4πr2 p2
ref

)

= 10 log W − 20 log r + 109

= LW − 20 log r − 11 (3.53)

where Iref = 10−12 W/m2 and LW is the sound power level (dB re 1 pW).
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3.20 The Hemispherical Wave

If an omnidirectional sound power source W is placed above an acoustically hard
(i.e., totally reflective) surface, the sound waves expand within a half-space. For
sound pressure and particle velocity in phase, sound intensity in the direction of
propagation is given by

I = W

2πr2
(3.54)

and the sound intensity level by

L I = LW − 20 log r − 8 (3.55)

A hemianechoic chamber is constructed by installing wedges of sound-absorbing
materials on the ceiling and walls of a room with an acoustically hard floor. In
contrast, a full anechoic chamber is constructed with virtually all of its surfaces,
including the floor, lined with sound absorption wedges. A mesh floor or grating
above the bottom surfacing provides structural support to equipment and laboratory
personnel. With either type of chamber, a free-field condition is generated within,
in which the sound emitted by a source placed inside does not undergo reflection.

3.21 Energy Density

In the mathematical treatment of sound in enclosed spaces, we need to know the
amount of energy per unit volume being transported from a source to different
parts of the room. Both kinetic energy and internal (potential) energy are involved
in sound propagation. An interchange between these two forms of energy oc-
curs from the compression/rarefaction process and the motion of the propagation
medium particles. The kinetic energy density ek is simply ρu2/2, and when the
wave amplitude is small it will be fairly legitimate to assume the quiescent value
of ρ0 instead of ρ. In general, we may write an expression for kinetic energy in
terms of displacement vector x:

ek = ρ0

2

(
∂x
∂t

)2

(3.56)

The three-dimensional version of Equation (2.24) is

1
ρ0

∇ p = −∂
2 x
∂t2

which leads to

1
ρ0

∫
∇ p dt = ∂x

∂t
(3.57)
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Inserting Equation (3.57) into Equation (3.56) yields

ek = 1

2 ρ0

(∫
∇ p dt

)2

For a general case of a sine spherical wave described by

p = A sin(r − ct)

we have

ek = 1

2 ρ0 c2
p2 (3.58)

From elementary thermodynamics, the change in energy per unit volume V0 asso-
ciated with the variation of density is given for a volume V of the fluid by

ep = − 1

V0

∫ V0

V
p dV (3.59)

The negative sign indicates that the potential energy increases when compression
occurs (i.e., when density increases) and decreases with rarefaction (when density
decreases) under the impetus of an acoustic signal. In order to perform the integra-
tion we need to express all variables in terms of one variable, namely, instantaneous
pressure p. From conservation of mass p0V0 = pV = constant, and differentiating
yields

dV = − V

ρ
dρ ≈ − V0

ρ0
dρ

From Equation (2.23),

dp

dρ
= γ

p0

ρ0
= c2

for an isentropic process in an ideal gas. Eliminating dρ between the preceding
two equations gives

dV = − V0

ρ0 c2
dp

which now can be inserted into Equation (3.59), which is then integrated from 0
to p to yield

ep = 1

2

p2

ρ0 c2
(3.60)

The sum of Equations (3.58) and (3.60) constitutes the total instantaneous energy
density denoted by e

e = 1

2
ρ0

(
u2 + p2

ρ2
0 c2

)
(3.61)

Because the particle speed and acoustic pressure are functions of both time
and space, the instantaneous energy density is not constant throughout the fluid
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medium. The time average E of e provides the energy density at any point in the
fluid

E = 1

T

∫ T

0
e dt

where the time interval T represents one period of a harmonic wave. With the fact
that p = ∀ρ0cu, as manifested in Equation (3.32), Equation (3.61) becomes

e = ρ0u2 = pu/c

If we now let p and u represent the amplitude of the pressure and particle velocity,
respectively, then the time-averaged energy E is written as

E = 1

2

pu

c
= p2

2 ρ0 c2
= 1

2
ρ0 u2 (3.62)

For the cases of spherical or cylindrical waves or standing waves in a room, the
pressure and particle velocity in Equation (3.61) must be the real quantities derived
from the superposition of all waves present. In these more complex cases, the
pressure is not necessarily in phase with the particle speed, nor is the energy
density given by pu/2c. But E = pu/2c does constitute a good approximation
for progressive waves if the surfaces of constant phase approaches a radius of
curvature much greater than a wavelength. This situation occurs for spherical and
cylindrical waves at distances considerably far (i.e., many wavelengths) from their
sources.
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Problems for Chapter 3

1. A signal consists of the following components:

y1 = 10 sin 4t, y2 = 6 sin 8t, y3 = 4.3 sin 10t

Plot each component and add them up to obtain a composite wave.
2. A 300-Hz sound wave is propagating axially in a steel bar. Find the wavelength

and the wave number.
3. Determine the wave number and the wavelength of a 30-Hz pure tone at

20◦ C.
4. Two sine waves have approximately the same amplitudes, but one is at a

frequency of 135.3 Hz and the other 136.0 Hz. What is the beat frequency?
What is the time duration between the beats?

5. Show mathematically how noise cancellation can be effected by duplicating
an offending signal and changing its phasing. In real life situation, can the
cancellation be a total one? If not, why not?

6. It is desired to place a worker at a “quieter” location near a machine that puts
out a steady 400 Hz hum. Where would this location be and where are the
points where the noise would be greater?

7. A train whistle is measured with its frequency at 250 Hz when the trains
approaches the observer near the tracks at the rate of 125 km/h. Predict the
frequency when the train is pulling away from the observer.

8. Train A traveling 60 km/h is approaching Train B traveling on a parallel track
at 85 km/h. Train A blows its whistle which has a fundamental of 255 Hz. What
frequency will the engine man at Train B hear? What will be the perceived
frequency after the whistle on Train B passes the locomotive of Train A?
Neglect the distance between the tracks.

9. An observer stands 150 km from a railroad track. A train is 300 km on the
normal from the track to the observer. It is traveling at 80 km/h and approaching
this normal. Its whistle emits a fundamental of 300 Hz. What will be the
frequency of this signal perceived by the observer?

10. Develop an equation for the rate of change of the frequency with respect to
an observer subtending an angle θ with a source’s direction. The source is
moving at a velocity V .

11. A boundary exists between two mediums, A and B, through which an acoustic
signal travels. The signal traveling in Medium A impinges the boundary at
an angle of 45◦. In passing into Medium B on the other side of the boundary
the signal refracts at an angle of 55◦. The velocity of sound in Medium A is
450 m/s. Determine the velocity of sound in Medium B on the other side of
the boundary.

12. Given a 150-Hz signal expressed as

p(x, t) = 35 sin 2.5(x − 344t)

determine the followings:
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(a) the wave number
(b) the wavelength
(c) the root-mean-square pressure

13. Convert the following rms pressures into decibels:
(a) 20 μPa
(b) 150 μPa
(c) 1 kPa
(d) 50 kPa

14. Convert the following values expressed in dB into rms pressure:
(a) 20 dB
(b) 60 dB
(c) 90 dB
(d) 130 dB

15. Two machines are running. One machine puts out 95 dB and the other 98 dB.
What will be the combined sound pressure level in dB?

16. Three machines are operating simultaneously. Their combined noise level is
115 dB. One machine is shut down and noise level drops to 110 dB. The
remaining two machines have identical noise output. What is the noise output
of these two machines?

17. An octave-band analysis of a machine yields the following results:

Band-center frequency SPL (Hz)

31.5 72
63 76

125 77
250 72
500 69

1000 84
2000 92
4000 83
8000 80

16,000 78

Find the total A-weighted sound level, the total B-weighted sound level, and
the total C-weighted sound level.

18. The following SPL readings were taken of a noisy electric generator:

Amount of time, s Unweighted SPL reading, dB

15 73.4
22 79.4
20 88.9
12 91.9

Find the equivalent sound pressure level Leq.
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19. At a property line the noise from a nearby machine shop was found over a
24-h period to have the following averaged sound pressure levels.

Time Noise Level, dB(A)

7 A.M.–12 noon 87.5
12 noon–4 P.M. 84.6
4 P.M.–9 P.M. 78.5
9 P.M.–3 A.M. 76.5
3 A.M.–7 A.M. 77.4

Determine the Leq and Ldn.
20. Determine the particle velocity for air at 1 atm and 22◦C.



4
Vibrating Strings

4.1 Introduction

In dealing with vibrating systems it is commonly assumed that the entire mass of
the system is concentrated at a single point and the motion of the system can be
described by giving the displacement as a function of time. This rather simplified
approach yields approximations rather than accurate closed-form solutions. A
spring, for example, certainly does not concentrate its mass at one end, nor can
a loudspeaker be accurately depicted as being a massless piston engaged in an
oscillating motion. The loudspeaker diaphragm consists of a considerable portion
of its mass spread out over its surface, and each part of the diaphragm can vibrate
with a motion that is different from those of other segments.

The vibrational modes of a loudspeaker constitute a complex affair, so it would
behoove us to study simpler modes of vibration, say, those of a vibrating string or
bar, so that we can readily visualize the transverse vibrations. Even in the simplest
of cases, certain simplifying assumptions have to be made which cannot be fully
justified in the real physical world.

4.2 The Vibrating String: Basic Assumptions

Consider a long, heavy string stretched to a moderate tension between two rigid
supports. A momentary force is applied to the string that becomes displaced from
its equilibrium position. The displacement does not remain in the initial position;
it breaks up into two separate disturbances that propagate along the string apart
from each other as shown in Figure 4.1. The propagation velocity of all small
displacements depends only on the mass and tension of the string, not on the shape
and amplitude of the initial displacement. The wave generated by such a transverse
perturbation is generally known as a transverse wave.

4.3 Derivation of the Transverse Wave Equation

In Figure 4.2, a portion of a string under tension T and rigidly clamped at its
ends is shown. The string has negligible stiffness and a uniform linear density δ.

71
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Figure 4.1. History of the propagation of a disturbance in a stretched string.

Dissipation of vibrational energy is neglected. We let x represent the coordinate of
a point along the horizontal distance with the origin at the left clamp of the string.
The y-coordinate represents the transverse displacement from the equilibrium
position. As the transverse displacements are defined as being small, tension T
can be considered nearly constant (T cos θ is even more so). Let θ denote the angle
between a tangent to the string and the x-axis. In the segment of the string shown

Figure 4.2. String element under the influence of tension force T .
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in Figure 4.2, the difference between the y-components of the tension at the two
ends of element ds is the net transverse force given by

 Fy = (T sin θ )x+x − (T sin θ )x (4.1)

Here (T sin θ)x+x is the value of T sin θ at x +x , and (T sin θ)x is the value
at x . Letting x → dx and applying the Taylor’s series expansion

f (x + dx) = f (x) + ∂ f (x)

∂x
dx

Equation (4.1) can be rewritten as

dFy = (T sin θ )x +∂(T sin θ )

∂x
− (T sin θ )x = ∂(T sin θ)

∂x
dx

As the displacement y is assumed to be small, θ will be correspondingly small and
the relationship sin θ ≈ tan θ applies, with tan θ equal to y/x . The net transverse
force on the element ds then becomes

dFy =
∂

[(
T
∂y

∂x

)]
∂x

dx = T
∂2 y

∂ x2
dx

The mass of the string element is δ dx. Applying Newton’s law F = ma, we get:

T
∂2 y

∂x2
dx = δdx

∂2 y

∂t2

Setting

c =
√

T

δ
(4.2)

the equation of string motion becomes

∂2 y

∂t2
= c2 ∂

2 y

∂x2
(4.3)

The constant c defined in Equation (4.2) represents the propagation velocity of the
transverse wave. Equation (4.3) is the wave equation representing the wave distur-
bances propagated along the string. This equation was first derived by Leonhard
Euler in 1748.

4.4 General Solution of the Wave Equation

The second-order partial differential Equation (4.3) has the general solution

y = f (ct − x) + g(ct + x) (4.4)

where the functions, f (ct – x) and g(ct + x), are arbitrary with arguments (ct ± x).
The first term of the right-hand side of Equation (4.4) represents a wave moving
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to the right (in the positive x-direction) and the second term a wave moving to
the left (in the negative x-direction). While each of the two wave shapes remains
constant as the initial perturbation propagates along the string, the actual fact is
quite the opposite since the simplifying assumptions are not fully realized in real
strings. In relatively flexible strings with low damping, the rate of wave distortion
is quite minimal as long as the initial perturbation is kept small. Large amplitudes,
however, will result in a larger rate of change of the wave shapes.

The functions f (ct − x) and g(ct + x) cannot be freely arbitrary; they are con-
strained by initial and boundary conditions. The initial conditions, established at
time t = 0, are dictated by the type and the location of application of the perturb-
ing force applied to the string. To cite a musical example, the initial wave shape
generated by plucking the string of a banjo or a harp will be quite different from
the wave shape created by bowing a violin string. The boundary conditions extant
at the ends of a string further limit the wave function. Real strings always have
finite lengths and are fixed in some fashion at their ends. The displacement sum
y = f + g of Equation (4.4) is constrained to have a zero value at all times at the
clamping points. Also, when a string is sustained in a steady-state condition by
periodic external driving forces, the functions f and g will also have the same
frequency as the applied forces but the amplitudes of vibration are determined by
the point of application of the force and by boundary conditions at the ends of the
string.

Example 1: String Clamped at Both Ends. Given a string of length P clamped
rigidly at x = 0 and x = L . The solutions y1 = f (ct − x) and y2 = g(ct + x) are
no longer arbitrary, and their sum must be zero at all times, i.e.,

f (ct − 0) + g(ct + 0) = 0

or

f (ct − 0) = −g(ct + 0) (4.5)

The two functions must be of the same form but with opposite signs; and we can
now rewrite Equation (4.5) as

y(x, t) = f (ct − x) − f (ct + x) (4.6)

The first term on the right-hand side of Equation (4.6) represents a wave traveling to
the right (in the positive x-direction) and the second term a wave moving leftward
(in the negative x-direction).

4.5 Reflection of Waves at Boundaries

The reflection process at the boundary x = 0 can be viewed as one in which a
second wave does not pass the boundary point but is considered to reflect back,
generating a similarly shaped wave of opposite displacement traveling in the posi-
tive x-direction. The presence of a fixed point at x = L results in another reflection.
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In this case, the wave traveling in the positive x-direction reflects back as a simi-
lar wave of opposite displacement moving in the negative x-direction. The major
result of these two reflections is that the motion of the free vibration becomes
periodic. A pulse leaving x = 0 reaches x = L after an interval of L/c seconds.
There, it is reflected and returns to the origin where it again undergoes a reflection
after a time lapse of 2L/c seconds. The shape of the pulse after its second reflection
is identical with that of the original pulse. This periodicity has resulted from the
specified boundary conditions, i.e., fixed points at x = 0 and x = L .

4.6 Simple Harmonic Solutions of the Wave Equation

Simple harmonic vibrations frequently occur in nature, and we shall now consider
a simple harmonic motion (SHM) propagating along a string. Any vibration of
the string, however complex, can be resolved into an equivalent array of simple
harmonic vibrations. This resolution of complex vibration into a series of SHMs
is not a mere mathematical exercise but constitutes the phenomenal principle of
how the ear functions. The ear breaks down a complex sound into its simple
harmonic components. This capability permits us to distinguish the differences
between different voices and musical instruments. A piano sounding a note will
sound differently from the same note played by an oboe. If all the frequencies
present in the sound consist of a fundamental tone plus its harmonics, they will
sound more harmonious than in the situation where the frequencies are not related
so simply to each other.

The displacement of any point on the string exciting a SHM of angular frequency
ω can be depicted by the special solution to Equation (4.3):

y = a1 sin(ωt − kx) + a2 sin(ωt + kx) + b1 cos(ωt − kx) + b2 cos(ωt + kx)

(4.7)

where a1, a2, b1, b2 are arbitrary constants and k is the wavelength constant given
by

k ≡ ω/c

Applying the boundary condition y(0, t) = 0 (i.e., y = 0 at x = 0), which de-
scribes a fixed point, Equation (4.7) reduces to

(a1 + a2) sinωt = −(b1 + b2) cosωt (4.8)

Because this equation applies to all values of t , the following relations between
the constants must exist

a1 + a2 = 0, b1 + b2 = 0 or a1 = −a2, b1 = −b2

The two limitations for the arbitrary constants of Equation (4.7) are equivalent
to the single restriction of Equation (4.5) in the general solution of wave equation
(4.3). The two waves must be of equal and opposite displacements and must
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therefore differ in phase by π radians at x = 0. With these restrictions Equation
(4.7) becomes

y = a1 [sin(ωt − kx) − sin(ωt + kx)] + b1 [cos(ωt − kx) − cos(ωt + kx)]

(4.9)

Making use of trigonometric transformations for the sine and cosine terms we
simplify Equation (4.9) to

y = [−2a1 cosωt + 2b1 sinωt] sin kx

Thus y is expressed as a product of a time-dependent term and a coordinate-
dependent term.

Applying the boundary condition of y(L , t) = 0 (i.e., the displacement is zero
at end point x = L) adds yet another restriction

sin kL = sin nπ where n = 1, 2, 3, . . .

Consequently, the string cannot vibrate freely at any random frequency; it can only
vibrate with a discrete set of frequencies given by

ωn = nπc/L

where n = 1, 2, 3, . . . , or, in terms of frequency:

fn = nc/(2L) (4.10)

4.7 Standing Waves

The boundary conditions at x = 0 and at x = L reduced the general SHM solution
Equation (4.7) to a pattern of standing waves on the string. At the lowest or
fundamental frequency, where n = 1, the displacement is given by

y1 = (A1 cosωt + B1 sinωt) sin k1x (4.11)

Here k1 = π /L , and A1 and B1 are arbitrary constants of which numerical values
are established by the initial conditions, i.e., the type of excitation imparted to
the string at t = 0. This fundamental mode of vibration is associated with the
fundamental (or first harmonic) frequency f1 = c/2L . The nth mode of vibration
corresponding to the nth harmonic frequency is represented by

yn = (An cosωnt + Bn sinωt) sin kx (4.12)

and the frequency is fn = nc/2L , i.e., n times the fundamental frequency. The
constants An and Bn are determined by the initial excitation.

In evaluating the term sin kn x = sin nπx /L , we recognize that displacement
yn = 0 occurs for all values of x when sin nπx/L = 0, i.e.,

nπx/L = mπ where m = 0, 1, 2, 3, . . . .
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Figure 4.3. Different modes of vibrations for a string for the fundamental and the first
two harmonics.

The cases for which m = 0 and m = n correspond to the boundary conditions at
the fixed points at the two ends of the string. However, there are additional (n − 1)
locations, called nodal points or nodes, where the displacement produced by the
nth harmonic mode of vibration remains at zero, as illustrated in Figure 4.3. This
situation may be viewed as one in which the harmonic wave moving in the positive
x-direction cancels precisely at the nodal points at all times t the harmonic wave
moving in the opposite direction. Because the points of zero displacement remain
fixed, the resultant wave pattern constitutes what is known as standing waves. The
distance between nodal points for the nth harmonic mode of operation is L/n,and
the points of maximum vibrational amplitudes are referred to as antinodes or loops.

Let us take a “snapshot” of the vibrating string at a particular time for the sixth
harmonic mode (Figure 4.4). The displacement of the string frozen in time occurs
as a sinusoidal function of x .This function repeats itself every length 2L/n of the
x-coordinate, which, in turn, is equal to the wavelength λn of the harmonic waves.
In this case of the sixth harmonic mode, the repetition occurs every L/3 of the
string length. The wavelength is related to the velocity of propagation by

λn = c/ fn
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Figure 4.4. The sixth harmonic mode of a vibrating string stretched between x = 0 and
x = L .

where fn is the frequency of vibration in the nth mode and the wavelength constant
by kn = 2π/λn . From Equation (4.10) we derive

λn = 2L/n (4.13)

that is, the wavelength is twice the nodal distance of the associated wave pattern.

4.8 The Effect of Initial Conditions

The complete general solution to the general harmonic wave equation for a freely
vibrating string rigidly clamped at its ends contains all the individual modes of
vibration described by Equation (4.12). It is expressed as

yn =
∞∑

n=1

(An cosωnt + Bn sinωnt) sin knt (4.14)

where An and Bn are the amplitude coefficients dependent on the method of exciting
the string to vibrate. The actual amplitude of the nth mode is

an =
√

A2
n + B2

n

Consider the initial condition at t = 0 at the time when the string is displaced from
its normal linear configuration so that the displacement y(x ,t) at each point of the
string is given by the function

y(x, 0) = y0(x)

The corresponding velocity v(x ,t) is given for t = 0 by

v(x, 0) = ∂y(x, 0)

∂t
= v0(x)
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In order that Equation (4.14) represents the string at all times, it also must describe
the displacement at t = 0 and therefore is written as

y0(x) = y(x, 0) =
∞∑

n=1

An sin kn x (4.15)

The derivative of y with respect to time must also represent the velocity at t = 0,

v0(x) = v(x, 0) =
∞∑

n=1

ωn Bn sin kn x (4.16)

We apply Fourier’s theorem1 to Equation (4.14) in order to obtain

An = 2

L

∫ L

0
y0(x) sin kn x dx (4. 17a)

and then apply the theorem to Equation (4.16) to get

Bn = 2
ωn L

∫ L

0
v0(x) sin kn x dx (4.17b)

Example 2: String Pulled and Suddenly Released. Consider a string that is
plucked by pulling it at its center a distance d and then is suddenly released at
instant t = 0. In such a case, v0(x) = 0 and all the coefficients Bn will be zero.
The coefficients An are given by

An = 2

L

[∫ L
2

0

2dx

L
sin kn x dx +

∫ L

L
2

2
d

L
(L − x) sin kn dx

]

= 8d

n2 π2
sin

nπ

2
(4.18)

1 The theorem states that a complex vibration of period T can be represented by a displacement x = f (t)
written in terms of a harmonic series

x = f (t) = A0 + A1 cosωt + A2 cos 2ωt + · · · An cos nωt + · · · + B1 sinωt

+ B2 sin 2ωt + · · · Bn sin nωt + . . .

where ω = 2π/T and the constants are given by

A0 = 1

T

∫ T

0
f (t) dt

An = 2

T

∫ T

0
f (t) cos nω dt

Bn = 2

T

∫ T

0
f (t) sin nω dt
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Therefore, all even modes n = 0, 2, 4, . . . have

A2 = A4 = A6 = · · · = 0

and the odd modes result in non-zero An coefficients:

A1 = 8d

π2
, A3 = − 8d

9π2
, A5 = 8d

25π2
, etc. (4.19)

The amplitudes of the various harmonic modes are given by the numerical values
ofAn . In general, it may be observed that no harmonics are generated having a node
at the point of the string initially plucked. As the nodal number n increases, the
associated amplitudes decrease from the value of the fundamental amplitude, i.e.,
the fundamental A1 is 9 times larger than A3 and 25 times larger than A5, and so on.

Example 3: Sharp Blow Applied to String. If the string is struck a sharp blow (as
opposed to being plucked, as described above), v0(x ,0) has nonzero values but no
initial displacement exists. Then all the coefficients An are zero and the coefficients
Bn are given by Equation (4.17b). A common example of a struck string is the
impact of a piano hammer striking a string. It is interesting to note that pianos are
designed in such a way that the impact point of the hammer is one-seventh of the
distance from one end of the string, thus eliminating the seventh harmonic (which
would have produced a discordant sound).

4.9 Energy of Vibrating String

In any nondissipative system the total energy content remains constant, equal to the
value of the maximum kinetic energy. For the nth mode of vibration the maximum
value of the kinetic energy of a segment of length dx is

dEn = ωnδ

2

(
A2

n + B2
n

)
sin2kn x dx (4.20)

which is established by simply applying the relation dE = (mv)dv/2 in conjunc-
tion with Equation (4.6) and the fact that the mass of the string element is given
by

m = δ dx

where δ is the linear density. With integration over the variable x from 0 to L , the
maximum kinetic energy of the string is

En = ω2
nδ

2

(
A2

n + B2
n

) L

2
= m

4
ω2

n

(
A2

n + B2
n

)
Here m is the total mass of the string and (A2

n + B2
n ) is the square of the maximum

displacement of the nth harmonic. In a conservative system (which describes the
dissipationless vibrating string) the maximum potential energy is also equal to the
maximum kinetic energy of the system. From Equation (4.20) the energy of the



4.10 Forced Vibrations in an Infinite String 81

nth mode of vibration is

En = m

4
ω2

n A2
n = m

4

(nπc

L

)2
(

8d

n2π2

)2

= 16md2c2

n2π2L2

It becomes apparent that as n increases, the energy of the nth mode lessens. For
example, the energy of the third harmonic is one-ninth that of the fundamental
mode.

4.10 Forced Vibrations in an Infinite String

While this may appear to be a purely academic exercise, the simple case of a
transverse sinusoidal force on an idealized string of infinite length can provide
insight into the forced vibrations of finite strings and the transmission of acoustic
waves.

An ideal string of infinite length subject to a tension T receives a transverse
driving force T cosωt at the string end x = 0. The end at x = 4 is rigidly clamped
but the point x = 0 is rigid only in the x-direction, being free to move in the
y-direction, a support that can be approximated by a pivoted lever as shown in
Figure 4.5. Thus, the driving force can move the lever as well as the string. We shall
neglect the mechanical impedance of the pivoted lever (or hinge) that is deemed
to have no friction and no stiffness. No waves are reflected from the far end x = 4,
and hence no waves travel in the negative x-direction. The displacement of the
string can now be described by the general solution containing only the expression
for a harmonic wave traveling in the positive x-direction:

y = a1 sin(ωt − kx) + b1 cos(ωt − kx)

or in a complex format:

y = A ei(ωt−kx) (4.21)

Figure 4.5. Forces acting at one end of an infinite string.
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where A is a complex constant of which magnitude equals the displacement am-
plitude of the wave motion and whose phase angle renders the difference in phase
between the motion of the string and the driving force.

In complex format the harmonic driving force can be written as

f = Feiωt (4.22)

In Figure 4.5, the driving force is shown being applied to the string at an angle θ
the string makes with the horizontal. This angle is given by

tan θ =
(
∂y

∂x

)
x=0

The force exerted in the horizontal direction at the support at the end of the string
is −T cos θ . Because the displacements are assumed small, cos θ ≈ 1, and the
magnitude of this force in the horizontal direction is essentially equal to tension
T in the string. From similar considerations, the transverse force exerted by the
support on the string is −T sin θ , approximated by

f = −T sin θ = −T

(
∂y

∂x

)
x=0

(4.23)

Equation (4.23) indicates that for any applied transverse force the shape of the
string at x = 0 will vary. Inserting f and y from Equations (4.21) and (4.22) into
Equation (4.23) yields for this boundary condition

Feiωt = −T (−ik)Aei[ωt−k(0)]

or

A = F
ikT

(4.24)

The term F/kT represents the magnitude of this complex amplitude A. Inserting
Equation (4.24) into Equation (4.21) and then differentiating with respect to time
results in the complex velocity v

v = F
( c

T

)
ei(ωt−kx)

The mechanical (or wave) impedance Zs of the string is defined as the ratio of the
driving force to the transverse velocity of the string at x = 0:

Zs = T

c
=

√
T δ = δc

It turns out that Zs is a real quantity, with no imaginary load. The mechanical
load presented by the string to the driving force is purely resistance. The input
impedance exists as a function of the linear density δ and the tension applied
to the string, and it does not depend on the applied driving force; this means it
is a property characteristic of the string, not the wave propagation in the string.
The input, often termed characteristic or mechanical impedance (or resistance)



4.11 Strings of Finite Lengths: Forced Vibrations 83

is analogous to the characteristic electrical impedance of an infinite transmission
line.

The average power input to the string is found from the average value of the
instantaneous power W = fv evaluated at x = 0, or

W = F2

2δc
= δcV 2

0

2

where V0 is the velocity amplitude at x = 0.

4.11 Strings of Finite Lengths: Forced Vibrations

In the case of a finite string, the reflections from the far end generate frequencies
that cause the input impedance to change greatly with the frequency of the driving
force. If the support at finite x = L is fully rigid and no dissipative forces occur
in the string, the input impedance becomes a pure reactance, and no power is
consumed in the string.

Because the complex expression for transverse waves on a finite string now needs
a term descriptive of the reflected wave, Equation (4.21) needs to be rewritten as

y = Aei(ωt−kx) + Bei(ωt+kx) (4.25)

for all times t . The boundary condition at x = 0 is

Feiωt = −T

(
∂y

∂x

)
x=0

(4.26)

for all values of t . Inserting Equation (4.25) into Equation (4.26) yields

F = −T (−ikA + ikB) (4.27)

Applying y(L, t) = 0 for the rigid clamp at x = L , Equation (4.25) becomes

0 = Ae−ikL + BeikL (4.28)

Solving the Equations (4.27) and (4.28) for A and B results in

A = F

ikT
· eikL

eikL + e−ikL
= FeikL

2ikT cos kL

and

B = − F

ikT
· e−ikL

eikL + e−ikL
= − Fe−ikL

2ikT cos kL

Substituting the above constants into Equation (4.26) yields

y = Feiωt

ikT
· eik(L−x) − eik(L−x)

2 cos kL
= Feiωt

kT
· sin k(L − x)

cos kL
(4.29)

The real portion of Equation (4.29) graphs a pattern of standing waves on the
string with nodes occurring at those points where sin(L − x) = 0, in addition to
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y(0, L) = 0. The displacement at x = 0, however, has an amplitude

y0 = (F tan kL)/kT (4.30)

Singularities of Equation (4.30) occur when cos kL = 0, i.e.,

kL = ωL

c
= (2n − 1)π

2
, n = 1, 2, 3, . . .

or

ωn = (2n − 1)πc

2L

and

fn = (2n − 1)

4L
c

These singularities connote infinite amplitudes which, of course, do not occur
in real strings, because dissipative forces neglected in the foregoing analysis do
actually exist. But the amplitudes do achieve maximum values at these frequencies.
In a similar fashion we can ascertain the minimum amplitudes from the condition
kL = ±1, i.e.,

kL = ωn L/c n = 1, 2, 3, . . ..

and

ωn = nπc

L
or fn = nc

2L

The minimum amplitudes decrease progressively with increasing frequencies.
In fact, on comparing with Equation (4.10) it is noted that the frequencies of
minimum amplitudes are identical to those of the free-string vibration, and the
term antiresonance has been applied to describe those frequencies. Differentiation
of Equation (4.29) with respect to time t yields the complex velocity v of the
string,

v = Feiωt

T/c
· sin k(L − x)

cos kL

The input mechanical impedance then becomes

Zs = feiωt

v
= T

ic

cos kL

sin kL
= −iδc cot kL

which exists as a pure reactance, with no power absorbed by the string. The am-
plitude of vibration is a maximum at cot kL = 0, which occurs at the frequency
given by fn = nc/2L . For extremely low frequencies the input impedance has the
limits

Zs = − iδc

kL
= − iT

ωL
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4.12 Real Strings: Free Vibration

Real strings manifest some degree of stiffness, causing the observed frequencies
to be higher than the theoretical values for idealized strings. This results from the
presence of elastic boundary forces augmenting the action of tensile forces con-
sidered previously, with the net effect of increased restoring forces. The presence
of stiffness exerts a greater influence with increasing frequency, and the overtones
of a stiff string no longer constitute an exact harmonic series.

We must also be attentive to the fact that clamping at the ends of the string may
not be exactly rigid and that yielding can occur at these points. The wave impedance
at the ends will constitute the transverse mechanical impedance of the supports.

Consider a case where the left end of a finite string at x = 0 is attached to a
pivot representing the slightly loose clamp. The transverse force f0 exerted by the
string on the hinge is

f0 = T sin θ ≈ T

(
∂y
∂x

)
x=0

Here y is the complex expression for the transverse wave on the string, as given
by Equation (4.25). Because the motion of the swivel must match that of the end
of the string, the velocity is

v0 =
(
∂y

∂t

)
x=0

= iωy0

Let z0 denote the transverse mechanical impedance of the hinge at x = 0

z0 = f0

v0
= T

iω
·

(
∂y
∂x

)
x=0

y0

and hence the boundary condition at x = 0 becomes

y0 = T (∂y/∂x)x=L

iωZL

where ZL is the mechanical impedance of the swivel located at x = L . If the
supports were truly rigid, Z0 = Z1 = 4, and the boundary conditions reduce to
y0 = yL = 0.
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Problems for Chapter 4

1. Show by direct substitution that each of the following expressions constitutes
solutions of the wave equation:
(a) f (x − ct)
(b) ln [ f (x − ct)]
(c) A(ct − x)3

(d) sin [A(ct − x)]
2. Show which of the followings are solutions and not solutions to the wave

equation:
(a) B(ct − x2)
(b) C(ct − c)t
(c) A + B sin(ct + x)
(d) A cos2(ct − x) + B sin(ct + x)

3. Plot (by computer if possible) the expression y = Ae−B(ct−x) for times t =
0 and t = 1.0, with A = 6 cm, B = 4 cm−1, and c = 3 cm/s. Discuss the
physical significance of these curves.

4. Consider a string of density 0.05 g/cm, in which a wave form y = 4 cos (5t −
3x) is propagating. x and y are expressed in centimeters, and time t in seconds.
(a) Determine the amplitude, phase speed, frequency, wavelength, and the

wave number.
(b) Find the particle speed of the string element at x = 0 at time t = 0.

5. A string is stretched with tension T between two rigid supports located at
x = 0 and x = L . It is driven at its midpoint by a force F cos ωt .
(a) Determine the mechanical impedance at the midpoint.
(b) Establish that the amplitude of the midpoint is given by F tan (kL/2)/(2kT).
(c) Find the amplitude of displacement at the quarter point x = L/4.

6. Determine the mechanical impedance with respect to the applied force driving
a semi-infinite string at a distance L from the rigid end. What is the significance
of the individual terms in the expression for mechanical impedance?

7. Consider a string of density 0.02 kg/m that is stretched with a tension of 8 N
from a rigid support to a device producing transverse periodic vibrations at the
other end. The length of the string is 0.52 m. It is noted that for a specific driving
frequency, the nodes are spaced 0.1 m apart and the maximum amplitude is
0.022 m. What are the frequency and the amplitude of the driving force?
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8. A device that has a constant speed amplitude u(0,t) = U0eiωt , where U0 is a
constant, drives a forced, fixed string.
(a) Find the frequencies of the maximum amplitude of the standing wave.
(b) Repeat the problem for a constant displacement amplitude y(0, t) =

Y0eiωt .
(c) Compare the results of (a) and (b) with the frequencies of mechanical

resonances for the forced fixed string. Does the mechanical amplitude
coincide with the maximum amplitude of the motion?

9. Consider a string fixed at both ends, with specified values of ρL ,c, L , f, and
T . Express the phase speed c′ in terms of c and the fundamental resonance
f ′ in terms of f if another string of the same materials is used but
(a) the length of the string is doubled.
(b) the density per unit length is doubled.
(c) the cross-sectional area is doubled.
(d) the tension is reduced by half.
(e) the diameter of the string is doubled.

10. Consider a string of length L that is plucked at the location L/3 by producing
an initial displacement δ and then suddenly releasing the string. Find
the resultant amplitudes of the fundamental and the first three harmonic
overtones. Draw (through computer techniques, if possible) the wave forms
of these individual waves and the shape of the string occurring from the linear
combination of these waves at t = 0. Redo this problem for time t = L/c,
where c represents the transverse wave velocity of the string.

11. A string of length 1.0 m and weighing 0.03 kg has a mass of 0.15 kg hanging
from it.
(a) Find the speed of transverse waves in the string (Hint: neglect the weight

of the string in establishing the tension in string).
(b) Determine the frequencies of the fundamental and the first overtone

modes of the transverse vibrations.
(c) For the first overtone of the string, compare the relative amplitude of the

string’s displacement at the antinode with that of the mass.
12. A string having a linear density of 0.02 kg/m is stretched to a tension of 12 N

between rigid supports 0.25 m apart. A mass of 0.002 kg is loaded on the
string at its center.
(a) Find the fundamental frequency of the system.
(b) Find the first overtone frequency of the system.

13. A standing wave on a fixed–fixed string is given by y = 3 sin (πx/4) sin 2t .
The length of the string is 36 cm and its linear density 0.1 gm/cm. The units
of x and y are in centimeters, and t is given in seconds.
(a) Find the frequency, phase speed, and wave number.
(b) Determine the amplitude of the particle displacement at the center of the

string and at x = L/4 and x = L/3.
(c) Find the energy density for those points, and determine how much energy

there is in the entire string?



5
Vibrating Bars

5.1 Introduction

The theory underlying the physical operation of vibrating bars is of great interest to
acousticians, because a number of acoustic devices employ longitudinal vibrations
in bars and frequency standards are established by producing sounds of specific
pitches in circular rods of different lengths. The analysis of vibrating bars facil-
itates our understanding of acoustic waves through fluids, for the mathematical
expressions governing the transmission of acoustic plane waves through fluid me-
dia are similar to those describing the travel of compression waves through a bar.
Moreover, if the fluid is confined inside a rigid pipe, the boundary conditions bear
a close correlation to those of a vibrating bar. An example of devices falling into
the category of vibrating bars include piezoelectric crystals which are cut so that
the frequency of the longitudinal vibration in the direction of the major axis of the
crystal may be used to monitor the frequency of an oscillating electric current or
to drive an electroacoustic transducer.

The principal mode of sound transmission in bars is through the propagation
of longitudinal waves. Here the displacement of the solid particles in the bar
occurs parallel to the axis of the bar. The lateral dimensions of a bar are small
compared with the length, so the cross-sectional plane can be pictured as moving
as a unit. In reality, because of the Poisson effect that generally occurs in solid
materials, the longitudinal expansion of the bar results in a lesser degree of lateral
shrinkage and expansion; but this lateral motion can be disregarded in very thin
bars.

5.2 Derivation of the Longitudinal Wave Equation for a Bar

In Figure 5.1, a bar of length L and uniform cross-sectional area Â is subjected
to longitudinal forces which produce a longitudinal displacement ξ of each of
the molecules in the bar. This displacement in long, thin bars will be the same at
each point in any specific cross section. If the applied longitudinal forces vary in
a wavelike perturbative manner, the displacement ξ is a function of both x and t

89
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Figure 5.1. A bar undergoing longitudinal strain in the x-direction.

Figure 5.2. An element of the bar undergoing compression.

and is fairly independent of lateral coordinates y and z. Thus,

ξ = ξ (x, t)

The x-coordinate of the bar is established by placing the left end of the bar at x = 0,
with the right end terminating at x = L . Consider an incremental element formed
by dx of the unstrained bar positioned between x and x + dx as shown in Figure 5.2.
The application of a force in the positive x-direction causes a displacement of the
plane at x by a distance ξ to the right and the plane at x + dx by a distance ξ + dξ
also to the right. A force acting in the opposite direction will likewise cause
corresponding negatively valued displacements to the left. Because the element dx
is small, we can represent the displacement at x + dx by the first two terms of a
Taylor series expansion of ξ about x :

ξ + dξ = ξ +
(
∂ξ

∂x

)
dx

The left end of the element dx has been displaced a distance ξ and the right end a
distance ξ + dξ , thus yielding a net increase dξ in the length of the element given by

(ξ + dξ ) − ξ = dξ =
(
∂ξ

∂x

)
dx

In solid mechanics the strain ε of an element is defined as the ratio of the change
of its length to the original length, i.e.,

ε =

(
∂ξ

∂x

)
dx

dx = ∂ξ

∂x
(5.1)
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In the situation in which static forces are applied to a uniform bar, the strain is the
same for each point and is time-independent. But we are considering a dynamic
case in which the strain in the bar varies with coordinate x and with time t . This
type of variation generates a longitudinal wave motion in the bar in a manner
analogous to the transverse waves in a string. When a bar undergoes strain, elastic
forces are generated inside the bar. These forces act across each cross-sectional
plane and essentially constitute reactions to longitudinally applied forces. We
let Fx = Fx (x, t) denote these longitudinal forces and adopt the convention that
compressive forces are represented by positive values of Fx and tensile forces by
negative values of Fx . The stress σ in the bar is defined by

σ = Fx/ Â

Here Â is the cross-sectional area of the bar. We can now apply Hooke’s law

σ = Fx

Â
= −Eε = −E

∂ξ

∂x
(5.2)

where E is the elastic constant or Young’s modulus, a property characteristic of
the material constituting the bar. Table A in Appendix lists the values of Young’s
moduli for a number of commonly used materials. Because E must always have a
positive value, a negative sign is introduced in Equation (5.2) to accommodate the
fact that a positive stress (compression) results in a negative strain, and a negative
stress (tension) in a positive strain. We rewrite Equation (5.2) to express force Fx

at point x as follows:

Fx = −E Âε = −E Â
∂ξ

∂x
(5.3)

Unlike the static case where the strain ε = ∂ξ/∂x and hence the force Fx , remains
constant throughout the bar, both the strain and Fx vary in the dynamic case,
and a net force acts on element dx. Fx represents the internal force at x , and so
Fx + (∂Fx/∂x)dx constitutes the force at x + dx . The net force acting to the
right becomes

d Fx = Fx −
(

Fx + ∂Fx

∂x
dx

)
= −∂Fx

∂x
dx (5.4)

Combining Equations (5.3) and (5.4) results in

d F x = E Â
∂2ξ

∂x2
dx (5.5)

The volume of the element dx is given by Â dx , and therefore the mass is ρ Â dx ,
where ρ denotes the density (kg/m3) of the bar material. Applying Newton’s
equation of motion, with acceleration ∂2ξ/∂t2, to Equation (5.5), we obtain

ρ Â dx
∂2ξ

∂t2
= E Â

∂2ξ

∂x2
dx
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Setting

c2 = E/ρ (5.6)

we now obtain the one-dimensional longitudinal wave equation:

∂2ξ

∂t2
= c2 ∂

2ξ

∂x2
(5.7)

Equation (5.7) corresponds to Equation (4.3) for the transverse motion of the
string, with the longitudinal displacement ξ assuming the role of the transverse
displacement y. We note that Equation (5.7) is identical to Equation (2.3), and
we have derived in this section the wave equation (5.7) that applies to acoustic
propagation in a linearly elastic solid.

5.3 Solutions of the Longitudinal Wave Equation

The format of the general solution to Equation (5.7) is identical with that of the
solution to Equation (4.3), i.e.,

ξ = f (ct − x) + g(ct + x) (5.8)

The square root of Equation. (5.6) gives us the wave propagation velocity c:

c =
√

E

ρ
(5.9)

which indicates that c is a property of the bar material.
Let us write the solution (5.8) in the form of a complex harmonic solution

ξ = Aei(ωt−kx) + Bei(ωt+kx) (5.10)

where A and B represent complex amplitude constants and k = ω/c is the wave
number. We now assume that the bar is rigidly fixed at both ends; the boundary
conditions ξ(x, t) becomes ξ = 0 at x = 0 and at x = L at all times t . Applying
the condition ξ(0, t) = 0 yields A = −B, and Equation (5.10) revises to

ξ = Aeiωt(e−ikx −eikx ) (5.11)

The stipulation ξ(L , t) = 0 results in

e−ikt − eikt = 2 sin kL

i
= 0

or equivalently

sin kL = 0

which means that

kn L = nπ, n = 1, 2, 3, . . .
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The allowed modes of vibration possess the radial frequencies ωn and the corre-
sponding cyclic frequencies fn given by

ωn = nπc/L or fn = nc/2L , n = 1, 2, 3, . . .

In simplifying Equation (5.11), the complex displacement ξ for the nth mode of
vibration is

ξn = i Aneiωn t sin kn x (5.12)

The real part of Equation (5.12) is

ξn = sin kn x(An cosωnt + Bn sinωnt) (5.13)

where the real amplitude constants An and Bn are related to the complex constant
An as follows:

2An = Bn + i An

The full solution to Equation (5.7) consists of the sum of all of the individual
harmonic solutions, i.e.,

ξ =
∞∑

n=1

sin kn x(An cosωnt + Bn sinωnt) (5.14)

The constants An and Bn can be evaluated by using the Fourier analysis described
in the last chapter, provided the initial conditions are known with respect to the
displacement and the velocity of the bar.

5.4 Other Boundary Conditions

It should be understood that the boundary conditions corresponding to rigid sup-
ports are difficult to realize in practice. The free-end condition, on the other hand,
can be simulated by supporting the bar on extremely pliant supports placed some
distance inward from the ends. The end of the bar can now move freely and no
internal elastic force exists at that location. We now apply Equation (5.3), setting
Fx = 0; this gives rise to the condition ∂ξ/∂x = 0 at the free end. If the bar is free
to move at both ends (this is termed the free–free bar), the condition ∂ξ/∂x = 0
applied to x = 0 in the wave equation, solution (5.10) yields

A = B

with the result

ξ = Aeiωt (e−ikx + eikx ) (5.15)

Inserting the condition ∂ξ/∂x = 0 into the above Equation (5.15) for the location
x = L yields

−e−ikL + eikL = 0 or sin kL = 0
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The allowable frequencies for a free–free bar are the same as those for the bar
fixed at both ends ( fixed–fixed bar). There will be, however, major differences in
the respective wave patterns of the free–free bar and the fixed–fixed bar. Recasting
Equation (5.15) by making use of the relation

2 cos kx = e−ikL + eikL

we can express the complex displacements corresponding to the nth mode of
vibration as

ξ = 2 Aneiωn t cos knt

The real part of the preceding equation gives the tangible vibrations described by

ξn = cos kn x(An cosωnt + Bn sinωnt) (5.16)

By comparing Equation (5.13) for the fixed–fixed bar with Equation (5.14) for the
free–free bar, it will be seen that antinodes exist at the end points for the latter
bar in contrast with the nodes that must exist at the end points of the fixed–fixed
bar. The nodal patterns for both bars are shown in Figure 5.3. It is of interest to
observe that when an antinode exists at the center of the bar, the vibrations are

Figure 5.3. Typical standing waves for the first three modes of vibration in a fixed–fixed
bar and in a free–free bar.
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symmetrical with respect to the center; otherwise a node in the center corresponds
to asymmetrical vibration.

As with case of the vibrating string, we can rigidly clamp a bar at any one of
its nodal positions without affecting the modes of vibrations which have a node
at this position. But the vibrations that do not have a node at this position will
become suppressed. The nature of the vibration of the free–free bar is such that it
is not possible to clamp it at any position that will not eliminate at least some of
the allowed modes of vibrations.

The case of a free-fixed bar also makes for an interesting study. One end re-
mains free at x = 0, and the other is rigidly clamped at x = L . The first condition
∂ξ/∂x = 0 at x = 0 leads again to Equation (5.15), while the second condition
ξ = 0 at x = L yields

e−ikL + eikL = 0 or cos kL = 0

which means that the allowable frequencies must satisfy

kn L = ωn

c
L = π

2
(2n − 1), n = 1, 2, 3, . . .

or

ωn = (2n − 1)π
c

2L
, fn = (2n − 1)

c

4l

The fundamental frequency is half that for an otherwise identical free–free bar, and
only odd-numbered harmonic overtones exist. The quality of the sound produced
by an oscillating free-fixed bar will thus differ from that of a free–free bar, because
of the absence of the even harmonics.

5.5 Mass Concentrated Bars

In practical situations a vibrating bar is not truly clamped totally nor is it completely
free to move at its ends. It may incorporate some type of mechanical impedance,
most commonly as the result of concentrating a certain amount of mass at a certain
location. An example is a diaphragm represented as a distributed mass located at
one end of a vibrating tube inside a sonar transducer.

As an example let us consider a bar that is unfettered at x = 0 and has a loading
consisting of a mass m concentrated at x = L . The mass is depicted as a point
mass so that it does not move as a unit and thus merely sustain waves propagating
through it. The boundary condition ∂ξ/∂x = 0 at x = 0 again leads us to Equation
(5.17), as the result of A = B. For the boundary condition at x = L we again invoke
Newton’s law of motion:

Fx (L , t) = m

(
∂2ξ

∂t2

)
x=L

(5.17)

A positive value of Fx , which compresses the bar, will result in acceleration of the
mass in the positive x-direction. Because the mass is rigidly coupled to the bar,
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the accelerations of the mass and of the end of the bar should be identical. But if
the mass had been concentrated at x = 0, a positive (compression) force would
correspond to a reaction force to the left on the mass. The appropriate boundary
condition for this case would be

−Fx (0, t) = m

(
∂2ξ

∂t2

)
x=0

(5.18)

Incorporating the boundary condition Equation (5.18) into Equation (5.16) results
in

−E Âeiωt (−ike−ikt + ikeikt ) = mAeiωt (−ω2)(e−ikL + eikL )

which rearranges to

kEÂ sin kL = −mω2 cos kL

or

tan kL = −ωmc

E Â
(5.19)

Because Equation (5.19) is a transcendental equation, no explicit solution exists.
However, if the mass m is very small, m ≈ 0 and hence tan kL ≈ 0 and kL ≈ nω,
both of which constitute the allowed conditions for a free–free bar. This is a result
that should occur, since light loadings render a bar nearly free at both ends. At the
other extreme, for very heavy mass loadings, the mass behaves very nearly like a
rigid support, and the allowed frequencies will approximate those of a free-fixed
bar.

In the more general case of intermediate mass loading, it is rather cumbersome
to solve by hand the transcendental equation (5.19) through graphic means. How-
ever, computer programs such as Mathcad r©, MathLab r©, Mathematica r©, or even a
professional-level spread sheet for IBM compatible and Macintosh personal com-
puters can be used to facilitate solutions. Eliminating Young’s modulus in Equation
(5.19) by applying E = ρc2 from Equation (5.9) and recognizing that the mass of
the bar is given by mb = ρ ÂL , we can rewrite Equation (5.19) as

tan kL

kL
= − m

mb
(5.20)

The right-hand side of Equation (5.20) is fixed by amount of mass mb in the bar
and the loading mass m located at x = L . An example of the solution to Equation
(5.20) is given in Figure 5.4 for the case of a steel bar with a mass loading m/mb

of 20%. The longitudinal velocity of sound propagation of steel is 5050 m/s. The
fundamental frequency f1 is found from k1L through the relation

f1 = k1L

2π

c

L

and the higher frequencies are similarly established from

fn = kn L

2π

c

L
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Figure 5.5. Location of node in a free mass-loaded bar and fundamental mode of vibration.

But overtones corresponding to the higher frequencies are not harmonics of the
fundamental. In the example of Figure 5.4, in which the plots of (m/mb)kL and tan
kL vs. kL yield intersections which constitute the solutions to Equation (5.20), the
ratio of the first overtone to the fundamental is 3.792/1.571 = 2.414, not the value
of 2.0 that would have specified the overtone to be a harmonic of the fundamental.
Solutions exist where the occurrence of non-harmonics overtones could be useful:
for example, in a properly mass-loaded loudspeaker, a pure monofrequency input
would not result in harmonics that could arise from the driving signal, if at all.
The nodes of the vibration in the bar exist at locations where cos kx = 0. The
fundamental mode where kL = 3.792 engenders a node at 3.792x/L = π/2, or
x = 0.414L , not x = 0.5L that would normally occur in a second harmonic. In
contrast of the free–free bar, the node in a free mass-loaded bar is no longer
at the center—it shifts toward the loading mass as shown in Figure 5.5. In this
particular case, the bar could be supported at this nodal position without affecting
the fundamental mode of vibration.

5.6 General Boundary Conditions for a Freely
Vibrating Bar

Consider a freely vibrating bar with arbitrary loadings at each end. We shall estab-
lish the normal modes of vibration in terms of the mechanical impedances at both
ends of the bar. Designating the mechanical impedance of the support at x = 0 by
Zmi0 we express the force acting at this support due to the bar as

f0 = −Zmi0 u(0, t)

Here the minus sign is introduced to indicate that a positive (compressive) force
generates an acceleration of the support in the negative x-direction. But a positive
compressive force at the end x = L causes an acceleration of the other support to
the right, in the positive x-direction; the force acting on this support is

fL = +ZmiL u(L , t)

where ZmiL represents the mechanical impedance of the support at x = L . The
preceding two equations can be restated in terms of particle displacements by
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applying Equation (5.3) to supplant the compressive forces and by expressing the
particle velocity as u = ∂ξ/∂t :(

∂ξ

∂x

)
x=0

= Zmio

ρLc2

(
∂ξ

∂t

)
x=0

(5.21)

(
∂ξ

∂x

)
x=L

= Zmi L

ρLc2

(
∂ξ

∂t

)
x=L

(5.22)

where ρL = ρ Â is the linear density (kg/m) of the bar.
If the loads Zmio and Zmi L are purely reactive, there is no transient or spatial

damping, and hence no loss of acoustical energy occurs. Equation (5.16) constitutes
a proper solution. And because no loss of acoustical energy occurs, a wave traveling
in the +x-direction must equal the energy of a wave moving in the opposite
direction. The absolute magnitudes of the complex wave amplitudes must therefore
be equal, i.e., |A| = |B|. The boundary conditions (5.21) and (5.22) establish the
phase angles of the complex amplitudes.

But if the mechanical impedances contain some measure of resistive compo-
nents, a solution more general than that of Equation (5.16) needs to be applied. As
in the case of a freely vibrating string terminated by a resistive support, transient
(or temporal) damping has to occur in the presence of resistance. The transient
behavior of the bar is characterized by a complex angular frequency ω = ω + iβ.
The real portion of this frequency is the angular frequency ω; the imaginary part
represents the transient absorption coefficient β. But no internal losses occur in
the bar, so wave equation (5.7) still applies, and we infer the solution

ξ (x, t) = (Ae−ikx + Beikx )eiωt (5.23)

where ω2 = c2k2. If the losses are quite small we can use the approximation
ω ≈ ck to simplify the solution. Applying boundary conditions (5.21) for x = 0
and (5.22) for x = L to (5.23) and making use of the approximation we obtain the
following pair of equations

A − B = −Zmi0

ρLc
(A + B)

A −ikL
e − B ikL

e = ZmiL

ρLc

(
A −ikL

e + B ikL
e

)
Solution of these preceding two equations by elimination of A and B results in the
transcendental equation

tan kL = i

Zmi0

ρLc
+ ZmiL

ρLc

1 + Zmi0

ρLc

ZmiL

ρLc

The characteristics of the vibration are determined from the complex impedances
Zmi0 and ZmiL . The solution of the preceding transcendental equation is rendered
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more difficult by the presence of any resistive component in either Zmi0 or ZmiL ,
which produces a complex argument of the tangent.

5.7 Transverse Vibrations of a Bar

A bar not only vibrates longitudinally; it can also vibrate transversely, which is
usually the case because the strains engendered by longitudinal motion give a
virtually automatic rise to transverse strains as the result of the Poisson effect.
A hammer blow aimed along the axis of a long, thin bar supported at its center
will usually result in principally transverse vibrations rather than the expected
longitudinal effects, because it is not easy in the real world to avoid a slight
eccentricity in applying the blow.

In our derivation of the transverse wave equation, consider a straight bar of length
L with a uniform bilaterally symmetric cross-section Â. In Figure 5.6, a segment dx
of the bar is shown bent (the bending is exaggerated to better illustrate the effect).
The x-coordinate lies along the axis of the bar and the y-coordinate measures the
transverse displacements of the bar from its unperturbed configuration. The bar
behaves as a beam, i.e., the upper part of the cross section stretches under tension
and lower part becomes compressed. A neutral axis NN′, whose length remains
unchanged, comprises the line of demarcation between compression and tension
in the bar. If the cross section of the bar is symmetrical about a horizontal plane,
the central axis of the bar will coincide with the neutral axis. The bending of the
bar is gauged by the radius of curvature R of the neutral axis. Consider the length
increment δx = (∂ξ/∂x)dx due to the bending of a filament in the bar located at
a distance r from the neutral axis. The longitudinal force df is found from

d f = Ed Â
δx

dx
= Ed Â

∂ξ

∂x
(5.24)

where dÂ is the cross-sectional area of the filament. Above the neutral axis NN′ the
value of δx is positive, so the force df becomes negative and thus is a tension. For
filaments positioned below the neutral axis, δx is negative, resulting in a positive
compressive force. From geometry we note that

dx + δx

R + r
= dx

R

and this leads to δx/dx = r/R. Equation (5.24) now becomes

d f = − E

R
r d Â

The negative forces above the neutral axis cancel out the positive forces below the
neutral axis, and hence the total longitudinal force f = I d f equals zero. But a
bending moment M occurs in the bar, i.e.,

M =
∫

r d f = − E

R

∫
r2 d Â
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From classical mechanics we recognize the radius of gyration κ of the cross-
sectional area Â, as defined by

κ2 =
∫

r2d Â

Â

We now obtain

M = κ2 E Â

R
(5.25)

(For a bar with a rectangular cross section, κ = t/
√

12 where t denotes the thickness
of the bar; for a circular rod of radius a, the radius of gyration is given by κ = a/2.)

The radius of curvature R varies along the neutral axis, but the mathematics
can be simplified by assuming the displacements y of the bar to be quite small,
∂y/∂x 	 1, which permits the use of the approximation

R = [1 + (∂y/∂x)2]3/2

∂2 y/∂x2
≈ 1

∂2 y/∂x2

Equation (5.25) now modifies to

M = −κ2 E Â
∂2 y

∂x2
(5.26)

The curvature shown in Figure 5.5 has a negative ∂2 y/∂x2, and the bending moment
is consequently positive. In order to get this type of curvature the torque must be
applied to the left end of the segment in a counterclockwise (or positive angular)
direction and the torque at the right end of the segment must be clockwise (or in
the negative angular direction).

Shear forces as well as bending moments arise when a bar becomes distorted.
In Figure 5.7, a shear force Fy(x) acts upward (in the positive sense) on the left
end of the element dx. An opposing shear force −Fy(x +x) acts downward at

Figure 5.6. An element of a bar showing bending stresses and strains.
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Figure 5.7. An element of the bar showing shear forces and bending moments.

the right end of the element. To sustain static equilibrium in the bent bar, the shear
forces and torsions acting on the element must counterbalance each other so that
there is no net turning momentum. As shown in Figure 5.7, taking the left end of
the element as the reference pivot point we obtain

M(x) − M(x + dx) = Fy(x + dx) (5.27)

The terms M(x +x) and Fy(x +x) are now expanded in a Taylor’s series
about point x , with the result that Equation (5.27) becomes

Fy = −∂M

∂x
= κ2 E Â

∂3 y

∂x3
(5.28)

In Equation (5.28) the second-order and higher terms in dx have been discarded.
In undergoing transverse vibrations the bar is in dynamic rather than static equi-

librium. This requires that the right-hand side of Equation (5.27) must equal the rate
of increase of the angular momentum of the segment. But as long as the displace-
ment and the slope of the bar remain small, the variations in angular momentum
can be disregarded, and Equation (5.28) should serve as a good approximation
of the correlation between the displacement y and the acting force Fy . The net
upward force d Fy in element dx is given by

d F y = Fy(x) − Fy(x +x) = −∂Fy

∂x
= −κ2 Ê A

∂4 y

∂x4
dx

The element undergoes an upward acceleration under the impetus of the force, and
the equation of motion for the mass of the element, ρ Â dx, may now be written as:

ρ Â dx
∂2 y

∂t2
= −κ2 E Â

∂4 y

∂x4
dx

Setting c = (E/ρ)1/2, as in the case of longitudinal waves, the last equation changes
to

∂2 y

∂t2
= −κ2c2 ∂

4 y

∂x4
(5.29)
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Equation (5.29) for the transverse wave differs from Equation (5.7) for the longitu-
dinal wave principally in the presence of the fourth partial derivative with respect
to x . Solutions in the functional form of f (ct − x) do not apply to transverse
waves, as can be readily proved by direct substitution into Equation (5.29). This
means that transverse waves do not travel in the x-direction with constant speed c
and unchanging shape.

Equation (5.28) can be solved by separation of variables by setting the complex
transverse displacement y as

y = Ψ(x)eiωt (5.30)

and inserting into Equation (5.29). This yields a new total differential equation in
which Ψ exists as a function of x only:

d4Ψ
dx4

= ω2

κ2c2
Ψ

Setting

v = √
κωc (5.31)

the fourth-order differential equation becomes

d4Ψ
dx4

= ω4

v4
Ψ (5.32)

The function Ψ may be assumed as an exponential of the form Ψ(x) = Aeγ x and
substituted into Equation (5.32). The result is

γ 4 = (ω/v)4

Four values of γ occur: ±(ω/v) and ±(iω/v). The complete solution to Equation
(5.32) consists of the sum of the four solutions:

Ψ = Aeωx/v + Be−ωx/v + Cei(ωx/v) + De−i(ωx/v)

wherein A, B, C, D constitute complex amplitude constants. From Equation (5.30)
the solution for the displacements y can be written as

y = eiωt (Aeωx/v + Be−ωx/v + Cei(ωx/v) + De−i(ωx/v)) (5.33)

It should be noted that none of the terms in Equation (5.33) contains a wave
moving with a velocity c. The third term inside the parenthesis of Equation (5.33)
represents a wave disturbance moving to the left and the fourth term represents a
wave moving in the positive x-direction. The phase speed v is itself a function of
the frequency, as attested by Equation (5.31), so waves of differing frequencies will
travel with different phase speeds. Higher-frequency waves will outpace the lower-
frequency waves, and accordingly a complex wave containing a number of different
frequencies will alter its shape along the x-axis. Each frequency component of a
complex wave travels at its own speed v, which gives rise to a situation analogous to
the transmission of light through glass, in which different component frequencies of
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the light beam travel with different speeds thereby causing dispersion. A vibrating
bar thus acts as a dispersive medium for transverse waves.

The real part of Equation (5.33) constitutes the actual solution of Equation
(5.29). We make use of the following hyperbolic and trigonometric identities:

sin y = (eiy − e−iy)/2, cos y = (eiy + e−iy)/2
sin(iy) = i sinh y, sinh(iy) = i sin y
cos(iy) = cosh y, cosh(iy) = cos y

to recast Equation (5.33) as

y = cos(ωt + φ)
(

A cosh
ωx

v
+ B sinh

ωx

v
+ C cos

ωx

v
+ D sin

ωx

v

)
(5.34)

Here A, B, C , D are real constants that occur from the rearrangement of the original
complex constants A, B, C, D. The intricate relationships between the real set of
constants and the set of complex constants are not really of much concern to us,
because it is the application of the initial and boundary conditions that provides the
evaluation of these constants. However, there are twice as many arbitrary constants
in the transverse equation (5.34) as in the longitudinal wave equation (5.7), due to
the fact that the former is of the fourth-differential order rather than the second-
differential order. Therefore, twice as many boundary conditions are required, and
this can be satisfied by specifying pairs of boundary conditions at the ends of the
bars. The nature of the supports establishes the boundary conditions that generally
fall into the categories of free and clamped ends.

5.8 Boundary Conditions for Transverse Vibrations

1. If the bar is rigidly clamped at one end, the both the displacement and the slope
must be zero at that end at all times, and the boundary conditions are expressed as:

y = 0, ∂y/∂x = 0 (5.35)

2. On the other hand, neither an externally applied moment nor a shear force may
exist at a free end of a vibrating bar. But the displacement and the slope of the bar
at a free end are not constrained, excepting for the mathematical stipulation they
remain small. From Equations (5.26) and (5.28) the boundary conditions become

∂2 y

∂x2
= 0,

∂3 y

∂x3
= 0 (5.36)

Case 1: Bar Clamped at One End
Consider a bar of length L that is rigidly clamped at x = 0 but is free at x = L .
At x = 0, the two conditions of Equation (5.35) apply, so A = −C and B = −D.
The general solution (5.35) reduces to

y = cos(ωt + φ)
[

A
(

cosh
ωx

v
− cos

ωx

v

)
+ B

(
sinh

ωx

v
− sin

ωx

v

)]
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Applying free-end condition Equation (5.36) at x = L yields the following two
sets of equations:

A

(
cosh

ωL

v
+ cos

ωL

v

)
= −B

(
sinh

ωL

v
+ sin

ωL

v

)

A

(
sinh

ωL

v
− sin

ωL

v

)
= −B

(
cosh

ωL

v
+ cos

ωL

v

)

Both of the preceding two equations cannot hold true for all frequencies. In order to
determine the permissible frequencies, one equation is divided into the other, thus
canceling out the constants A and B. Ridding the resulting equation of fractional
expressions by cross-multiplication and using the identities cos2 θ + sin2 θ = 1
and cosh2 θ + 1 = sinh2 θ , we obtain

cosh
ωL

v
cos

ωL

v
= −1

We can alter the last equation by using the identities

tan
θ

2
=

√
1 − cos θ

1 + cos θ
, tanh

θ

2
=

√
cosh θ − 1

cosh θ + 1

and we now obtain

cot
ωL

2v
= ± tanh

ωL

2v
(5.37)

The frequencies which correspond to the allowable modes of vibration can be
found through the use of a microcomputer program which determines the inter-
sections of the curves of cot ωL/2v and ± tanhωL/2v, as shown in Figure 5.8.
The frequencies of the permissible modes are given by

ωL

2v
= ζ

π

4
(5.38)

where ζ = 1.194, 2.988, 5, 7, . . . with ζ approaching whole numbers for the
higher allowed frequencies. Inserting v = (κωc)1/2 into Equation (5.38), squaring
both sides, and solving for frequencies f , we obtain

f = ζ
πκc

8L2

The constraint imposed by the boundary conditions leads to a set of discrete
allowable frequencies, but the overtone frequencies are not harmonics of the
fundamental. When a metal bar is struck in such a manner that the amplitudes of
the vibration of some of the overtones are fairly strong, the sound produced has
a metallic cast. But these overtones rapidly die out, and the initial sound soon
evolves into a mellower pure tone whose frequency is the fundamental. This is
a characteristic of the behavior of a tuning fork that emits a short metallic sound
upon being struck before emitting a pure tone.

The distribution of the nodal points along the transversely vibrating bar is quite
complex, with three distinct types of nodal points being identified mathematically.
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Figure 5.8. Trigonometric functions, used in Equations (5.37) and (5.38), plotted as func-
tions of (ωL/2v).

The clamping point of the bar constitutes one type, with conditions y = 0 and
∂y/∂x = 0 at all times. Another group of points called true nodes is characterized
by y = 0 and ∂y/∂x ≈ 0, and they are found near points of inflections on the bar.
The spacing between these true nodes is very nearly (but not quite) toλ/2. The third
type of nodal point occurs at the node very near the free end of the bar, where y = 0,
but the corresponding point of inflection where ∂2 y/∂x2 ≈ 0 does not coincide
with that point but it is moved out to the free end. The vibrational amplitudes do
not equal each other at the various antinodes but the greatest vibrational amplitude
is that of the free end.

Case 2: Free–Free Bar
In the case of a bar that is free to move at both ends, the boundary conditions
at x = 0 are satisfied by A = C and B = D as the result of applying Equation
(5.36). The same set of boundary conditions applied to the other end x = L
yields

tan
ωL

2v
= + tanh

ωL

2v
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Figure 5.9. The first four transverse modes of a vibrating bar.

which in turn gives a discrete set of allowable frequencies of the transverse vibra-
tion. The frequencies are given by

f = ξ
πκc

8L2

where ξ = 3.01122, 52, 72, 92, . . . . The overtones are not harmonics of the funda-
mental.

Figure 5.9 illustrates the transverse modes of a clamped-free bar and a free–free
bar. In the free–free bar the modes correspond to the fundamental frequency f1

and all additional odd-numbered frequencies. The odd-numbered frequencies f3,
f5, and so on, are symmetric about the center of the bar. The slope ∂y/∂x is always
zero at the center, which is a true antinode. But the even-numbered frequencies f2,
f4, f6, . . . yield asymmetric modes of vibrations with respect to the center. In all
modes the nodal points are found to be distributed symmetrically about the center.
A bar may therefore be supported on a knife edge (or held by knife-edged clamps)
at any nodal point without affecting the mode of vibration having a node at that
point. A knife edge or a knife-edged set of clamps disallows displacement but not
a change in the slope that occurs at the node.

The xylophone consists of metal bars that are supported at the nodal locations
of the fundamental. But the nodes of the associated overtones are unlikely to be
located at the same points, and the overtones quickly die out, leaving the pure tone
of the fundamental. The concept of a free–free bar applies to a tuning fork which
is essentially a U-shaped bar attached to a stem (Figure 5.10). The geometry of the
fork and the mass-loading effect of the stem cause the nodes of the fundamental to
be spaced closely near the stem. When the tuning fork is struck, overtones damp
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Figure 5.10. The tuning fork, essentially a U-shaped bar attached to a stem.

out in a very short time, leaving only the pure sinusoidal fundamental, much in
the same manner as a xylophone. Because the stem shares the antinodal motion
of the center of a free–free bar, the radiation efficiency of a tuning fork becomes
greatly increased by touching the stem to a surface of a large area such as a
counter top.
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Problems for Chapter 5

1. Show that a bar of length L , that is rigidly fixed at x = 0 and totally free at
x = L will have only odd integral harmonic overtones.

2. Determine the fundamental frequency of the bar in Problem 1 if L = 0.60 m
and the bar is made of steel. If a static force F is applied to the free end, so
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that the bar displaces a distance δ, and then is suddenly released, demonstrate
that the amplitudes of the subsequent longitudinal vibrations are given by

An = 8
δ

n2π2
sin

nπ

2

Find these amplitudes for this steel bar with a cross-sectional area of
5.0(10)−5 m2, under the effect of a force of 4500 N.

3. A steel bar is free to move at x = 0. It has 0.0002 m2 cross-sectional area and
0.35 m length. A 0.20 kg load is placed at x = 0.35 m.
(a) Determine the fundamental frequency of the longitudinal vibration of the

mass-loaded bar.
(b) Establish the position at which the bar may be clamped so as to minimize

interference with the fundamental mode.
(c) Find the ratio of the displacement amplitude of the free end to that of the

mass-loaded end for the first overtone of the bar.
4. A steel bar having a mass of 0.05 kg and 0.25 m length is loaded at one end

with 0.028 kg and 0.056 kg at the other end. Find the fundamental frequency
of the system’s longitudinal vibration and determine the location of the node
in the bar. Also compute the ratio of the displacement amplitudes at the two
ends of the bar.

5. Redo Problem 4 for an aluminum bar of the same length but with a mass of
0.03 kg, subjected to the same end loadings.

6. Consider a thin bar of length L and mass M that is rigidly fixed at one end
and free at the other. What mass m must be affixed to the free end in order to
lower the fundamental frequency of longitudinal vibration by 30% from the
fixed-free value?

7. A fixed-free bar of length L and mass m has a mechanical reactance, or stiff-
ness, equal to −is/ω in the fixture. Develop an expression for the fundamental
frequency of the longitudinal vibration.

8. A longitudinal force F cos ωt drives a long thin bar at x = 0. The bar is free
to move at x = L .
(a) Obtain the equation for the amplitude of the standing waves occurring in

the bar.
(b) Obtain the expression giving the input mechanical impedance of the bar

of length L .
(c) Derive the expression for the input mechanical impedance of the same bar

having an infinite length.
(d) For the case of part (a) plot the amplitude of the driven end of the bar

as a function of frequency over the range 100 Hz–3 kHz, if the material
of the bar is aluminum, its length is 1.5 m, its cross-sectional area is
1.5 (10)−4 m2, and the amplitude of the driving force is 12 N.

9. Demonstrate that the dimensional units of v = √
κωc are those of speed. At

what frequency will the phase speed of transverse vibrations of a steel rod
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of 0.005 m diameter equal the phase speed of longitudinal vibrations in the
rod?

10. Given an aluminum rod of 0.010 radius and length 0.4 m, what will be the
fundamental frequency of free–free vibrations? Predict the displacement am-
plitude of the free ends if the displacement amplitude of the rod at its center
is 2.5 cm.



6
Membrane and Plates

6.1 Introduction

In this chapter we are now applying two-dimensional wave equations to mem-
branes and plates. In this group of physical applications, three dimensions are
really involved in the theory that applies to two-dimensional surfaces such as
drumheads and diaphragms of microphones or loudspeakers. Two spatial coordi-
nates are required to locate a point on a vibrating surface, but the displacement
generally occurs along the third spatial coordinate. However, the expansion of the
general one-dimensional solution to the wave equation for a string or a bar can
easily be extended to two dimensions. Again, boundary conditions determine the
discreteness of the vibrational frequencies, but the peripheral geometry of a mem-
brane constitutes a factor additional to the effects expected for different types of
support. For certain membrane or plate geometries, the choice of appropriate ref-
erence coordinate systems to match the contour of the subject surface can greatly
facilitate the solution of the wave equation.

In the following sections the wave equation for a membrane under tension is de-
rived, and solutions are developed for various geometries and supports. The classic
case of a kettledrum is included as a practical example that includes the effect of
damping, and forced vibrations are also taken into additional consideration.

The number of easily solvable two-dimensional problems is limited by the
narrow choice of coordinate systems, and more complex cases can be treated by
computerization, most notably through the application of finite-element methods.

6.2 Derivation of the Wave Equation
for a Stretched Membrane

In order to develop a viably simple equation of motion for a vibrating membrane
stretched under tension, the assumption is made that the extremely thin membrane
is uniform and the vibrational amplitudes remain small. The membrane is also
deemed to be perfectly elastic, without any damping. Designate T as the tension

111
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Figure 6.1. An element of the vibrating element.

of the membrane applied as a uniform force per unit length (e.g., in N/m) and
ρS the surface density of the membrane as mass per unit area (kg/m2). Thus, in
Figure 6.1, an essentially two-dimensional membrane is stretched outward toward
opposing sides of an element (each side of length dL) under the influence of a
tension force T d L . A cartesian coordinate system is adopted, with the expanse of
the quiescent membrane lying in the x−y plane and the transverse displacement
of a point at (x, y) occurring in the z-direction as z = z(x, y, t). In Figure 6.1 an
element of area d S = dx dy undergoes the effect of transverse forces acting in the
x- and y-directions along the peripheral lengths of the element. The net force in
the x-direction is given by

T

[(
∂z

∂x

)
x+dx

−
(
∂z

∂x

)
x

]
dy = T

∂2z

∂x2
dx dy

and similarly, the net force in the y-direction is T (∂2z/∂y2) dx dy. These two
terms add up to contribute to the acceleration ∂2z/∂t2 of the element’s mass
ρS dx dy, in accordance with the Newton’s law of motion:

T

(
∂2z

∂x2
+ ∂2z

∂y2

)
dy dy = ρS dx dy

∂2z

∂t2

and setting

c =
√

T

ρS
(6.1)

we obtain the classic two-dimensional wave equation

∂2z

∂x2
+ ∂2z

∂y2
= 1

c2

∂2z

∂t2
(6.2)
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We can recast the wave equation (6.2) in the more general Laplacian format:

∇2z = 1

c2

∂2z

∂t2
(6.3)

Equation (6.2) is suitable for treatment of rectangular membranes, but Equation
(6.3) should be expressed in terms of polar coordinates to facilitate mathematical
treatment of circular membranes:

∂2z

∂r2
+ 1

r

∂z

∂r
+ 1

r2

∂2z

∂θ2
= 1

r2

∂2z

∂t2
(6.4)

For normal vibrational modes it is the standard mathematical procedure to as-
sume that the solution to Equation (6.3) consists of a spatially dependent function
Ψ and a strictly time-dependent function eiωt (we dispense with the other function
e−iωt as being superfluous for the current physical applications):

z = Ψeiωt (6.5)

Inserting the above expression into Equation (6.3) and setting k = ω/c yields the
time-independent Helmholtz equation:

∇2Ψ + k2Ψ = 0 (6.6)

whose solutions upon insertion into Equation (6.5) yield normal modes of vibra-
tions in a membrane of a given geometry and boundary conditions.

6.3 Rectangular Membrane with Fixed Edges

Consider a stretched rectangular membrane that is fixed at its four edges x = 0,
x = Lx , y = 0, and y = L y . The boundary conditions may be expressed as

z(0, y, t) = z(Lx , y, t) = z(x, 0, t) = z(x, L y, t) = 0 (6.7)

In the Cartesian format the solution z(x, y, t) = Ψ(x, y)eiωt to Equation (6.2) must
derive from the Helmholtz equation given below for Cartesian coordinates:

∂2Ψ
∂x2

+ ∂2Ψ
∂y2

+ k2Ψ = 0 (6.8)

But Ψ(x, y) can be stated as the product of two singly dimensioned functions X (x)
and Y (y) so that

Ψ(x, y) = X(x)Y(y)

and then Equation (6.8) transforms to

1

X
∂2X
∂x2

+ 1

Y
∂2Y
∂y2

+ k2 = 0 (6.9)
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Because the three terms of Equation (6.9) cannot all sum to zero and the first and
second terms are wholly independent of each other, we separate Equation (6.9)
into two separate differential equations, one wholly dependent on x and the other
on y:

1

X
∂2X
∂x2

+ k2
x = 0

1

Y
∂2Y
∂y2

+ k2
y = 0

(6.10)

where k2
x and k2

y are constants related by

k2
x + k2

y = k2

The solutions to the equation set (6.10) consists of sinusoids, with the result

z(x, y, t) = α sin(kx x + φx ) sin(ky y + φy)eiωt (6.11)

Here α represents the maximum displacement of the membrane in the transverse
direction, and φx and φy are determined by boundary conditions. With the first
and the third of the boundary condition set (6.7) we find that φx = φy = 0 and the
remaining conditions necessitate that sin kx Lx = 0 and sin ky L y = 0. Therefore,
the normal modes occur from

z(x, y, t) = αeiωt sin kx x sin ky y (6.12)

for which kx and ky turn out to be discrete values established by

kx = nπ/Lx n = 1, 2, 3, . . .

ky = mπ/L y m = 1, 2, 3, . . .

The frequencies of the allowed modes of vibrations are found from

fnm = ωnm

2π
= c

2

√(
n

Lx

)2

+
(

m

L y

)2

(6.13)

Equation (6.13) constitutes a fairly simple extension of the allowable frequencies
of a idealized free vibrating string to two-dimensional status.

The fundamental frequency is found by merely setting n = m = 1 in Equation
(6.12). The overtones corresponding to m = n > 1 will be harmonics of the fun-
damental frequency, but those in which m �= n (with either m or n > 1) may not
necessarily be so. A number of possible modes in a rectangular membrane are
illustrated in Figure 6.2. The shaded areas vibrate π radians out of time phase with
the unshaded areas. Each normal mode is designated by an ordered pair (n, m),
and the nodal lines are those with zero displacement at all times. In theory, rigid
supports could be placed along these lines without affecting the nodal pattern for
the associated specific frequency.
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Figure 6.2. Four modes of a vibrating membrane. Lines located within the borders of the
membranes constitute nodal loci where displacements are zero for these respective modes.

6.4 Freely Vibrating Circular Membrane with Fixed Rim

As mentioned in the foregoing it is preferable to adopt the polar coordinate version
(6.4) of the wave equation (6.3) to treat the case of a circular membrane that is
fixed at its rim. Accordingly, the zero displacement of the membrane’s boundary
at radius r = a gives the boundary condition

z(a, θ, t) = 0

The harmonic solution to Equation (6.4) can be represented as the product of three
terms, each of which is functions of only one variable:

z(r, θ, t) = R(r )�(θ)eiωt (6.14)

The boundary condition stipulated at the rim of the circular membrane now be-
comes

R(a) = 0

and insertion into Equation (6.4) yields the polar coordinate version of the
Helmholtz equation:

�
d2R
dr2

+ �

r

dR
dr

+ R
r2

d2�

dθ2
+ k2R� = 0 (6.15)

where k = ω/c, as before. Equation (6.15) is then rearranged to effect the separation
of two variables, so we obtain

r2

R

(
d2R
dr2

+ 1

r

dR
dr

)
+ (kr )2 = − 1

�

d2�

dθ2
(6.16)
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The left-hand side of Equation (6.16) is solely a function of r while the right
depends only on θ . In order for the equality of Equation (6.16) to prevail, both
sides of the equation must be set equal to a constant m2. Then we obtain from the
right-hand side of Equation (6.16)

d2�

dθ2
+ m2� = 0

which in turn yields the harmonic solution

�(θ) = cos(mθ + ε)

Here ε is the phase angle. The azimuthal coordinate is of periodic nature, re-
peating itself every 2π radians. In order that the displacement z be single-valued
function of position, z(r, θ, t) must then equal itself every 2π radians, that is,
z(r, θ, t) = z(r, θ + 2π, t), with the result that the constant m is constrained to
integral values m = 1, 2, 3, . . .. The left-hand side of Equation (6.16) therefore
becomes the Bessel’s differential equation:

d2R
dr2

+ 1

r

dR
dr

+
(

k2 − m2

r2

)
R = 0 (6.17)

The solution of Equation (6.17) is

R(r ) = AJm(kr ) + BYm(kr ) (6.18)

where Jm(kr) and Ym(kr) are, respectively, the transcendental Bessel functions of
the first and the second kind, each of the order m. Bessel functions are oscillat-
ing functions with diminishing amplitudes for increasing kr . Ym(kr ) approaches
infinity as kr → 0. The numerical values of Bessel functions and their proper-
ties are given in standard tables and advanced mathematical computer programs.
An abbreviated set of Bessel formulas and tables art given in Appendix B. Be-
cause the circular membrane includes the origin r = 0 and the displacement of the
membrane must remain finite at that point, it is necessary to set1 B = 0, reducing
Equation (6.18) to

R(r ) = AJm(k)

Applying the boundary condition R(a) = 0 requires that Jm(ka) = 0. Let us desig-
nate by qmn those values of the argument ka at which the mth order Bessel function
Jm equals zero. From Jm(qmn) = 0 we can find those discrete values of k which
are given by

kmn = Jmn(qmn)

a
= Jmn

a

1 On the other hand, if an annular membrane stretched over region a < r < b (thus excluding the origin
r = 0) is considered, both Bessel functions must be retained in Equation (6.18) to provide the two
arbitrary constants needed for the boundary conditions at the inner and outer borders.
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A number of values of qmn that yield zeros of the Bessel functions are given in
Appendix B. We can therefore write the normal modes of vibration as

zmn(r, θ, t) = Amn Jn(kmnr ) cos(mθ + εmn)eiωmnt (6.19)

with kmna = qmn and the natural frequencies found from

fmn = 1

2π

qmnc

a
(6.20)

The real part of Equation (6.19) describes the physical displacement in the
normal mode (m, n) as follows:

zmn(r, θ, t) = Amn Jm(kmnr ) cos(mθ + εmn) cos(ωmnt + φmn)

where Amn = Amn = eiφmn . The arbitrary constant εmn is an azimuthal phase angle.
For each normal mode, this constant of integration defines the directions along
which the radial nodal lines of zero displacement occur, but the value of εmn

depends on the value of the azimuthal angle at which the membrane is excited at
t = 0. A number of the first few (and simpler) modes of vibration with εmn = 0 are
shown in Figure 6.3. Each mode is designated by the ordered pair of integers (m, n).
Integer m governs the number of radial nodal lines, whereas integer n determines
the number of azimuthal nodal circles. Since mode (0, 0) would obviously be trivial,

Figure 6.3. Vibration modes in a circular membrane fixed at its perimeter. A number of
simpler modes are shown here.
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Table 6.1. Relative Frequencies for Various Vibrational Modes.

f01 = 1.0 f01 f11 = 1.593 f01 f21 = 2.135 f01

f02 = 2.295 f01 f12 = 2.917 f01 f22 = 3.500 f01

f03 = 3.598 f01 f13 = 4.230 f01 f23 = 4.832 f01

the case of n = 1 constitutes the least allowed value of n, and this corresponds to
a mode of vibration where one azimuthal nodal circle occurs only at the rim of the
membrane where r = a. Virtually the entire membrane vibrates in the z-direction
in axisymmetric unison, with the maximum amplitude at r = 0 tapering off to zero
at the boundary r = a.

For each non-zero value of m there exists a chain of allowed radial vibration
modes of increasing frequency, as illustrated in Figure 6.3. At m = 0, J0(k0na)
equals zero, which sets the conditions for the allowed frequencies. For m = 1,
J1(k1na) = 0 provides the allowed frequencies; and for m = 2, J2(k2na) = 0 sup-
plies the corresponding frequencies for that radial mode. Table 6.1 lists the fre-
quencies fmn of the circular membrane relative to the fundamental frequency f01

obtained from Equation (6.20). From Table 6.1 it is observed that none of the
overtones exists as a harmonic of the fundamental.

6.5 Case Study: Symmetric Vibrations of a Circular
Membrane Fixed at its Perimeter

The case of symmetric vibrations of a circular membrane fixed at its rim has many
applications, so this situation holds great interest for us. Vibrational symmetry
implies a solution to the wave equation (6.4) that is independent of θ , and we limit
the solutions for this case to

z0n = A0n J0(k0nr )eiω0n t (6.21)

and because only m = 0 applies, we discard this subscript and retain only the
index n. The fixedness of the circular perimeter forecasts the boundary condi-
tion z = 0 at r = a. Therefore, J0(ka) = 0, with the zeroes occurring as kna =
2.405, 5.520, 8.654, 11.792, . . . . The fundamental frequency is derived from

f1 = ω1

2π
= k1c

2π
= 2.405

2πa

√
T

ρs
(6.22)

with the (non-harmonic) overtones to the fundamental frequencies obtained as

f2 =
(

5.520

2.405

)
f1 = 2.295 f1

f3 = 3.58 f1,

f4 = 4.90 f1, . . . , etc.
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For the real part of z1 = A1 J0(k1r )eiωt the general expression for the mem-
brane’s displacement in the fundamental mode can be written as

z1 = A1 cos(ω1t + φ1)J0

(
2.405r

ra

)
(6.23)

where A1 is the maximum absolute value of the complex amplitude A1 at the
center r = 0 of the membrane. To completely describe the symmetric vibrations
the complete solution must be expressed as

z =
∑

An cos(ωnt + φn)J0(knr ) (6.24)

For the symmetric modes of vibration above the fundamental, nodal circles will
exist at the inner radii at which J0(knr ) vanishes. For example, the first overtone
J0(k2r ) = 0 when k2r = 5.520 r/a = 2.405, or r = 0.436a. In Figure 6.3, this
mode of vibration is shown as an annulus surrounding the central circle. When
the central circle of the membrane moves up, the outer annulus moves down, and
vice-versa. Because portions of the membrane are moving upward, at the same
time the remaining areas move downward, the efficiency of the sound output of a
drum is low for the overtone frequencies.

A measure of the sound output of each mode is the average displacement ampli-
tude of the surface when it is vibrating in that mode. For the nth symmetric mode,
we can apply Equation (6.24) to determine the average displacement amplitude
〈Ψn〉 over surface S as follows:

〈Ψn〉 = 1

πa2

∫
S

An J0(knr ) d S

= 1

πa2

∫ a

0
An J0(knr )2πr dr

= 2An

kna
J1(kna) (6.25)

For all nonsymmetric modes, we note that the angular dependence cos (mθ + ε) en-
sures that the average displacement is zero. Thus, using the prior double-subscript
notation, we can state that 〈Ψn〉 = 0 for all m �= 0.

It is of interest to find the value of average displacement amplitude 〈Ψn〉 for
the fundamental mode and to compare it with 〈Ψn〉 for the first overtone. From
Equation (6.25),

〈Ψ1〉 = 2A1

k1a
J1(k1a) = 2A1

2.405
= 0.432A1

The motion of the membrane can be equated to the displacement of a rigid flat
piston of radius a moving with an amplitude of 0.432A1. We can also apply
Equation (6.25) to find that 〈Ψn〉 = −0.123A2. The negative sign denotes that the
average displacement amplitude is opposite in direction to the displacement at the
center. The fundamental node of vibration is thus seen to be more than three times
as effective for displacing air as for the first overtone.
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In real applications such as loudspeakers, the amount of air displaced by the
membranes, rather than the exact shape of the moving surface, determine the
principle characteristics of generated sound waves. The radiating source can be
depicted by an equivalent simple piston of area Seq , and this piston moves through
a displacement amplitude ζeq so as to sweep the volume displacement of the actual
source. The volume displacement amplitude of the simple piston equivalent to the
circular membrane vibrating in its fundamental mode is

Seqζeq = 0.432πa2 A1

The nodal vibrations of actual membranes cannot be sustained with constant
amplitudes because of damping forces occasioned by internal friction and external
forces associated with the radiation of acoustic energy. The amplitude of each
mode tends to decay exponentially with time as e−βn t , where βn represents the
damping constant for mode n. This damping constant generally increases with
frequency, with the result that higher frequencies damp out more quickly than
does the fundamental.

6.6 Application of Membrane Theory to the Kettledrum

In addition to the damping forces mentioned above, other forces may act on a
membrane and affect its vibration. The kettledrum is an example of the case of
a membrane that covers a closed space in which changes of pressures occur as
the entrapped volume of air changes in pressure incurred by the vibration of the
drumhead. A similar situation occurs with the air entrapped behind the diaphragm
of a condenser microphone.

The kettledrum consists of a membrane stretched taut over the open end of
a hemispherical shell. As this membrane (i.e., the drumhead) vibrates, the air
contained inside the shell undergoes alternative compressions and rarefactions.
With the radial velocity of the transverse waves being considerably less than the
speed of sound in air, the pressure arising from the alternative compression and
decompression of the entrapped air is fairly uniform across the entire drumhead
and depends only on the average displacement 〈z〉. With the radius of the drumhead
designated by a, the incremental or displaced volume of the enclosed air is given
by dV = πa2 〈z〉. Let us denote by V0 the equilibrium or quiescent volume of the
air enclosed in the kettledrum. The corresponding unperturbed pressure is P0. The
vibration of the air enclosed in the kettledrum is essentially an adiabatic process,
with the result that the instantaneous pressure P and volume V are related to the
quiescent values by

PV γ = P0V γ

0 = constant (6.26)

Here γ is the ratio of cp, the specific heat of the contained air at constant pressure,
to cv , the specific heat at constant volume. Differentiating Equation (6.26) yields
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the pressure deviation dP:

d P = −γ P0

V0
dV = −γ P0

V0
πa2〈z〉 (6.27)

This gives rise to an incremental force dP dx dy over incremental area dx dy of
the membrane. Modifying Equation (6.3) to include this incremental force we
obtain

∇2z − 1

c2

γ P0

ρ0V0
πa2 〈z〉 = 1

c2

∂2z

∂t2
(6.28)

The term 〈z〉 is an integral function of all the permitted modes of vibration, which
must also include the influences of their relative amplitudes and phases. We can
greatly simplify the solution of Equation (6.28) by assuming only one mode of
vibration and disregarding all of the other modes which constitute the general
solution.

The average displacement is zero for all normal modes dependent upon θ ;
therefore, none of these modes are affected by the pressure fluctuation of the air
inside the drum. We need only to consider the symmetric modes entailing the
Bessel function J0. The solution with only one frequency present is of the form
depending only on the coordinate r

z = Ψeiωt

Inserting the above into Equation (6.28) yields

d2Ψ
dr2

+ 1

r

dΨ
dr

+ k2Ψ = γ P0

T V0

∫ a

0
2πrΨ dr (6.29)

In order to establish the solution to the differential equation, we examine the salient
features of Equation (6.29). If the right-hand integral term were not present, the
solution would entail J0(kr ). But the presence of this integral term involving
the radius a suggests an additional term to the solution, one that is a function
of a, namely J0(ka). Moreover, the assumed solution should meet the boundary
condition that Ψ = 0 at r = a, regardless of the value of k.

We now integrate the right-hand side of Equation (6.29) as follows

2πγ P0

T V0
A
[

r J1(kr )

k
− r2

2
J0(ka)

]a

0

= γ P0

T V0
πa2A

[
2J1(ka)

ka
− J0(ka)

]
= γ P0

T V0
πa2 AJ2(ka) (6.30)

Insertion of Equation (6.30) into Equation (6.29) provides the condition for the
viability of the assumed solution

−k2 J0(ka) = γ P0

T V 0
πa2 J2(ka)



122 6. Membrane and Plates

Table 6.2. Allowed Frequencies of a Kettledrum.

B 0 1 2 5 10

k1a 2.405 2.545 2.68 3.02 3.485
k2a 5.520 5.54 5.55 5.59 5.87
k3a 8.654 8.657 8.660 8.67 8.69

or

J0(ka) = − B J2 (ka)

(ka)2

where

B = γ P0

T V0
πa2

The parameter B is a dimensionless constant that compares the relative magni-
tudes of the restoring forces arising from the compression effects of the air trapped
inside the drum and the tension applied to the drumhead. The value of B is small
if either the volume or the tension in the membrane is quite large compared with
the compressive pressure acting over the area of the membrane. In the limit where
B approaches zero, the allowed frequencies become those corresponding to the
freely vibrating circular membrane which was described earlier in this chapter.
The allowed values of ka are listed in Table 6.2 for selected values of B rang-
ing from 0 (which corresponds to an unimpeded vibrating circular membrane) to
10 (indicative of low drum volume or light drumhead tension). The effect of the
additional term in Equation (6.28), which is proportional to the displacement and
therefore is indicative of membrane stiffness, is to elevate the allowed frequencies.
The effect on the fundamental frequency is much more considerable than it is on
the higher modes of vibration. This stems from the fact that the average displace-
ment amplitude becomes smaller with increasingly higher modes of vibration with
a consequently larger number of oppositely phased segments. It is also apparent
that since pressure fluctuations inside the drum affect only the basic frequency
modes z0n , the tonal qualities of a kettledrum can be varied by parametric changes
of the drum volume V0 and the area πr2 of the drumhead.

6.7 Forced Vibrations of a Membrane

Consider a circular membrane that is acted only on one side by a evenly distributed
sinusoidal driving pressure p = P cos ωt. In complex notation the pressure is
given by

p = Peiωt

and the equation of motion (6.3) becomes modified as follows:

∂2z

∂t2
= c2∇2z + P

ρs
eiωt (6.31)
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Assume a steady-state solution

z = Ψeiωt (6.32)

which is then inserted into Equation (6.31), resulting in

∇2Ψ + k2Ψ = P

ρsc2
= − P

T
(6.33)

where k = ω/c. In this situation of a driven membrane the angular frequency ω
may have any value, and the wave number k is thus not limited to discrete sets of
values which prevail in freely vibrating membranes.

The solution to Equation (6.33) consists of two parts, one being a general so-
lution of the homogeneous equation�2Ψh + k2Ψh = 0 and the second being the
particular solution Ψp = −P/(k2T ). Then the complete solution can be written as

Ψ = AJ0(kr ) − P

k2T

The immobility of the membrane at the rim r = a provides the boundary condition
Ψ(a) = 0, and

A = 1

J0(ka)
· P

k2T

The displacement of the membrane becomes

z(r, t) = P

k2T

[
J0(kr )

J0(ka)
− 1

]
eiωt (6.34)

with the corresponding amplitude of the displacement at any position in the mem-
brane given by

Ψ(r ) = P

T

[
J0(kr ) − J0(ka)

k2 J0(ka)

]
(6.35)

From Equation (6.35) it is seen that the amplitude of the displacement is di-
rectly proportional to the driving force P and inversely proportional to the tension
T . The vibrational amplitude at any location on the membrane depends on the
transcendental terms enclosed by the square bracket in Equation (6.35). But if
the driving frequency ω corresponds to any of the free-oscillation frequencies of
Equation (6.22), the overtones, the Bessel function J0(ka) assumes zero values,
presaging infinite amplitudes. But damping forces occur in real cases, and these
may be represented in Equation (6.31) by a damping factor –(R/ρs) (∂z/∂t) that
limits the amplitudes to finite maximum values.

The average displacement 〈z〉s of the driven membrane is found by averaging
over the surface area of the membrane:

〈z〉s =
2πeiωt

∫ a

0

P

k2T

[
J0(kr )

J0(ka)
− 1

]
r dr

πa2

= P

k2T

J2(ka)

J0(ka)
eiωt (6.36)
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At low frequencies ka assumes a value less than unity and the following approxi-
mations for Bessel functions hold true:

J0(ka) ≈ 1 − 3(ka)2

J2(ka) = k2a2

8

[
1 − k2a2

12

]
Introducing the above approximations into Equation (6.36) yields the following
expression for the average displacement at low frequencies,

〈z〉s ≈ Pa2

8T

(
1 + k2a2

6

)
(6.37)

If we apply the situation as represented by Equation (6.37) to the design of a con-
denser microphone, it is apparent that as long the driving frequency is sufficiently
low, i.e., ka 	 1, the output of the microphone will be virtually independent of the
frequency. No resonances should occur in that frequency range. The first resonance
occurs at ka = 2.405. Because

k = 2π f

c
= 2π f

(ρS

T

)−1/2

and if we set the limiting frequency of the uniform microphone response to ka < 1,
then

f <
1

2πa

√
T

ρs

The upper frequency limit of the microphone can be elevated by either increasing
the tension T or decreasing the radius a, all other factors being equal. But this
also has the effect of lessening the amplitude of the average displacement 〈z〉s and,
consequently, the voltage output of the microphone.

When a damping factor –(R/ρs)(∂z/∂t) is included in Equation (6.31), the
resulting solution does not change except that k is replaced by k, a complex
expression represented by

k2 = ω2

c2
− iωR

T

The presence of the imaginary component −ωR/T causes the average displace-
ment to assume a finite value at resonance. Figure 6.4 displays the average displace-
ment response 〈�〉s of a freely vibrating dissipationless membrane, as computed
through the use of Equation (6.36). The amplitude assumes a value of infinity at
ka = 2.405. Another curve that includes the effect of damping is also plotted, and
the corresponding amplitude assumes a finite value at ka = 2.405. Both of these
curves indicate zero responses at ka = 5.136, for which J2(ka) = 0. If the fre-
quency is increased beyond the first resonance value to approximately 1.60 times
the first resonant frequency, a circular nodal line will appear near the rim of the
membrane. As the frequency is increased, the nodular line moves inward as a
circle of decreasing radius. The displacement of the membrane’s center is out of
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Figure 6.4. Plot showing the average (normalized) displacement response as a function
of frequency. The effect of damping is also shown.

phase with the driving force, while that of the membrane’s outer portion remains in
phase. As the driving frequency increases and the nodal circle shrinks, the average
displacements of the two zones tend to cancel each other out. The cancellation
becomes complete at ka = 5.136, and no displacement occurs across the entire
surface of the membrane.

6.8 Vibrating Thin Plates

The principal difference between the vibration of a membrane and a thin plate
is the restoring force in the former is due entirely to the tension acting on the
membrane and in the latter there is no tension applied, and the restoring force is
attributed entirely to the inherent stiffness of the plate.

To keep matters simple, we consider only symmetrical vibrations of a uniform
circular diaphragm. The appropriate equation, essentially equivalent to Equation
(6.36) but modified to include the effect of stiffness, is

∂2z

∂t2
= κ2 E

ρ(1 − μ2)
∇2(∇2z) (6.38)

where ρ is the density of the material, μ is the Poisson’s ratio, E is Young’s
modulus, and κ is the surface radius of gyration. For a circular plate of uniform
thickness b, the radius of gyration is given by

κ = b√
12
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The elastic resistance to flexing provides the restoring force that acts on the
circular plate. While there may be some temptation to consider the coefficient
−κ2 E/[ρ(1 − μ2)]2 on the right-hand side of Equation (6.38) as being analogous
to −κ2 E/ρ in Equation (5.28) for the transverse vibration of a bar, this is not
strictly true because a sheet will curl up sideways as it is bend downward along its
length. This is the Poisson’s effect in which the curling occurs from the lateral ex-
pansion as the longitudinal compression ensues from the bending of the plate. An
increase in the effective stiffness is thereby produced. The Poisson’s ratio μ given
in Equation (6.38) is the negative ratio of the lateral strain Mξ/My to Mζ/Mx , i.e.,

μ = − ∂ξ/∂y

∂ς/∂x

In order to keep the Poisson’s ratio a positive number, it is necessary to introduce
the minus sign to counteract the effect that a positive longitudinal strain gives rise
to a negative lateral strain of compression. The value of μ, which is a property of
the material, may be obtained from standard tables and is generally of the value
0.3. In Equation (6.38), the factor (1 − μ2)−1 embodies the effective increase in
the stiffness of the plate resulting from the curling.

In solving Equation (6.38) it is assumed that

z = Ψ(r )iωt

which is then substituted into that equation to give

∇2(∇2Ψ) − K 4Ψ = 0 (6.39)

in which

K 4 = ω2ρ(1 − μ2)

κ2 E

The substitution of the Helmholtz equation �2Ψ = −K 2Ψ into Equation (6.39)
indicates that if Ψ can satisfy the Helmholtz equation, it will also constitute a
solution to Equation (6.39). The function Ψ in the relationship�2Ψ = K 2Ψ will
also satisfy Equation (6.39), so the complete solution of this equation must be the
sum of four independent solutions to

∇2Ψ ± K 2Ψ = 0 (6.40)

Equation (6.40) with the positive sign is the Helmholtz equation with circular sym-
metry, which yields the solutions J0(Kr ) and Y0(Kr ). But the boundary condition
that the displacement must be finite at r = 0 at the center of the plate requires
that the latter solution must be scrapped. The solution of Equation (6.40) with the
negative sign yields J0(i Kr ) and Y0(i Kr ); the latter term is also discarded. The
term J0(i Kr ) is a modified Bessel function of the first kind, generally written as2

2 The modified Bessel functions In(x) are solutions of the modified Bessel differential equation

d2 y

dx2
+ 1

x

dy

dx
−

(
1 + n2

x2

)
y = 0
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I0(Kr ). The complete applicable solution of Equation (6.39) is

Ψ = AJ0(Kr ) + BI0(Kr ) (6.41)

The function J0(Kr ) is an oscillating function that damps out with increasing r
while I0(Kr ) increases continuously with r .

The manner in which the plate is supported determines the conditions which
are used to evaluate the constants A and B. A common type of support is one in
which the circular plate is rigidly clamped at its periphery r = a. The boundary
conditions therefore are

Ψ = 0 and ∂Ψ/∂r = 0 at r = a

These yield

AJ0(K a) = −BI0(K a), AJ1(K a) = −BI1(K a) (6.42)

and through elimination of the constants A and B we obtain the transcendental
equation which gives the permissible values of K a:

J0(K a)

J1(K a)
= − I0(K a)

I1(K a)
(6.43)

Both I0 and I1 remain positive for all values of Ka, so solutions occur only when J0

and J1 have opposite signs. The sequence of solutions satisfying Equation (6.43)
is

K a = 3.20, 6.30, 9.44, 12.57, . . .

The above can be approximated by K a = nπ , where n = 1, 2, 3, . . .. This approx-
imation improves with increasing values of n.

From the definition of K for Equation (6.39), it is apparent that the frequency
can be found from

f = ω

2π
= κK 2

2π

√
E

ρ(1 − μ2)

By setting K = 3.20/a, the fundamental frequency f1 is found to be

f1 = ω1

2π
= 3.22

2πa2

b√
12

√
E

ρ(1 − μ2)
= 0.47

b

a2

√
E

ρ(1 − μ2)

where b represents the thickness of the plate. The frequencies of the overtones are
given by

f2 =
(

6.3

3.2

)2

f1 = 3.88 f1

f3 = 8.70 f1, etc.

These frequencies are spread out much further apart than those for the circular
membrane.
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For the fundamental mode of vibration, the displacement of a thin circular plate
is given by

z1 = cos(ω1t + φ1)

[
A1 J0

(
3.2

a
r

)
+ B1 I0

(
3.2

a
r

)]

From the boundary condition relationships of Equation (6.42) the last expression
becomes

z1 = A1 cos(ω1t + φ1)

[
J0

(
3.2

a
r

)
+ 0.555I0

(
3.2

a
r

)]

It is interesting to observe that the amplitude at the center r = 0 is 1.0555A1,
not A1. If we compare the shape function represented by the bracketed terms on
the right-hand side of the last equation with the corresponding shape function
J0(2.405r/a) for the fundamental mode of a similar-sized vibrating circular mem-
brane, it will be found that the relative displacement of the plate near its edge
is considerably smaller than that of the membrane. Hence, the ratio of the aver-
age amplitude to the amplitude at the center is less than that in the case for the
membrane. The average displacement amplitude is given by

〈Ψ1〉s = 0.326A1 = 0.309z0

where z0 = 1.0555A1 represents the amplitude at the center r = 0 of the plate.
In the same manner we used to represent the membrane, the circular plate can be
depicted by an equivalent flat piston so that

Seqζeq = 0.309πa2z0

Plates can also undergo loaded and forced vibrations. The mathematical treatments
of these cases are analogous to those for membranes, and the response curves are
similar to those shown in Figure 6.4. Large amplitudes will also occur at resonance
frequencies unless there is appreciable damping.

The most apparent use of the vibrating thin plate is that of the telephone di-
aphragms (both receiver and microphone). While these diaphragms do not provide
the flatter frequency responses or frequency range of membranes in condenser mi-
crophones, they do provide adequate intelligibility, are generally far more rugged
in their construction and cheaper to manufacture. Sonar transducers used to gener-
ate underwater sounds less than 1 kHz constitute another class of vibrating plates;
the signals are produced by the variations of an electromagnetic field in an elec-
tromagnet positioned closely to a thin circular steel plate.
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Problems for Chapter 6

All membranes described below may be assumed to be fixed at their perimeters
unless otherwise indicated.

1. Consider a square membrane, having dimensions b × b, vibrating at its fun-
damental frequency with amplitude δ at its center. Develop an expression that
gives the average displacement amplitude. Obtain a general expression for
points having an amplitude of δ/2. Plot at least five points from this general
expression. Do these points fall in a circle?

2. A rectangular membrane has width b and length 3b. Find the ratio of the first
three overtone frequencies relative to the fundamental frequency.

3. Consider a circular membrane with a free rim. Develop the general expression
for the normal modes and sketch the nodal patterns for the three normal modes
with the lowest natural frequencies. Express the frequencies of these normal
modes in terms of tension and surface density.

4. A circular aluminum membrane of 2.5 cm radius and 0.012 cm thickness is
stretched with a tension of 15,000 N/m. Find the first three frequencies of free
vibration, and for each of the frequencies, determine any nodal circles.

5. Prove that the total energy of a circular membrane vibrating in its fundamental
mode is equal to 0.135πρs(aωA f )2 where ρs is the area density, a the radius
of the membrane, and ω the angular frequency of the vibration, and A f the
fundamental amplitude at the center.

6. Steel has a tensile strength of 1.0 GPa (= 109 Pa) and aluminum, 0.2 GPa.
Using these values as the maximum tensions, what will be the maximum
fundamental frequency of a 2-cm-diameter circular membrane made up of each
of these materials? Note: for thin membranes these fundamental frequencies
are independent of the thicknesses.

7. A damping force is applied uniformly over the surface of a circular membrane.
This damping force per unit area = −� ∂z/∂t should be introduced into the
appropriate wave equation in a manner consistent with the dimensions of the
terms of the equation. Solve the equation to demonstrate that the amplitudes
of the free vibrations are damped exponentially as e−1/2�t/ρs .

8. A kettledrum consists of a circular membrane of 50 cm diameter, with an
area density of 1.0 kg/m2. The membrane is stretched under a tension of
10,000 N/m.
(a) Determine the fundamental frequency of the membrane without a backing

vessel.
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(b) Determine the fundamental frequency for the membrane with a back-
ing vessel that is a hemispherical bowl of 25 cm radius. The vessel is
filled with air at a pressure of 100 kPa, and γ (the ratio of specific heats)
is 1.4.

9. An undamped membrane of 4-cm radius has an area density of 1.6 kg/m2

and is stretched to a tension of 1200 N/m. It is driven by a uniform pressure
7000 sin ωt Pa applied over the entire surface.
(a) Determine and plot the amplitude of the displacement at the center as a

function of frequency ranging 0–2 kHz.
(b) Compute and plot the shape of the membrane when driven by the applied

frequency of 600 Hz and the applied frequency of 1000 Hz.
10. A condenser microphone contains a circular aluminum diaphragm of 30-mm

diameter and 0.02-mm thickness. Aluminum has a maximum tensile strength
of 0.2 GPa.
(a) What is the allowable maximum tension in N/m in the diaphragm?
(b) What will be the fundamental frequency under these conditions?
(c) What will be the displacement of the diaphragm at its center under the

impetus of a 500-Hz sound wave having a pressure amplitude of 1.5 Pa?
(d) What will be the average displacement under the conditions of (c)?

11. If the volume of air trapped behind the diaphragm of the condenser microphone
of the preceding problem is 2.5 × 10−7m3, by how much will the fundamental
frequency be raised? Assume the normal air pressure to be equal to 100 kPa
and γ = 1.4.

12. Use integration over the surface of a circular thin plate vibrating in its fun-
damental mode to show that the average displacement amplitude is 0.327A,
where A denotes the displacement in the center of the plate.

13. The diaphragm of a typical telephone receiver comes in the form of a circular
sheet of steel, 4 cm in diameter and 0.18 mm thick.
(a) What is the fundamental frequency, if the diaphragm is rigidly clamped at

its rim?
(b) How will this fundamental frequency change if the diaphragm thickness

is doubled?
(c) What would happen to the fundamental frequency if the diameter of the

diaphragm was increased by 50%?
14. Find the fundamental frequency of a vibrating circular steel plate which is

clamped at its rim and is of 25 cm diameter and 0.55 mm thickness.



7
Pipes, Waveguides, and Resonators

7.1 Introduction

In dealing with strings, bars, and membranes in Chapters 4–6, we considered rel-
atively simple geometric conditions. The situation becomes more complex when
the sound waves are confined in a restricted amount of space. For example, when
sound propagates inside a rigid-walled pipe with a wavelength that exceeds the
radius of a rigid-wall pipe, the acoustic propagation inside the pipe becomes fairly
planar. The resonance properties of the pipes driven at one end and closed off at
other end constitute the basis for measuring acoustical impedances and absorption
properties of materials. In our study of pipes we establish the models for physical
analyses of wind musical instruments, organ pipes, and ventilation ducts (Fletcher
and Rossing, 1991). In larger spaces, where the dimensions may exceed wave-
lengths, two- and three-dimensional standing waves can occur. We shall treat the
simple case of a waveguide with a uniform cross section, establish the concept
of group speed and phase speed which occurs with a wave propagating inside a
waveguide. The acoustic waveguide is very much analogous to the electromag-
netic waveguides, and it finds applications in surface-wave delay lines and in the
propagation of sound in ocean and atmospheric layers. We shall also consider the
physics of a Helmholtz resonator.

7.2 The Simplest Enclosed System: Infinite
Cylindrical Pipe

The simplest enclosed system inside which sound propagation occurs is an infinite
cylindrical pipe with its axis parallel to the direction of the propagation of the plane
wave in the enclosed medium. The pipe wall is assumed to be rigid, perfectly
smooth, and adiabatic (i.e., no heat transfer occurs through the wall). The pipe
thus has no effect on the wave propagation. A pressure wave generated by a piston
moving in the x-direction can be expressed as

p(x,t) = p0 ei(ωt−kx) (7.1)

131
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Here p0 is the maximum amplitude of the pressure wave. The volume flow is given
by

U (x, t) = p0S

ρc
ei(ωt−kx)

where ω is the angular frequency, k = 2π/λ = ω/c the wave number, S the cross
sectional area of the pipe, ρ the density of the fluid inside the pipe, and c the
propagation velocity.

7.3 Resonances in a Close-Ended Pipe

As shown in Figure 7.1 consider a pipe of length L and cross-sectional area S,
filled with a fluid, and sealed off at one end, x = L . Let the fluid inside the pipe
be driven by a piston at x = 0. The pipe has a mechanical impedance ZnL .The
piston vibrates harmonically at a sufficiently low frequency so that only plane
waves are considered to exist inside the pipe. The wave inside the pipe can be
described by

p = Aei[ωt+k(L−x)] + Bei[ωt−k(L−x)] (7.2)

where A and B are established by the boundary conditions at x = 0 and x = L .
At x = L the mechanical impedance of the wave must equal the mechanical

impedance ZnL at the termination so as to sustain the continuities of force and
particles. The force of the fluid acting at the end of the pipe is p(L , t)S, and the
corresponding particle speed u(L , t) derives from the integrated Equation (2.23)

u = −
∫

1

ρ
δ

(
∂p

∂x

)
dt

Figure 7.1. A pipe close-ended at x = L .
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Mechanical impedance Zn , expressed as

Zn = f
u

(7.3)

represents a complex value that is the ratio of the complex driving force f to the
complex speed u at the point where the force is applied. In the case of the finite
pipe, the mechanical impedance at x = L is given by

ZnL = ρ0cS
A + B
A − B

(7.4)

The value of the input mechanical impedance at x = 0 is expressed as

Zn0 = ρ0cS
AeikL + Be−ikL

1 + i ZnL

ρ0cS
tan kL

(7.5)

Eliminating A and B by combining Equations (7.4) and (7.5) yields

Zn0

ρ0cS
=

ZnL

ρ0cS
+ i tan kL

1 + ZnL

ρ0cS
tan kL

(7.6)

The term ρ0cS is the characteristic mechanical impedance of the fluid. The com-
plex quantity Zn0 can be recast in terms of real and imaginary components, r and
ψ , respectively,

ZnL

ρ0cS
= r + iψ (7.7)

The ratio on the left-hand side of Equation (7.7) constitutes a normalized
impedance. Inserting Equation (7.7) into Equation (7.6) yields

Zn0

ρ0cS
= (r + iψ) + i tan kL

1 + i(r + iψ) tan kL

= r (tan2 kL + 1) − i[ψ tan2 kL + (r2 + ψ2 − 1) tan kL − ψ]

(ψ2 + r2) tan2 kL − 2ψ tan kL + 1
(7.8)

When r = 0, the input impedance Zn0 vanishes when the reactance vanishes, i.e.,

−i[ψ tan2 kL + (r2 + ψ2 − 1) tan kL − ψ]

(ψ2 + r2) tan2 kL − 2ψ tan kL + 1
= 0 (7.9)

and this results in

ψ tan2 kL + (ψ2 − 1) tan kL − ψ = 0 (7.10)

that is,

ψ = −tan kL (7.11)
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The impedance becomes infinite when

ψ tan2kL + (ψ2 − 1) tan kL − ψ = 0

or

ψ = cot kL

Let us briefly examine the situation for a constant driving force at x = 0. The
vanishing of Zn0 = f/u0 connotes that the speed amplitude at the point of force
application (x = 0) is infinite, the condition for mechanical resonance. Conversely
the input impedance reaching infinity means that the speed amplitude approaches
zero, which describes the condition of antiresonance.

To obtain the condition of resonance in a pipe driven at x = 0 and sealed with a
rigid cap at x = L , we let |ZnL/ρ0cS| approach infinity in Equation (7.4), giving

Zn0

ρ0cS
= −icot kL

The reactance becomes zero when cot kL = 0,

kn L − (2n − 1)π/2 n = 1, 2, 3, . . .

and so we obtain the set of resonant frequencies as for the forced-fixed string:

fn = 2n − 1

4

c

L

With the odd harmonics of the fundamental constituting the resonance frequencies,
the driven closed pipe contains a pressure antinode at x = L and a pressure node at
x = 0. This means that the driver must present a vanishing mechanical impedance
to the tube.

7.4 The Open-Ended Pipe

Consider a pipe driven at x = 0 but open-ended at the other end x = L . The as-
sumption that ZnL = 0 at x = L (which would lead to resonances at fn = 1/2 nc/L)
is not valid, because the open end of the pipe radiates into the surrounding air. The
appropriate condition is ZnL = Zr , where Zr is the radiation impedance at the
open end of the tube. Also, the presence of a flange at the open end affects the
exit impedance. Consider the case of a flange at the open end of a circular pipe of
radius a. The flange is large with respect to the wavelength of the sound, which, in
turn, is considerably larger than the tube radius (λ  a). This situation resembles
a baffled piston in the low-frequency limit. From theory (Kinsler and Frey, 1962)

ZnL

ρ0cS
= (ka)2

2
+ i

8

3

ka

π
(7.12)

where the real component r = (ka)2/2 and the imaginary componentψ = 8ka/3π
are both much less than unity and r 	 ψ . Under these conditions the solution to
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Equation (7.9) yields tan kL = −ψ in order for resonance frequencies to occur.
With the assumption ψ 	 1, we obtain

tan(nπ − kn L) = 8ka

3π
≈ tan

8ka

3π
(7.13)

where n = 1, 2, 3, . . .. Hence

nπ = kn L + 8kna

3π
(7.14)

The resonance frequencies therefore are

fn = n

2

c

L + 8

3π
a

(7.15)

All of the resonance frequencies are harmonics of the fundamentals. We also note
that the denominator L + 8a/(3π ) constitutes the effective length of the pipe rather
than actual length L .

In the case of the unflanged pipe, the radiation impedance, indicated by both
theory and experiment is given approximately by

ZnL

ρ0cS
= (ka)2

4
+ i(0.6ka) (7.16)

Here the end correction for the unflanged pipe equals 0.6a, with the effective
length being L + 0.6a. We also note that the end corrections do not depend on
the frequency. Providing that λn  a, the resonance frequencies of flanged and
unflanged pipes constitute harmonics of the fundamental. Hence, the driving fre-
quency of an open-ended organ pipe yields resonances that are harmonics of the
driving frequency. The above exposition so far has dealt with pipes of constant
cross sections. If a pipe is flared at the open end, as is the case with many wind
instruments such as the clarinet and the oboe, the results are modified, and the
resonances may not necessarily be harmonics of the fundamental. Variations in
the flare design will emphasize or lessen certain harmonics present in the forcing
function, thereby affecting the quality or timbre of the sound emanated by the pipe.

7.5 Radiation of Power from Open-Ended Pipes

Equation (7.4) may be revised to read

B

A
=

ZnL

ρ0cS
− 1

ZnL

ρ0cS
+ 1

(7.17)

When the termination impedance ZnL is known the power transmission coefficient
Tn can be established from

Tn = 1 −
∣∣∣∣B
A

∣∣∣∣
2

(7.18)
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Through the use of Equation (7.16), Equation (7.17) applied to the case of an
open-ended pipe becomes

B
A

=

[
1 − (ka)2

2

]
− i

8ka

3π[
1 + (ka)2

2

]
+ i

8ka

3π

(7.19)

which is then inserted into Equation (7.18), which now becomes

Tn = 2(ka)2[
1 + (ka)2

2

]2

+ (ka)2

(
8

3π

)2
(7.20)

Normally ka 	 1, so the power transmission coefficient is quite small and it can
be simplified to

Tn ≈ 2(ka)2 (for flanged pipe) (7.21)

From Equation (7.18) it can be ascertained that B/A is almost equal to –1. The
pressure amplitude of the reflected wave is barely less than that of the incident wave.
At x = L , its pressure differs by nearly 180◦ out of phase. On the other hand, the
incident and reflected particle speeds remain nearly in phase at the opening of the
pipe, so that the location is (nearly) the antinode of the particle speed. Even though
the amplitude of the particle speed at the opening is nearly twice that of the incident
wave, only a small percentage of the incident power transmits out of the flanged
pipe. Thus, sources having dimensions small compared with the wavelength of the
sound behave as inefficient radiators of sonic energy.

Inserting Equation (7.16) for the unflanged pipe into Equation (7.17), the trans-
mission coefficient becomes

Tn = (ka)2[
1 + (ka)2

4

]2

+ (0.6ka)2

≈ (ka)2 (7.22)

By comparing Equations (7.20) and (7.22) we perceive that adding a flange at the
end of the pipe essentially doubles the radiation of sound at low frequencies. A
gradual flare at the open terminal of the pipe will increase the low-frequency power
transmission even more.

7.6 Standing Waves in Pipes

The existence of phase interference between transmitted and reflected waves inside
a terminated pipe gives rise to a standing wave pattern. The properties of the
standing waves can be applied to gauge the load impedance. In Equation (7.2) let
us set

A = A, B = Beiθ (7.23)
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where A and B are real, positive numbers. Combining Equations (7.4) and (7.23)
results in

ZnL

ρ0cS
=

1 + B

A
eiθ

1 − B

A
eiθ

(7.24)

Inserting Equation (7.23) into Equation (7.2) we obtain for the pressure amplitude
p = |p| of the wave

p =
√

(A + B)2 cos2[k(L − x) − θ/2] + (A − B)2 sin2[k(L − x) − θ/2]

(7.25)

At a pressure antinode, the pressure amplitude is A + B, while the amplitude
pressure at the pressure node is A − B. The standing wave ratio (SWR) occurs as
the ratio of these two pressure amplitudes, respectively,

SWR = A + B

A − B
or

B

A
= SWR − 1

SWR + 1
(7.26)

SWR is measured by probing the sound field along the pipe (also known as an
impedance tube) with a tiny microphone to obtain the value of B/A. The phase
angle θ can be found by measuring the distance of the first node from the end at
x = L . According to Equation (7.25) the nodes are located at

k(L − xn) − θ

2
=

(
n − 1

2

)
π (7.27)

For the first node (n = 1),

θ = 2k(L − x1) − π (7.28)

Example Problem 1
An impedance tube is found to have a SWR of 3 and the first node is 3/8 of the
wavelength from the end. Find the normalized mechanical impedance at x = L .

Solution
L − x = 3λ/8

Hence from Equation (7.28) θ = 2(2π/λ)(3λ/8) − π = π/2. From Equation
(7.26)

B

A
= 3 − 1

3 + 1
= 1

2

Equation (7.24) now reads

ZnL

ρ0cS
=

1 + 1

2
eiπ/2

1 − 1

2
eiπ/2

= 0.60 + i0.80
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Mechanical impedances at terminations occur as complicated functions of the
frequencies, so it may be necessary to conduct measurements over the range of
frequencies under consideration. Smith nomographs (Beranek, 1949) are useful
tools to expedite computations for r and ψ , the real and imaginary components of
the impedances, from the measurements of the standing wave ratio and the position
of the node most adjacent to the end.

The impedance tube is used to measure the reflective and absorptive properties
of small sections of materials, such as acoustic tiles and sound control absorbers,
mounted at the end of the tube.

7.7 The Rectangular Cavity

In Figure 7.2 a rectangular cavity is shown having dimensions Lx , L y , Lz in the
x-, y-, and z-directions, respectively. This parallelepiped can represent a simple
auditorium or any other rectangular space that contains rigid walls, few windows
and other openings. We assume the walls of the cavity to be perfectly rigid that˘

n · �u = 0 at all of the boundaries (i.e., the walls will not move in the directions of
their normals). This also means that

˘

n · ∇p = 0, i.e.,

(
∂p

∂x

)
x=0

=
(
∂p

∂x

)
x=Lx

= 0

(
∂p

∂y

)
y=0

=
(
∂p

∂y

)
y=L y

= 0

(
∂p

∂z

)
z=0

=
(
∂p

∂z

)
z=Lz

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.29)

Figure 7.2. The rectangular cavity.



7.7 The Rectangular Cavity 139

Because acoustic energy cannot escape from a completely closed cavity with
rigid walls, standing waves constitute the only appropriate solutions of the wave
equation. Inserting

p(x, y, z, t) = X (x)Y (y)Z (z)eiωt (7.30)

into the wave equation

∇2 p = 1

c2

∂p

∂t
(7.31)

and separating variables results in the following set of equations:(
d2

dx2
+ k2

x

)
X = 0,

(
d2

dy2
+ k2

y

)
Y = 0,

(
d2

dz2
+ k2

z

)
Z = 0 (7.32)

Here the separation constants are related as follows:

k2 = ω2

c2
= k2

x + k2
y + k2

z (7.33)

The boundary conditions of Equation (7.29) stipulate cosine solutions, and Equa-
tion (7.30) revises to

plmn = Almn cos kxl x cos kym y cos kzn x eiωlmn t (7.34)

where the components of k are

kxl = lπ

Lx
, l = 0, 1, 2, . . . , kym = mπ

L y
, m = 0, 1, 2, . . .

kzn = nπ

Lz
, n = 0, 1, 2, . . . , (7.35)

This leads to the quantization of allowable frequencies of vibration

ωlmn

c
=

√
l2π2

L2
x

+ m2π2

L2
y

+ n2π2

L2
z

(7.36)

The above gives rise to eigenfunctions of Equation (7.34). Each eigenfunction
is characterized by its own eigenfrequency (7.36) specified by the ordered integers
(l,m,n). Equation (7.34), which is the solution to the wave equation (7.31), yields
three-dimensional standing waves in the cavity with nodal planes parallel to the
walls. The pressure varies sinusoidally between these nodal planes. In the same
manner that a standing wave on a string could be resolved into a pair of waves trav-
eling in opposite directions, we can separate the eigenfunctions in the rectangular
cavity into traveling plane waves. This is done by casting the solutions (7.34) into
complex exponential form and expanding it as a sum of products:

plmn = Almn

8

∑
eiωlmn t(±kx x±kx y±kz z) (7.37)

where the summation is taken over all permutations of plus and minus signs.
There are eight terms in all, each representing a plane wave traveling along the
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direction of its propagation vector k̂ which has projections ±kxl ′ ,±kym ′ ,±kzn′ on
the coordinate axes. The standing wave solution results from the superposition
of eight traveling waves (one into each quadrant) whose directions of travel are
constrained by the boundary conditions. The methodology involving separation of
variables can also be used to treat standing waves in other simple cavities, such
as cylindrical and spherical cavities, with the eigenfunctions entailing Bessel and
Legendre functions.

7.8 A Waveguide with Constant Cross Section

In Figure 7.3 a waveguide of rectangular cross section is assumed to have rigid
side walls and a source of acoustic energy located at its boundary z = 0. There
is no other boundary on the z-axis, which permits energy to propagate down the
waveguide. This results in a situation where the wave pattern consists of standing
waves in the transverse directions x and y and a traveling wave in the z-direction.
The mathematical solution which would contain applicable eigenfunctions
is

plmn = Almn cos kxl x cos kym yei(ωt−kz z) (7.38)

Upon substituting Equation (7.38) into the wave equation (7.31) we obtain the
following relationship:

ω2

c2
= k2 = k2

xl + k2
ym + k2

z (7.39)

Figure 7.3. A waveguide having a rectangular cross section. The travel is along the z-axis.
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with permitted values of kxl and kym , resulting from the boundary conditions of
rigidity, these being

kxl = lπ

Lx
, l = 0, 1, 2, . . .

kym = mπ

L y
, m = 0, 1, 2, . . . (7.40)

We rearrange Equation (7.39) to find kz

kz =
√
ω2

c2
− k2

xl − k2
ym (7.41)

Becauseωmay have any value, Equation (7.38) comprises a solution for all values
of ω, in contrast to the totally enclosed cavity which allows for only quantized
frequencies. Setting

klm =
√

k2
xl + k2

ym (7.42)

we can shorten Equation (7.41) to

kz =
√
ω2

c2
− k2

lm (7.43)

The value kz is real whenω/c > klm . We then obtain a propagating mode, as the
wave moves in the +z-direction. The cutoff frequency occurs when ω/c = klm , so
defining the limit for which kz remains real; is given by

ωlm = cklm (7.44)

for the (l,m) mode. A frequency below the threshold value of ωlm results in a
purely imaginary value of kz ,

kz ≡ ±i

√
k2

lm − ω2

c2
(7.45)

We need to include the negative sign in Equation (7.45) so that p → 0 as z → ∞
and the eigenfunctions assume the form

plm = Alm cos kxl x cos kym y e
−
(√

k2
lm− ω2

c2

)
z
eiωt (7.46)

Equation (7.46) represents a standing wave that decays exponentially with z. This
form of eigenfunction is termed an evanescent mode—i.e., no energy is propagated
along the waveguide. If the frequency exciting the waveguide is just below the
cutoff value of some particular mode, then this and higher modes are evanescent
and are of little consequence at appreciable distances from the source. The lower
modes may propagate energy and can be detected at large distances from the
source.

Only plane waves can propagate in a rigid-walled waveguide if the frequency
of the sound is sufficiently low. This frequency is less than c/(2L), where L is the
larger dimension of the rectangular cross section.
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From Equation (7.38), the phase speed for mode lm is not c but

cp = ω/kz = c√
1 −

(
klm

k

)2
= c√

1 −
(ωlm

ω

)2
(7.47)

A physically meaningful solution can be written in the complex exponential form

plm = 1

4
Alm

∑
±

ei(ωt±kxl x±kym y−kz z) (7.48)

The absence of the boundary at a location on the +z-axis necessitates only a
negative sign for kz , since there will be no reflected waves propagating in the −z-
direction. The propagation vector

˘

k for each of the four traveling waves forms an
angle θ with the z-axis, according to

cos θ = kz

k =
√

1 − (
ωlm
ω

)2
(7.49)

and the corresponding phase speed cp is

cp = c

cos θ
(7.50)

The surfaces of constant phase for two component waves representing the (0,1)
mode are shown in Figure 7.4 for a rigid waveguide. The waves cancel each
other precisely for y = 1/2L y , with the result there exists a nodal plane halfway

Figure 7.4. The surfaces of constant phase for two-component waves in the (0,1) mode.
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between the walls. The waves remain in phase at the upper and the lower walls,
so the pressure amplitude is maximized at these rigid boundaries. The apparent
wavelength λz in the z-direction is given by

λz = λ

cos θ
(7.51)

In the lowest mode (0,0), kz = k and the four component waves form a single
plane wave that travels down the axis of the waveguide with speed c. For all
the other modes, the propagation vectors of the component waves generally form
angles with the z-axis, with one aimed into each of the four forward quadrants.
According to Equation (7.47), at frequencies much greater than the cutoff of the
(l,m) mode, i.e.,ωωlm , the angle θ approaches zero and the waves are traveling
fairly straight down the waveguide. As the input frequency approaches the cutoff
value, θ increases with the result that the component waves move in increasingly
transverse directions. In fact, when the frequency reaches the stage that ω = ωlm ,
the component waves are traveling transversely to the axis of the waveguide.
Each component wave carries energy along the waveguide through the process of
continual reflection from the rigid walls (in the same manner a signal is transmitted
through a fiberoptic line, bouncing from one wall back to the opposite wall down
along the line). With the energy of the wave propagating at a speed c in the direction˘

k, the corresponding speed cp (the group speed) of the energy in the z-direction is
given by the component of the plane-wave velocity

˘

c along the waveguide axis:

cg = c cos θ = c

√
1 −

(ωlm

ω

)2
(7.52)

Given the driving frequencyω, each normal mode, in whichωlm < ω, possesses
its own set of values for cp and cg. Figure 7.5 illustrates the variation of the group
and phase speeds as functions of frequency for three modes in a rigid-walled
waveguide. The (0,0) mode is simply the plane-wave solution with its group and
plane speeds equal to c for all driving frequencies.

Figure 7.5. Group and phase speeds as functions of radial frequency for three modes in
a rigid-walled waveguide.
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7.9 Boundary Condition at the Driving End
of the Waveguide

An impedance match must be made at the waveguide entry z = 0 so that the
permissible mode solutions comply with the acoustic behavior of the active surface.
If we know the pressure or velocity distribution of the driving source, these can be
correlated with the behavior of p(x , y, 0, t) for the pressure or

˘

z · �u(x, y, 0, t) for
the velocity. If the pressure distribution of the source is given, then the boundary
condition becomes

p(x, y, z, t) = P(x, y)eiωt (7.53)

However, the left-hand side of Equation (7.53) can also be expressed as a super-
position of the normal modes of the waveguide, i.e.,

p(x, y, z, t) =
∑
l,m

Alm cos kxl x cos kym y ei(ωt−kz t) (7.54)

Setting z = 0, Equation (7.53) becomes

P(x, y) = eiωt
∑

Alm cos kxl x cos kym y (7.55)

With Equation (7.55) we can establish the values of Alm by applying Fourier’s
theorem, first for the x direction and then for the y direction.

7.10 Rigid-Walled Circular Waveguide

The treatment of the rigid-walled circular waveguide of radius r = a is fairly
straightforward, beginning with

Pml = Aml Jm(kmlr ) cos(mθ ) e(iωt−kz t)

where (r , θ , z) are the customary cylindrical coordinates, Jm is the mth-order
Bessel function, and

kz =
√
ω2

c2
− k2

lm

where kml is found from the boundary conditions. Because r · ∇ p = 0 at the wall
r = a,

kml = j ′
ml

a

where j ′
lm are the zeros of d Jm (z)

dz . When the values of kml are determined, the
applicable results developed for the rectangular waveguide may be applied by
substituting the values of kml for the circular waveguide. As with the rectangular
unit, the (0,0) mode of the circular waveguide is a plane wave that propagates with
phase velocity cp = c for all ω > 0. For frequencies below f1,1, only plane waves
can propagate in a rigid-walled circular waveguide.
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7.11 The Helmholtz Resonator

Many analyses of acoustic devices become simplified with the assumption that the
wavelength in the propagation fluid is much greater than the dimensions of the
devices. If the wavelength is indeed much larger in all dimensions, the acoustic
variable may be time varying, but it is virtually independent of the distance within
the confines of the device. In such a case, the device can be viewed as a harmonic
oscillator with one degree of freedom; and in the long-wavelength limit, such a
device can be considered a lumped acoustic element. An example of this type
of device is the Helmholtz resonator, illustrated in Figure 7.6 (three types are
shown). The resonator is a rigid-walled cavity of volume V , with a neck of area A
and length L .

According to theory, if λ  L , the fluid in the neck behaves somewhat as a
solid plug which vibrates back and forth. As the fluid (usually air) moves back and
forth, the acoustic energy converts to heat as a result of friction along the neck.
These losses can be increased by placing a light porous material across the neck
or by placing the material inside the volume. Maximum sound absorption occurs
at the resonant frequency of the mass of air in the neck with the “spring” supplied
by the air resistance inside the enclosed volume. Very little sound is absorbed at
other frequencies. However, for necks greater than 1 cm in diameter, the viscous
losses are considerably less than those associated with radiation. For the purpose
of this analysis we can ignore the effects of viscosity in analyzing the Helmholtz
resonator viewed as an analogous spring-mass system. The air in the neck has a
total effective mass

m = ρ0 AL ′ (7.56)

where the effective neck length L ′ is longer than the physical length L because
of its radiation mass loading. We have seen earlier in this chapter that at low
frequencies a circular opening of radius a is loaded with a radiation mass equal
to that of the fluid occupying area πa2; and effective length 8a/(3π ) = 0.85a if
terminated in a wide flange and 0.6a for an unflanged terminal. We assume the
mass loading at the inner end of the neck is equivalent to a flanged termination.

Figure 7.6. Three simple Helmholtz resonators.
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Then,

L ′ = L + 2(0.85a) = L + 1.7a (flanged out end)

L ′ = L + (0.85 + 0.6)a = L + 1.5a (unflanged outer end) (7.57)

Now consider the neck of the resonator to be fitted with an air-tight piston. When
the piston travels a distance δ, the volume of the cavity changes by V = −δA.
Then,

ρ

ρ
= −V

V
= Aδ

V

and from the thermodynamic relation

p = ρ0c2p

p

Combining the last two equations gives the following:

p = ρ0c2 Aδ

V
(7.58)

The force f = p A necessary to execute the displacement isρ0c2 A2

V δ. The effective
stiffness S (from the spring formula f = Sδ) is

S = ρ0c2 A2

V
(7.59)

The fluid moving in the neck radiates sound into the surrounding medium in the
same manner as an open-ended pipe. For wavelengths much larger than the radius
of the neck, the radiation resistance [cf. Equations (7.12) and (7.16)] is

Rr = ρ0c
k2 A2

2π
(flanged) (7.60a)

or

Rr = ρ0c
k2 A2

4π
(unflanged) (7.60b)

The sound wave impinging on the neck opening is represented as an instantaneous
driving force with a pressure amplitude P:

f = APeiωt (7.61)

We then can write the differential equation for the inward displacement δ of the
fluid “plug” in the neck as

m
d2δ

dt2
+ Rr

dδ

dr
+ Sδ = APeiωt (7.62)

This last equation is analogous to that of a sinusoidally driven oscillator which has
analogous solutions. Solution of Equation (7.62) gives a complex displacement δ.
The real part of the driving force represents the actual driving force AP cos ωt,
and the real part of the complex displacement represents the actual displacement.
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Because f is periodic with angular frequency ω, δ = Beiωt must be the solution
where B exists as a complex constant. Then inserting the solution into Equation
(7.62) results in

(−Bω2m + iBωRr + BS)eiωt = APeiωt

Solving for B provides the following complex displacement:

δ = APeiωt

iω

[
Rr + i

(
mω − S

ω

)] (7.63)

Differentiating Equation (7.63) yields the complex speed of the fluid in the res-
onator’s neck,

�u = APeiωt

Rr + i

(
mω − S

ω

) (7.64)

The impedance found from the relation Zm = f/�u, and making use of Equations
(7.61) and (7.64) yields

Zm = Rr + i

(
mω − S

ω

)
(7.65)

which means that the mechanical reactance is

Xm = mω − S

ω

Resonance occurs when the reactance becomes zero, i.e.,

ω0 =
√

S

m
=

√
ρ0c2 A2/V

ρ0L ′ A
= c

√
A

L ′V
(7.66)

We note that the resonance frequency depends on the volume of the cavity, not
on the shape. Experimentation with differently shaped resonators having the same
S/L ′V ratios indicate identical resonant frequencies. This holds true as long as
all dimensions of the cavity are appreciably less than a single wavelength and the
opening is quite small. There are additional frequencies in Helmholtz resonators
higher than that given by Equation (7.66), which arise from standing waves in the
cavity rather than from the oscillatory motion of the mass of air in the neck. These
overtone frequencies are not harmonics of the driving fundamental, and the first
overtone may be several times the frequency of the fundamental.

The sharpness (or narrowness of spread) of the resonance of a Helmholtz res-
onator is define by the quality factor Q,

Q = mω0

Rr
= 2π

√
V

(
L ′

A

)3

(7.67)

Assumptions have been made, there are no losses other than those arising from
acoustic radiation and the termination of the neck is flanged.
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In conducting his experiments of complex musical tones, Helmholtz used a
series of resonators of the type illustrated in Figure 7.6(c), with small nipples
opposite the necks of the resonators. He used a graduated series of resonators, with
differing volumes and neck sizes to achieve a wide range of resonant frequencies.
When an incident sound wave contains a frequency component that corresponds
to the resonant frequency of a Helmholtz device, a greatly amplified signal will
be generated within the cavity of the resonator, and it can be aurally detected by
connecting a short, flexible tube from the nipple to the ear. These phenomena
led to the definition of pressure amplification, which is the ratio of the acoustic
pressure amplitude Pc inside the cavity to the external driving pressure amplitude
P . Equation (7.58) provides the pressure amplitude Pc. At resonance

|δ| = P A

ω0 Rr

Then applying Equations (7.60 ) and (7.66), we find for the resonator with a flanged
neck that

Pc

P
= 2π

√
V

(
L ′

A

)3

= Q

The gain, therefore, is the same as the value of the quality factor defined in
Equation (7.67), and we see the Helmholtz resonator behaving as an amplifier
of gain Q at resonance, a fact which explains why a loudspeaker mounted in a
closed chamber can be regarded as a Helmholtz resonator in which the air’s reac-
tance and the speaker cone mass constitute the effective mass of the system. The air
resistance within the box and the cone’s stiffness combine to provide the effective
stiffness, while the effective resistance results from the sum of that attributable to
the radiation of acoustic energy and that arising from the mechanical resistance of
the speaker cone.

Example Problem 2
A Helmholtz resonator is a sphere of 8 cm internal diameter. If it is to resonate at
450 Hz in air, what is the hole diameter that should be drilled into the sphere?

Solution
Applying Equation (7.66) we have

ω0 = 450 × 2π rad s−1 = c

√
A

L ′V
= 341 m s−1 =

√
πa2

1.5a × 4
3π (0.04 m)3

which results in a = 0.00865 m = 0.865 cm, or 1.73 cm diameter. Here we as-
sumed an unflanged “pipe” with an effective value of L ′ = 1.5a.
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Problems for Chapter 7

1. Determine the minimum length of a pipe in which the input mechanical reac-
tance is equal to the input mechanical resistance for the frequency of 700 Hz.
Assume the loading impedance is four times the pipe’s characteristic mechan-
ical impedance ρ0cA.

2. A condenser microphone is constructed by stretching a diaphragm across one
end of a hollow cylinder with a diameter of 2 cm and length of 0.75 cm. The
other end of the cylinder is open. Determine the ratio of the pressure at the
diaphragm (considered to be a rigid plane) to the pressure at the open end as
a function of frequency from 64 Hz to 2 kHz.

3. A pipe is 1.2 m long and has a radius of 6 cm. It is being driven at one end
by a piston (negligible mass). The other open end of the pipe terminates in a
flange.
(a) Find the fundamental resonance of the system.
(b) If the piston has a displacement of 1 cm when being driven at 500 Hz,

what is the amount of acoustic power being transmitted by plane waves
traveling to the open end of the pipe?

(c) What is the acoustic power (in watts) being radiated out at the open end
of the pipe?

4. Consider a pipe that is 1.2 m long with a radius of 6 cm. It is being driven at
one end by a piston of 0.02 kg mass and the same radius as the pipe. The other
end of the pipe terminates in an infinite baffle.
(a) For 200 Hz frequency, find the mechanical impedance of the piston of the

pipe, inclusive of the loading effect of the air inside the pipe.
(b) For the above frequency, determine the amplitude of the force necessary

to drive the piston with a displacement amplitude of 0.50 cm.
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(c) What will be the amount of acoustic wattage that emanates out through
the open end of the pipe?

5. A 70 dB (re 20 μPa) 1 kHz signal is incident normally to a boundary between
the air and another medium having a characteristic impedance of 780 Pa s/m.
(a) Determine the effective root-mean-square pressure amplitude of the re-

flected waves.
(b) Determine the effective root-mean-square pressure of the transmitted

waves.
(c) How far from the boundary is the location where pressure amplitude in the

pattern of standing waves equals the pressure amplitude of the incident
wave?

6. The speed of sound in water is 1480 m/s. Consider a series of 2960-Hz plane
waves in water normally incident to a concrete wall. It can be assumed that
all of the sound energy is completely absorbed by the wall. The pattern of
standing waves results in a peak pressure amplitude of 30 Pa at the wall and a
pressure amplitude of 10 Pa at the nearest pressure node at a distance of 50 cm
from the wall.
(a) What is the ratio of the intensity of the reflected wave to that of the incident

wave?
(b) Find the specific acoustic impedance of the wall.

7. An acoustic signal consisting of 400-Hz plane wave is normally incident to an
acoustical tile surface having a complex impedance of 1500 – i3000.
(a) Find the standing wave ratio in the resultant pattern of standing waves.
(b) Determine the locations of the first four nodes.

8. A loudspeaker is fitted to one end of an air-filled pipe of 12 cm radius to
generate plane waves inside the pipe. The far end of the pipe is closed off by a
rigid cap. A 5-kHz signal is fed into the loudspeaker. The measured standing
wave ratio of pressure at one location in the pipe is 7. At another location inside
the pipe 50 cm downstream of the pipe, the measured standing wave ratio is
9. Derive an equation that includes these ratios and the distance between
them which can be used to establish the absorption constant for the signal
being propagated inside the pipe. To simplify matters, assume that absorption
coefficient α 	 1.

9. Prove analytically (assuming ka 	 1) that the frequencies of the resonance and
those near antiresonance of the forced-open tube with damping correspond to
the frequencies of maximum and minimum power dissipation, respectively.

10. Determine the lowest normal mode frequency of a fluid-filled cubic cavity (of
length L to a side) that consists of five rigid walls and one pressure release
side. Plot the pressure distribution associated with that node.

11. Given a rigid-walled rectangular room with dimensions 6.50 m × 5.65 m ×
3 m, calculate the first 10 eigenfunctions. Assume the sound propagation speed
c = 344 m/s.

12. A concrete water sluice measures measure 25 m wide and 8 m deep. It is
completely filled with water. Find the cutoff frequency of the lower mode of
propagation, assuming the concrete to be totally rigid.



8
Acoustic Analogs, Ducts, and Filters

8.1 Introduction

In this chapter we deal with lumped and distributed acoustic elements, applying
electrical and mechanical analogs to acoustic behavior in order to treat different
duct geometries, acoustic filters, and networks. The reflection and transmission
of sound waves at piping interfaces, where the acoustic impedance changes, are
analogous to the behavior of current waves in a transmission line at locations where
the electrical impedance undergoes a change.

A simple mechanical system can often be converted into analogous electrical
systems and solved in analogous terms. The motion of a fluid is compared to the
behavior of current in an electrical circuit, with a pressure gradient between two
points playing the role of voltage across the corresponding parts of the circuit.
In terms of electricity the impedance is voltage divided by the current, which
corresponds to the effect of lumped elements of inductance, capacitance, and
resistance. In acoustics the acoustic impedance Z of a fluid acting with acoustic
pressure p on a surface of area A is given by

Z = p
U

(8.1)

where U represents the volume velocity of the fluid in the acoustic element of
interest. U is not really a vector; it is a speed representative of a scalar quantity,
unlike velocity which is a magnitude with an indicated direction. The acoustic
impedance Z defined by Equation (8.1) is a complex quantity.

The specific acoustic impedance z is given by

z = p
u

(8.2)

where u is the particle velocity, not the volume velocity. The specific acoustic
impedance, which is useful for treating the transmission of acoustic waves from
one medium to another, is a characteristic of the propagation medium and the type
of propagating wave. The acoustic impedance, defined by Equation (8.1) as the
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ratio of pressure to volume velocity, is applied to treat acoustic radiation from
vibrating surfaces and the transmission of this radiation across lumped acoustic
elements and through ducts and horns. These two impedances are related to each
other by

Z = z
A

(8.3)

A is the area of a vibrating surface. If the vibrating surface is driven with a velocity
u, with a force f acting on the fluid, the radiation impedance Zr is given by the
ratio of the force to the speed:

Zr = f
u

(8.4)

This type of impedance constitutes a part of the mechanical impedance Zm of the
vibrating system. Radiation impedance relates to specific impedance at a surface
as follows:

Zr = zr

A
(8.5)

It is useful for dealing with coupling between acoustic waves and a driving surface
or a driven load.

8.2 Lumped Acoustic Impedance

In the use of lumped parameters, the advantage is taken of the assumption that
the signal wavelength is larger than all principle dimensions, which allows for
further simplification. Each acoustic parameter may be time varying, but it becomes
virtually independent of distance over the spatial extent of the device. When we
consider lumped or concentrated impedances rather than distributed impedances,
we define that impedance in a segment of the acoustic system as the (complex) ratio
of the pressure difference p (which propels that segment) to the resultant volume
velocity U. The unit of acoustic impedance is Pa s/m3, and it is often referred to
as an acoustic ohm.

Example Problem 1
Consider a Helmholtz resonator described by differential Equation (7.62) which
is repeated below:

m
d2δ

dt2
+ Rr

dδ

dr
+ Sδ = APeiωt (8.6)

and recast the system as a lumped acoustic impedance with an electric analog.
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Solution

Divide Equation (8.6) by surface area A and utilize the fact that U = dδ

dt
A, which

will result in

Z = p
U

= R + i

(
Mω − 1

ωC

)
(8.7)

where

R = Rr

A2
= ρ0ck2

2π
, M ≡ m

A2
= ρ0L ′

A
, C ≡ A2

S
= V

ρ0c2

and the stiffness is given by

S = ρ0c2 A2

V

according to Equation (7.59). We also assume here a flanged resonator. In electrical
terms this constitutes a RLC series circuitry, where the inductance L is the electrical
analog to M . This electrical analog to the Helmholtz resonator is illustrated in
Figure 8.1. As a further aid to analytical treatment of lumped parameters, Figure 8.2
summarizes the fundamental analogous elements of acoustic, mechanical, and
electrical systems. The inertance M in the acoustic system is represented by a
“plug” of fluid that is sufficiently short so that all particles in the fluid can be
depicted as moving in phase under the impetus of sound pressure. The compliance
C of the acoustic system is represented by an enclosed volume incorporating a

Figure 8.1. The electrical analog to the Helmholtz resonator.
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Figure 8.2. Fundamental mechanical, acoustical, and electrical analogs.

stiffness. A number of difference situations can contribute to resistance; we can
represent acoustical resistance in the conventional manner by a narrow slit inside
a pipe segment.

8.3 Distributed Acoustic Impedance

What if one or more of the principal dimensions of an acoustic system is of the
same order of magnitude as a wavelength? In this case it may not be possible to
treat the system as one possessing lumped parameters. The alternative is to analyze
it as having distributed physical constants. Consider a very simple case of plane
waves propagating through a pipe in the positive x-direction. The characteristic
impedance of the pipe is given by the ratio of acoustic pressure to particle speed;
and the acoustic impedance at any cross section A of the pipe is

Z = p
U

= 1 p
A u

= ρ0c

A
(8.8)

The case of such propagation in a pipe is electrically equivalent to high-frequency
currents traveling along a transmission line that has an inductance per unit length Ls

and a capacitance per unit length Cs . The corresponding input electrical impedance
is

√
Ls/Cs . In compliance with the electrical analogy, we may consider the fluid

in the pipe to have a distributed inertance Ms per unit length and a distributed
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compliance Cs per unit length. It also follows that the distribution of mass per unit
length of the pipe can be represented by ms = ρ0 A. The acoustic inductance per
unit length becomes Ms = ms/A2 = ρ0/A.

We shall now find the mechanical stiffness per unit length. When the fluid is com-
pressed adiabatically by a small linear displacement δ , then p = ρ0c2(δ / ), and
the force providing this impetus is pA. Hence the stiffness becomes S = p A/δ ;
and the stiffness per unit length is Ss = ρ0c2 A. The mechanical compliance Cm

relates to acoustic compliance C by C = A2Cm , and on a per unit length basis, it fol-
lows that Cs = A/(ρ0c2). By analogy the acoustic impedance of the pipe is given by

Z =
√

Ms

Cs
= ρ0c

A

which corresponds to Equation (8.8).

8.4 Waves in Pipes: Junctions and Branches

Consider a sound wave traveling in the positive x-direction, represented by

pi = ae i(ωt−kx), (8.9)

is incident upon a point x = 0, where the acoustic impedance changes from ρ0c/A
to some complex value Z0. At this point a reflected wave

pr = bei(ωt+kx) (8.10)

will be produced and travel in the negative x-direction. It is our task to find
the power reflection and transmission coefficients for this point. The acoustic
impedance at any point in the pipe is given by

Z = pi + pr

Ui + Ur
= ρ0c

A

ae−ikx + be+ikx

ae−ikx − be+ikx
(8.11)

which, at x = 0, reduces to

Z0 = ρ0c

A

a + b
a − b

(8.12)

Equation (8.12) can be rearranged to

b
a

=
Z0 − ρ0c

A

Z0 + ρ0c

A

(8.13)

The sound power reflection coefficient Rp, which yields the fraction of the incident
power that is reflected, is given by

Rp =
∣∣∣∣b
a

∣∣∣∣
2

=

(
R0 − ρ0c

A

)2
+ X2

0(
R0 + ρ0c

A

)2
+ X2

0

(8.14)
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Figure 8.3. Transmission and reflection of a plane wave at the junction x = 0 between
two pipes of different cross sections.

In Equation (8.14) we have set Z0 = R0 + i X0. The sound power transmission
Tp = 1 − Rp represents the portion of the incident sound power that travels past
x = 0. We obtain

Tp = 4R0ρ0c/A(
R0 + ρ0c

A

)2
+ X2

0

(8.15)

Example Problem 2
Apply the above equations to plane waves in a pipe of cross-section area A1 that
is mated to a pipe of cross-section area A2, as shown in Figure 8.3. The second
pipe is of infinite extent or the proper length so that no reflected wave is returned
from its far terminus. Assume that the wavelength is considerably larger than the
diameter of either pipe so that the region of complicated flow at the junction, where
the wave adjusts from cross-sectional area to another, is considerably smaller than
the wavelength itself.

Solution
Under the conditions stipulated above, the acoustic impedance seen by the incident
wave at the junction is Z0 = ρ0c/A2. Inserting this value of Z0 into Equations (8.14)
and (8.15), we have

Rp =
(

A1 − A2

A1 + A2

)2

and Tp = 4A1 A2

(A1 + A2)2 (8.16)

Note that if the above pipe is closed at x = 0, A2 = 0, then Z0 becomes infinity,
which results in a reflection coefficient of unity. On the other hand, if the pipe is
open at x = 0, the impedance at the junction is not zero but corresponds to the
impedance given by Equation (7.12) for an unflanged pipe.
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Figure 8.4. A three-way junction.

In Figure 8.4 we have the more complex case of a pipe that branches into two
pipes, each with its own input impedance. Let the junction be located at the origin.
The pressures produced by the waves in the three pipes at x = 0 are represented
by

pi = aeiωt , pr = beiωt

p1 = Z1U1eiωt , p2 = Z2U2eiωt (8.17)

Here a and b denote the amplitudes of the incident and reflected waves, respec-
tively; and Z1, Z2 and U1, U2 the input impedances and volume velocity complex
amplitudes in branches 1 and 2. Again, under the assumption of a large wavelength
so that the impact of branching remains confined to a small region at the juncture,
we apply the condition of continuity of pressure so that

pi + pr = p1 = p2 (8.18)

Likewise, the continuity of the volume velocity demands that

Ui + Ur = U1 + U2 (8.19)

which is analogous to Kirchhoff’s law of electric currents. Dividing Equation
(8.19) by Equation (8.18) yields the impedance relationship

1

Z0
= 1

Z1
+ 1

Z2
(8.20)

The reciprocal of an impedance, Z–1, is called the admittance. Equation (8.20)
indicates that the combined admittance 1/Z0 equals the sum of the admittances of
the two branches 1 and 2.

Example Problem 3
An infinitely long pipe of cross-sectional area A has a branch at x = 0 that presents
a given impedance of Zg . Find the appropriate power reflection and transmission
coefficients.
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Solution
In this case we consider this pipe to have two branches, one corresponding to
the given impedance and the other to an infinite pipe which does not provide any
reflections but does present an impedance of ρ0c/A. Applying Equation (8.20) we
obtain

b
a

=
ρ0c

2A
ρ0c

2A
+ Zg

(8.21)

The ratio of pressure amplitude at of the wave transmitted beyond x = 0 along the
infinite pipe to the pressure amplitude of the incident wave is found by inserting
Equation (8.21) into Equation (8.18), yielding

at

a
= Zg

Zg + ρ0c

2A

(8.22)

We resolve the acoustic impedance Zgof the branch into real and imaginary com-
ponents, i.e., Zg = Rg + i Xg . The reflection and transmission coefficients become

Rp =
∣∣∣∣b
a

∣∣∣∣
2

(ρ0c

2A

)2

(ρ0c

2A
+ Rg

)2
+ X2

g

(8.23)

Tp =
∣∣∣at

a

∣∣∣2 = R2
g + X2

g(ρ0c

2A
+ Rg

)2
+ X2

g

(8.24)

The portion Tpg of the power that is transmitted into the branch is Tpg = 1 − Rp −
Tp, or

Tpg = Rgρ0c/A(ρ0c

2A
+ Rg

)2
+ X2

g

(8.25)

If Rg has a positive finite value, some acoustic energy is dissipated at the branch
and some is transmitted beyond the junction, no matter what the value of Xg is.
When either Rg or Xg greatly exceeds ρ0c/A, all of the incident power is transmit-
ted past the branch. At the other extreme, when Rg Xg = ∞, which corresponds
to no branch, the power transmission is unity.

8.5 Acoustic Filters

Advantage can be taken of the fact that a side branch can attenuate sound energy
transmitted in a pipe. The input impedance of the side branch determines whether
the system can behave as a low-pass, high-pass, or band-pass filter. We shall now
consider each of these filters.
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Figure 8.5. (a) A simple low-pass acoustic filter, (b) its analogous electrical filter, and (c)
the corresponding power–transmission curves for the acoustic filter of (a).

1. Low-Pass Filters. Figure 8.5 illustrates the construction of a simple low-pass
filter, essentially consisting of an enlarged segment of a pipe of cross-sectional
area A1 and length L in a pipe of cross section A. At sufficiently low frequencies
(kL 	 1), this filter may be viewed as a side branch with acoustic compliance
C = V/(ρ0c2), where V = A1L represents the volume of the expansion chamber.
The acoustic impedance of this type of branch is pure reactance, hence

Rg = 0, Xg = − 1

Cω
= ρ0c2

A1Lω

Inserting the above into the expression for the transmission coefficient, Equation
(8.23) yields

Tp = 1(
A1

2A
kL

)2

+ 1

(8.26)

Equation (8.26), plotted in Figure 8.5, indicates that as the frequency approaches
zero, the transmission coefficient approaches unity (100% transmission), but as
the frequency becomes higher, this coefficient tends toward zero. Curve 1 is for
an expansion chamber 5 cm in length and a cross-sectional ratio of A1/A = 4.
However, Equation (8.26) does not apply to kL > 1.

In order to treat the case of the above-mentioned acoustic filter for kL > 1, the
incident, reflected and transmitted waves in the three regions of the pipe must be
related to one another by the fact that the continuity of pressure and volume velocity
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must occur at the two junctions of the pipe. This results in a power-transmission
coefficient expressed as follows:

Tp = 4

4 cos2 kL +
(

A1

A
+ A

A1

)2

sin2 kL

(8.27)

In Figure 8.5, Curve 2 constitutes the plot of Equation (8.27) for the same filter
system used to obtain Curve 1. At low values of frequencies, i.e., kL 	 1, the
two curves basically coincide. Equation (8.27), which is physically more valid,
exhibits a minimum transmission coefficient of

Tp(minimum) =
(

2A1 A

S2
1 + S2

)2

(kL = π/2) (8.28)

for the case where the length of the filter segment equals a quarter wavelength.
Beyond this saddle point, Tp gradually rises with increasing frequency until it
reaches 1.0 (100%) at kL = π . At even higher frequencies the transmission coef-
ficient vacillates through a series of maxima and minima until ka (a is the radius
of the through pipe) becomes somewhat larger than unity. From this point on,
the transmission coefficient remains at unity. This trait of the transmission co-
efficient reaching a plateau of unity is also shared by high-pass and band-pass
filters.

Equation (8.28) may also be used to treat the constriction-type low-pass filter
illustrated in Figure 8.6, since it does not matter if A1 is larger or smaller than
A. The decrease in the area can be viewed as introducing an inertance in series
with the pipe, but the validity of this analog also extends over a limited range of
frequencies, as with the case of the expanded-area low-pass filter of Figure 8.5.

In the real world of filter design (of mufflers, sound-absorption plenum chambers
for ventilating systems, etc.) the filter cross section cannot be radically different
in value from the cross-section area of the pipe. As is demonstrated in the curves
of Figure 8.5, a limited range of frequencies exists for the practical operation of
the filters.

Figure 8.6. A pipe with a constriction and its electrical analog.
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2. High-Pass Filters. A high-pass filter can be constructed by attaching a short
length of pipe as a branch to a main pipe, in effect creating an orificed Helmholtz
resonator. Both the radius a and length L of this appendage are small compared
to a wavelength. Equations (7.60b) and (7.57) for the unflanged resonator apply
to the branch impedance of this orifice given by

Zg = kρ0c2

4π
+ i

ρ0ωL ′

πa2
(8.29)

where L ′ = L + 1.5a. The first term in the right-hand side of Equation (8.29)
stems from the radiation of sound through the orifice into the external medium,
and the second is attributable to the inertance of the gas in the orifice. The ratio
of the branch acoustic resistance to its acoustic reactance is Rg/Xg = 1/4ka2/L

′
.

Because it has been assumed that ka 	 1, we can neglect the acoustic resistance
in comparison with the acoustic reactance in the use of Equation (8.24) to find the
power-transmission coefficient Tp, with the result:

Tp = 1(
πa2

2AkL ′

)2

+ 1

(8.30)

We observe that this transmission coefficient is virtually zero for low frequencies
and it rises to nearly unity at higher frequencies, as shown in Figure 8.7. The
halfway point at which the transmission coefficient is 50% is reached when

k = πa2

2AL ′

Figure 8.7. Attenuation produced by an orifice-type branch, resulting in high-pass trans-
mission.
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The presence of one orifice turns a pipe into a high-pass filter. If the radius
of the orifice is increased, the attenuation of the low-frequency components also
increases. If a pipe contains several orifices separated by only a fraction of a wave-
length, these orifices can be treated as a group acting with their equivalent parallel
impedance. But if the distances between the orifices constitute an appreciable por-
tion of the wavelength, the system becomes analogous to an electrical network of
filters or to a transmission line which has a number of impedances shunted across
it, spaced apart at wide intervals. Waves reflected from these different orifices
are then out of phase with respect to each other, and Equation (8.30) no longer
remains valid. Electrical filter theory must then be utilized to compute the trans-
mission coefficient. As a rule, a number of orifices strategically placed apart can
attenuate at low frequencies more effectively than a single orifice of equal total
area.

The sound power transmission coefficient Tpg into a single orifice is approxi-
mated by

Tpg=
2k2 A

π

[(
2AkL ′

πa2

)2

+ 1

] (8.31)

The filtering action of an orifice is principally that of the reflection of energy back
toward the source, not so much the loss of acoustic energy out of the pipe through
the orifice into the ambient medium.

A common example of the application of orifices is the control of the behavior
of a wind instrument such as a flute or a saxophone. When such an instrument is
played in its fundamental register, all or nearly all of the orifices some distance
beyond the mouthpiece are kept open by the player. The diameters of these orifices
nearly equal the bore of the tube, essentially shortening the effective length of the
instrument. The acoustic energy reflected from the first open orifice generates a
pattern of standing waves between the first open orifice and the mouthpiece. The
flute behaves like an open pipe, with the wavelength approximately equal to twice
the distance between the first orifice and the opening of the mouthpiece. A clarinet
or a saxophone contains a vibrating reed at the mouthpiece, which approximates
the conditions of the closed end of a tube. In this case the wavelength will equal
nearly four times the distance from the reed to the first open orifice.

Both the reed-type (clarinet, saxophone, coronet, etc.) and tubular instruments
(flute, recorder, piccolo, etc.) contain a number of harmonics, those of the reed
instruments being primarily odd harmonics (characteristic of closed pipes). When
higher notes are played on either type of instruments, the fingering of these holes
become more complicated, with some orifices beyond the first orifice closed and
some others opened. The fingering of these orifices control the standing waves
patterns which correspond to specific notes.

3. Band-Pass Filters. A side branch in the form of a long pipe rigidly capped at
its far end or a fully enclosed Helmholtz resonator (shown in Figure 8.8) contains
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Figure 8.8. The effect of a Helmholtz resonator branch, resulting in band-pass transmis-
sion.

both inertance and compliance, so it will behave as a band-pass filter. Apart from
almost negligible viscosity losses, no net dissipation of acoustic energy occurs
from the pipe into the resonator. All energy absorbed by the resonator during some
phase of the acoustic cycle is returned to pipe during other phases of the cycle so
Rg = 0. Denoting the opening area by Ag = πa2, the neck length by L and the
volume of the resonator by V , the branch reactance Xg is expressed as

Xg = ρ0

(
ωL ′

Ag
− c2

ωV

)

which is then inserted into Equation (8.24) to yield the following transmission
coefficient:

Tp =

⎡
⎢⎢⎢⎣1 + c2

4A2

(
ωL ′

Ag
− c2

ωV

)
⎤
⎥⎥⎥⎦

−1

(8.32)

The resonant frequency occurs when the transmission coefficient becomes zero,
i.e.,

ω0 = c

√
Ag

L ′V
which corresponds to the resonant frequency of a Helmholtz resonator. When this
frequency occurs, large volume velocities prevail in the neck of the resonator, and
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Figure 8.9. A ladder-type network used as a filter.

all acoustic energy that transmits into the resonator returns to the main pipe in such a
manner as to be reflected back from the source. The plot of the power-transmission
coefficient in Figure 8.8 is fairly typical for a bandpass resonator.

Equation (8.32) serves well for a resonator that has a relatively large neck radius.
Narrower and longer constrictions will cause the transmission coefficient to deviate
from the prediction of Equation (8.32), unless consideration is taken of the viscous
dissipation that manifest itself more with such geometries.

4. Filter Networks. The design procedure for acoustic networks, which incorpo-
rates resonators, orifices, and divergence and convergence of pipe areas, is rendered
easier by analogy with the deployment of electronic filters. The sharpness of cutoff
of an electrical filter system, for example, can be enhanced by using the ladder-
type network of Figure 8.9. This network is constructed by using the reactances
of one type of impedance Z1 in series with the line and the reactance of another
type of impedance Z2 shunted across the line. The standard theory of wave filters
states that a nondissipative repeating structure such as that illustrated in Figure 8.9
causes a marked attenuation of all frequencies except those for which the ratio
Z1/Z2 meets the condition

0 > Z1/Z2 > −4 (8.33)

Several examples of acoustic ladder-type filters are displayed with the electrical
analogs in Figure 8.10. The condition of Equation (8.33) provides the following
cutoff frequencies:

f = 1

4π
√

MC

for the high-pass filter as shown in Figure 8.10(a), and

f = 1

π
√

MC

for the low-pass filter as shown in Figure 8.10(b). The behavior projected by the
filters as shown in Figure 8.10 applies only to wavelengths that are large compared
to the dimensions of the filter. At higher frequencies, deviation of the behavior
predicted by electrical analogs becomes more prominent, because the filter begins
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Figure 8.10. Examples of ladder-type acoustic filters.

to manifest the properties of distributed parameters rather than those of lumped
parameters.

8.6 Ducted Source Systems—Acoustic Modeling

A ducted source system is one in which the source is the active component and
the load is the path, consisting of elements such as mufflers, ducts, and end ter-
minators. Many mechanical systems such as engines and mufflers and air-moving
devices (flow ducts, fluid pumping) are very common examples of ducted sources.
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SOURCE LOAD

PS

ZS

VS ZS

(a) (b)

PL -ZL PL -ZL

Figure 8.11. Electrical analog of a ducted-source-load system: (a) pressure source; and
(b) volume velocity source.

The source-load interactions generally determine the acoustic performance of the
system. This section provides a brief overview of characterization of acoustic
performance of ducted sources. Acoustic performance of a system incorporating
a muffler as a path element is usually described in terms of insertion loss and
radiated sound pressure.

Figure 8.11 illustrates a basic duct system. Let PS and VS denote the source
pressure and volume velocity, respectively. PL and VL represent the pressure-
and volume-velocity response of the source-load system, respectively. ZS and ZL

are the complex source and load impedances, respectively. The equations for the
course-load system in terms of pressure and velocity complex source representa-
tions are given by

PL = PSZL

ZS + ZL

and

VL = VSZS

ZS + ZL

The source at one end of a duct system constitutes a boundary condition. The
source is generally more difficult to characterize than the termination because of
the dynamic nature of the source (Prasad, 1991).

Prior to the development of direct and indirect methods for measuring source
impedance, characteristic or infinite impedances were assumed for the source,
but these assumptions do not normally yield valid values of impedances. Both
direct and indirect methods for the measurement of source impedance are based
on frequency-domain analysis. Analytical modeling efforts have been carried our
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A

C D

Zs

Zr

(a)

ZL
Zs

prVr

(b)

B

Figure 8.12. Duct system models: (a) source-path-termination model and (b) source-load
model.

principally in the time domain based on the method of characteristics. A number of
studies have been conducted on the basis of modeling of the geometry of sources
(Prasad, 1991).

A duct system can be modeled as a source-path-termination model with a
source load, as shown in Figure 8.12. These models are interrelated when the
path-termination is treated as a load. This type of model is commonly used, say,
for engine-exhaust-pipe-tailpipe-radiation system. Referring to Figure 8.13, the
three most commonly used descriptors, namely, insertion loss (IL), transmission
loss (TL), and noise reduction (NR), are given by the following three equations:

IL = 20 log10

∣∣∣∣ AZr + B + CZSZr + DZs

A′Zr + B′ + C′ZSZr + D′ZS

∣∣∣∣ dB (8.34)

TL = 20 log10

∣∣∣∣1

2

(
A + BS

ρc
+ Cρc

S
+ D

)∣∣∣∣ dB (8.35)

NR = 20 log10

∣∣∣∣
(

A + B
Zr

)∣∣∣∣ dB (8.36)

Here ZS and Zr are the source and radiation impedances, respectively, and A, B,
C, and D are the four-pole parameters of the muffler including its upstream and
downstream ducts. The insertion loss IL is the most useful of the three descriptors
given in Equations (8.34)–(8.36). As the terminology implies, IL describes the
reduction in the acoustic output when a muffler is inserted into an otherwise unat-
tenuated system. Radiated sound pressure level L p is also quite useful as it gives
the system output which can be used to determine IL. The other two descriptors,
namely, TL and NR, do not require knowledge of the acoustic characteristics of
the source. By their very definition in Equations (8.35) and (8.36), respectively,
both TL and NR are independent of the influence of the source-load interaction.
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Figure 8.13. Muffler system performance descriptors.

While IL is fairly easy to measure, it is extremely difficult to predict because of
its dependence on the source impedance ZS (Davis, 1957; Munjai, 1987; Prasad
and Crocker, 1998).
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Problems for Chapter 8

In the following problems, consider the fluid medium to be air at the standard
conditions of 1 atmosphere and 20◦C, unless otherwise stated.

1. It is desired to make a Helmholtz resonator out of a sphere with a diameter 12
cm for 350 Hz.
(a) What should be the diameter of the hole in the sphere?
(b) What should be the pressure amplitude of the incident acoustic plane wave

at 350 Hz if it is to produce an excess internal pressure of 25 μbar?
(c) If the hole is doubled in area, what will be the resonant frequency?
(d) What will be the resonance frequency if two independent separate holes,

each of the diameter found in part (a) are drilled in the sphere?
2. Consider a loudspeaker system that is rigid-walled and back enclosed. Its

inside dimensions are 40 cm × 55 cm × 44 cm. The front panel of cabinet
is 4 cm thick and it has a 22-cm diameter hole cut out to accommodate a
loudspeaker.
(a) What is the fundamental frequency of this cabinet considered as a

Helmholtz resonator?
(b) A direct-radiating loudspeaker having a cone of 22 cm diameter and 0.008

kg mass and a suspension system of 1100 N/m stiffness is mounted in
the cabinet. Find the resonance frequency of the cone. It may be assumed
that the effective mass of the system is that of the cone and that of the air
moving in the opening of the cabinet. The effective stiffness is the sum of
the stiffness of the cone and that of the cabinet.

(c) What would be the resonant frequency of the loudspeaker if it were not
mounted in the cabinet and it has no air loading?

(d) Find the acoustic power emitted if the cone is driven with an amplitude of
2.5 mm at the frequency established in part (b).

(e) Under the conditions same as that of (d) what is the amplitude of the force
acting on one of the 55 cm × 44 cm panels?

3. A rectangular room has internal dimensions of 3.0 m × 5.0 m × 2.6 m and
walls of 12 cm thickness. A door that opens into the room has dimensions of
2.2 m × 0.8 m. Assume that the inertance of the door opening is equivalent of
a circular opening of equal area.
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(a) Find the resonance frequency of the room considered as a Helmholtz
resonator.

(b) Find the acoustic compliance of the room.
(c) Find the inertance of the door opening.
(d) What is the acoustic impedance presented to the sound source at 30 Hz in-

side the room? Consider only the compliance of the room and the inertance
of the door opening.

4. Pipe 1 having cross-section A1 connects to pipe 2 with cross section A2.
(a) Obtain an expression for the ratio of intensity of the waves transmitted into

the second pipe to that of the incident waves.
(b) Under what conditions will the transmitted energy exceed the incident

energy?
(c) Develop a general expression for the standing wave ratio (SWR) produced

in pipe 1 in terms of relative areas A1 and A2.
5. Consider two pipes that are connected to each other but separated by a thin

rubber diaphragm. Pipe 1 is filled with a fluid with characteristic impedance
ρ1c1 and pipe 2 contains a fluid with characteristic impedance ρ2c2. A plane
wave travels in pipe 1 in the positive x direction toward pipe 2.
(a) Obtain an expression for the power-transmission ratio from pipe 1 into

pipe 2.
(b) Under what conditions does 100% power transmission occur?

6. An infinitely long pipe of cross-sectional area A has a side branch, also in-
finitely long, of cross-sectional area Ab. The main pipe is transmitting plane
waves with frequencies such that their wavelengths are much larger than the
diameter of either pipe.
(a) Develop an equation for the transmission coefficient in the main pipe.
(b) Do the same thing for the branch pipe.
(c) Let the area of the main pipe be twice as much as that of the branch pipe.

Obtain numerical values for the transmission coefficient into each pipe. Do
the sum of the two coefficients equal unity? If not, where did the remaining
power go?

7. A ventilating duct in a basement has a square cross-sectional area, 35 cm to
the side. In order to quiet the duct in part, a Helmholtz resonator-type filter is
constructed about the duct by drilling a hole of 9 cm radius in one wall of the
duct, leading into a surrounding closed chamber of volume V .
(a) What is the volume V necessary to most effectively filter sounds at a

frequency of 30 Hz?
(b) What will be the sound power transmission coefficient of the filter at 45

Hz and 60 Hz?
8. Demonstrate that the radius r of the hole drilled into a pipe of radius r0 as to

result in a 50% sound power transmission coefficient at a frequency f is given
by

r = 64

3

r2
0 f

c
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9. A 400-Hz plane wave of 0.2 W power propagates down an infinitely long
pipe of 5 cm diameter. Find the power reflected, the power transmitted along
the pipe, and the power transmitted out through a simple orifice of 1.2 cm
diameter.

10. A 5-cm pipe carries water. It is planned to filter out plane waves traveling in
the water by using sections of pipes 10 cm in diameter to serve as expansion-
chamber type of filters.
(a) Find the minimum length of the filter section that will most effectively

filter out a sound of 1 kHz.
(b) If it is desired to have a filtering action lessen the level of intensity by

35 dB, how many sections must be used? Disregard the effects of any
interaction between the individual filter sections.

11. Find the transmission coefficient of a low-pass filter that consists of a circular
pipe of 3.0 cm radius mated with a circular expansion chamber that is 12.0 cm
long. Assume that wavelength λ is 30 cm (recall that k = 2π/λ).



9
Sound-Measuring Instrumentation

9.1 Introduction

Acoustic measurements constitute an essential step in order to establish the status of
an acoustic environment and to develop a systematic approach toward modifying
the environment and to set up criteria for improvements. Other more recently
developed methodologies of acoustical measurements entail the studies of material
properties and medical diagnoses. A wide variety of instrumentation exists, ranging
from a simple sound pressure level (SPL) meter to real-time spectral analyzers
interfaced with sophisticated computer systems. Instruments may be portable for
field use; and recorded field data can be later evaluated in more elaborate systems.
New instruments are continually being developed, and with new advances in digital
technology arriving on the scene on a daily basis, it is not inconceivable that
more versatile and “user-friendly” devices will become available at even lower
prices.

This chapter deals principally with instruments intended for the audio range
of frequencies. Much of the salient aspects of instrumentation in this chapter,
such as the principal performance requirements and methodologies for evaluating
data, also apply to the specialized underwater instruments and ultrasonic sensing
instruments which are described in Chapters 15 and 16, respectively.

9.2 Principal Characteristics of Acoustical Instruments

The most important performance characteristics of acoustical instruments are the
frequency response, dynamic range, crest factor capability, and response time. It
is also desirable that a measuring device or system has a negligible (or at least
predictable) effect or influence on the variable being measured.

Frequency response refers to the range of frequencies that an instrument is ca-
pable of correctly measuring the relative amplitudes of the subject variable within
acceptable limits of accuracy. Measurement accuracy depends on the instrumenta-
tion type, the quality of design and manufacture, and calibration. A typical limit for
the flatness of the response for microphones may be ±2 dB or better; in contrast,

173
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the response curve of a high-quality loudspeaker may deviate ±5 dB over its rated
frequency range.

Dynamic range defines the range of signal amplitudes that an instrument is
capable of handling in the process of responding and measuring accurately. A
sound level meter (SLM), for example, which can measure a minimum of 10 dB
and a maximum of 150 dB, covers a dynamic range of 140 dB.

Crest factor capability denotes an instrument’s capacity to measure and distin-
guish instantaneous peaks. Crest factor itself is the ratio of the instantaneous peak
sound pressure to the root-mean-square sound pressure.

Response time refers to the rapidity with which a measuring instrument responds
to abrupt changes in signals. An oscilloscope display of a square-wave response
will result in a trapezoidal display if the relayed signals came from a loudspeaker
that requires a longer reaction time to respond to a square-wave pulse.

9.3 Microphones

Microphones serve as transducers by receiving and sensing pressure fluctuations
and converting them into electrical signals that are relayed to other electronic com-
ponents. The quality of a microphone determines the accuracy of a measurement
system. A top-caliber measuring (or a sound reproduction) system can be under-
mined by the use of a microphone that is of a lesser caliber. Four principal types
of microphones are used in measurement procedures, namely, dynamic, ceramic,
electret, and condenser microphones.

Dynamic microphones produce an electric signal through the motion of a coil
connected to a diaphragm in a magnetic field. They are in effect loudspeakers
working in reverse, accepting an acoustic signal, and converting it into an elec-
tric pulsation rather than the other way around. Because of their low impedance,
they can be used in applications entailing the use of long cables connected to
auxiliary instrumentation. But they cannot be used in the vicinity of devices that
emit magnetic fields (e.g., transformers and motors). Also they generally have
longer response times, more limited frequency response, but can be constructed to
withstand rough handling and high humidity.

Ceramic microphones consist of a piezoelectric (ceramic) element attached to
the rear of a diaphragm. Sound pressure causes the diaphragm to vibrate, exerting
a varying force on the ceramic element. The piezoelectric crystal generates an
electric signal from the oscillating strains imparted by the diaphragm. These mi-
crophones are rugged, relatively inexpensive and reliable, have high capacitance
and good dynamic range, and do not require a polarizing voltage that electret and
condenser microphones need. But the high-frequency response may be lacking,
and the operating temperature range may be limited.

The electret (or electret-condenser) microphone, illustrated in Figure 9.1, con-
sists of a self-polarized metal-coated plastic diaphragm. Sound pressure causes the
diaphragm to move relative to a back plate, varying the capacitance, and producing
a signal. While relatively impervious to high humidity, this type of microphone
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Figure 9.1. A cut-away view of an electret microphone showing the principal components.
A thin electret polymer foil is suspended over a perforated backplate.

does not equal the frequency response of a condenser microphone and are not
likely to withstand temperature extremes very well. An alternate form of the elec-
tret microphone is created by depositing the electret film onto the stationary plate
and using the thin metal foil as a moving diaphragm.

Condenser microphones are capacitance-varying devices; each one consisting of
two electrically charged plates with an air gap between them. The thin diaphragm
serves as the plate that deflects under the influence of changes in sound pressure,
causing the gap to vary. The resulting change in the capacitance is converted into
an electric signal. Figure 9.2 illustrates the principal components of a condenser
microphone. A capillary tube behind the plates provides the air bleed to provide air
pressure equalization with the ambient. These devices have relatively low capaci-
tance, require a polarizing voltage supplied by a preamplifier which also provides

Figure 9.2. Principal elements of a condenser-microphone cartridge. (Courtesy of Brüel
& Kjær.)
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the appropriate impedance for connecting the microphone to a measuring system.
Because of their long-term stability, superb high-frequency response, insensitivity
to vibration excitation, condenser microphones are generally preferred for pre-
cision measurements. They function well in extreme temperature and pressure
environments, but they are affected adversely by high humidity (which causes
electrical leakage) and their diaphragms are fragile.

9.4 Sensitivity

In addition to frequency response, sensitivity constitutes one of the principal char-
acteristics of a transducer. In general there is a trade-off between sensitivity and
frequency response. Small microphones tend to have lower sensitivity but operate at
both low and higher frequencies, whereas large microphones possess high sensitiv-
ity but are useful mainly at lower frequencies. Microphone diameters are typically
1, 2, and 4 cm (1/4, 1/2, and 1 in.) in diameter. The frequency response of a 4-cm
condenser microphone is virtually flat to 20 kHz, while that of a 1-cm microphone
is fairly flat to approximately 100 kHz. We define microphone sensitivity S by

S = electrical output

mechanical input

The microphone sensitivity level Ls , also called simply “sensitivity,” is defined as

Ls = 10 log

(
Eout

/
p

Ere

)2

dBV/μbar = 20 log
(
Eout

/
p
)

dBV/μbar (9.1)

where

Eout = output voltage into the instrument
Ere = reference voltage (1 V for an incident sound pressure of 1.0 μbar)

p = rms pressure on the microphone

One microbar (μbar) is equal to 0.1 Pa. Equation (9.1) can be rearranged to obtain
the output voltage:

Eout = p 10Ls/20 (9.2)

We recall the definition of Equation (3.6) for sound pressure level (SPL), L p and
recast Equation (9.2) as

Eout = 0.0002 × (
10L p/20

) (
10Ls/20

) = 0.0002 × 10(L p+Ls )/20V (9.3)

Example Problem 1
A microphone has sensitivity rating of Ls = −50 dB V/μbar. Find the output
voltage for a sound pressure level of 85 dB.
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Solution
Equation (9.3) is applied to yield

Eout = 2 × 10−4 × 10(85−50)/20 V = 0.0112 V = 11.2 mV

Microphone sensitivities typically range between 0.5 μV/μbar (−125 dB V/μbar)
and 3 mV/μbar (−50 dB V/μbar). A microphone used for general sound level
pressure measurements in the frequency range of 10 Hz–20 kHz might have a
sensitivity of 3 mV/μbar (−50 dB V/μbar). But if it were desired to measure
in the frequency range extending beyond 100 kHz, a special microphone de-
signed for this purpose would have a sensitivity of only 0.5 μV/μbar (−125 dB
V/μbar).

9.5 Selection and Positioning of Microphones

Figure 9.3 illustrates a flow chart for the selection of microphones and their
orientation during their use on the basis of the nature of the sound field. Two

Figure 9.3. Flow chart for the selection of microphones and their orientations. (Courtesy
of Brüel & Kjær.)
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standards apply here, one by the American National Standards Institute (ANSI)
which calls for microphones with random-incidence response and the other by
the International Electrotechnical Commission (IEC) which specifies free-field
microphones.

The free field occurs as a region that is not subjected to reflected waves, as is the
case in an open field or in an anechoic chamber. The presence of a microphone in
the sound field disturbs the field. A microphone designed to compensate for this
disturbance is called a free-field microphone. In order to obtain maximum accuracy
in measurements, the free-field microphone should be pointed toward the noise
source [0◦ incidence, as shown in Figure 9.4(a)]. Microphone sensitivities are also
stated in terms of mV/Pa.

The disturbance of the sound field by the presence of the microphone depends
on the sound frequency, the direction of propagation, and the size and shape of the
microphone. At higher frequencies, where the wavelength of the sound is small
compared with the principal dimensions of the microphone, reflections from the
microphone cause the pressure acting on the microphone diaphragm to differ from
the actual free-field sound pressure that is supposed to be measured. Because
a wavelength of 1 inch corresponds to 13,540 Hz, a 4-cm microphone will not
provide accurate free-field measurements of noise in the frequency range in the
neighborhood of 13 kHz and above. Even at 6 kHz, the error for a 4-cm microphone
can exceed 2 dB.

The converse of the free field is the diffuse field which occurs as the result
of multiple reflections. A random-incidence microphone is utilized in measuring
sound in diffuse fields; it is omnidirectional in that it responds uniformly to sound
arriving from all angles simultaneously [cf. Figure 9.4(d)].

Pressure microphones are designed to yield a uniform frequency response to
the sound field including the disturbance produced by the microphone’s presence.
This type of microphone may also be used in diffuse fields. Using a free-field
microphone in a diffuse field will result in lessened accuracy unless special cir-
cuitry in the measurement system provides compensating corrections. As shown in
Figure 9.4(b), when a random-incidence microphone is used to measure sound in a
free field, the unit should be placed at an incidence angle of 70◦−80◦ to the source.
A pressure microphone should be positioned at an incidence angle of 90◦ (often
referred to as the grazing incidence) in a free field [Figure 9.4(c)]. Microphone
placement becomes more critical as the increasing sound frequencies approach the
upper limits of accuracy.

For a windy environment, special precautions should be taken to obtain the
proper data. The wind rushing past a microphone produces turbulence, generating
pressure fluctuations resulting in low-frequency noise. In the use of A-weighted
measurements, no precautions are necessary for winds below 8 km/h (5 mph),
because the A-weighting network attenuates greatly at low frequencies. But for
C-scale or linear sound level measurements, a windscreen should be employed for
any sort of wind. The device should also be used for wind speeds above 5 mph in
A-weighted measurements. Windscreens are typically open-celled polyurethane
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Figure 9.4. Microphone orientations with respect to the sound source.
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Figure 9.5. Sound pressure level corrections for conditions that deviate from the standard
atmospheric pressure and temperature of 760 mmHg and 20◦C.

foam spheres that are placed over the microphones. However, these may not be
too effective if the wind speed exceeds 30 km/h (20 mph).

Changes in atmospheric conditions, namely, temperature and pressure, may
necessitate corrections. Figure 9.5 illustrates a chart for determining corrections
due to deviations from 1 standard atmosphere (762 mmHg or 30 in Hg) and 20◦C,
based on the following expression:

CT,P = 10 log

(√
F + 460

528

(
30

B

))
= 10 log

(√
C + 273.3

293.3

(
760

B ′

))

(9.4)

where

CT,P = correction factor to be added to the sound pressure level, dB
F , C = temperature in ◦F or ◦C, respectively

B, B ′ = barometric in inches Hg or mmHg, respectively

Example Problem 2
For a sound pressure level, a reading of 92 dB is taken at the standard conditions
of 1 atmosphere and 68◦F, predict the readings at 10◦F and at 110◦F for the same
atmospheric pressure.
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Solution
Applying Equation (9.4)

CT,P = 10 log

(√
10 + 460

528

(
30

30

))
= −0.25 dB (for 10◦F)

CT,P = 10 log

(√
110 + 460

528

(
30

30

))
= +0.17 dB (for 110◦F)

At the lower temperature the reading would be (92 − 0.25) = 91.8 dB and at the
higher temperature, (92 + 0.17) = 92.2 dB. Since the deviations are within the
instrument error, the application of such corrections is not very meaningful.

The presence of reflecting surfaces affect measurements with the use of micro-
phones. For example, the presence of a person near the microphone will disturb
the sound field, and it would be advisable to place the microphone on a tripod and
monitor the instrumentation from a distance. Also when a long cable is used to
connect the microphone to other instruments, care must be taken to avoid noise
generated by the motion of different segments of the cable with respect to each
other. The cable should be constrained from moving and isolated from vibration
to the greatest degree possible. The cable should also be well shielded from stray
electromagnetic fields; but it is preferable that the tendency to noise generation be
cut down by incorporating the preamplifier and the microphone into a single unit,
thereby yielding a considerably greater signal-to-noise ratio (S/N ratio). As a rule,
stronger signals are more impervious to outside influences than would be the case
if the signals were not preamplified.

9.6 Vector Sound Intensity Probes

A sound intensity probe that is used to measure vector sound intensity is illustrated
in Figure 9.6(a), and a block diagram in Figure 9.6(b) shows the components of this
vector sound-measuring system. The device contains two microphones mounted
face to face. Other modes of mounting are possible, including side by side and
back to back. The probe measures sound pressure levels at two different points
simultaneously. With the microphone spacing constituting a given factor, the sound
pressure gradient can be determined and the particle velocity in a given direction
can be calculated. The intensity vector component in that direction may then be
established. The microphone spacing should be considerably smaller than the
wavelength of the sound being measured in order to yield valid results from two-
point measurements. For example, in order to sustain an accuracy of ±1 dB, the
upper frequency limit for 1-cm microphones set apart 12 mm from each other
is approximately 5 kHz. If the microphones are spaced apart by only 6 mm, the
corresponding upper frequency limit is 10 kHz.
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Figure 9.6. Sound intensity probe. (a) View of a sound intensity probe and its components.
(b) Block diagram of the vector intensity measurement device. (Courtesy of Brüel &
Kjær.)

9.7 The Sound Level Meter

The sound level meter (SLM), a most valuable means of assaying noise environ-
ments, amplifies the signal from a sensing microphone and processes the informa-
tion for visual display or information storage. It is generally portable and battery
operated. The quality ratings of sound level meters are specified by the American
National Standards Institute (ANSI) and the International Electrotechnical Com-
mission (IEC) according to the precision of these instruments. Types 1, 2, and 3
are, respectively, termed “precision,” “general purpose,” and “survey.” In addition,
Type 0 has been specified by IEC for laboratory reference standard (International
Electrotechnical Commission, 1985). ANSI includes the suffix S in its standard to
designate special-purpose meters, e.g., meters equipped with only A-weighting.
Measurement precision depends on a number of factors, including meter calibra-
tion, method of surveying, and frequency content of the noise being measured.
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Type 1 meters generally should measure with 1 dB accuracy and are employed
to obtain accurate data for noise control purposes. The corresponding error for
Type 2 meters, which are used for quick surveys, may not exceed 2 dB.

Figure 9.7(a) shows a variety of digital-readout SLMs and Figure 9.7(b) illus-
trates an SLM with a bar-graph spectrum display. Note that the contour of a meter
case slopes away from the microphone in order to minimize reflections from its
surfaces. Both Types 1 and 2 generally incorporate A-, B-, and C- weighting net-
works. The A and C networks are far more commonly used than B-weighting,
particularly if low-frequency acoustic energy is present. Also a “fast” or “slow”
response setting is generally available. The former setting, corresponding to a time
constant RC ≈ 0.1 s, responds more quickly to changes in noise levels, but the
readings become more difficult to ascertain with very rapid fluctuations. The slow
setting (RC ≈ 1) reduces the response speed, as attested by the slower movement
of the needle in the older-type analog-readout SLMs, and a better grasp of typical
sound levels can be obtained for rapidly fluctuating sounds. More elaborate ver-
sions of sound level meters include 1/3-octave and octave filters to enable sound
pressure measurements in various frequency bands.

In the block diagram of Figure 9.8, a typical SLM is shown to contain the fol-
lowing components: a 4-cm or 2-cm microphone feeding a preamplifier (which
functions as a cathode follower), which in turn, relays to the one of the weighting
networks that is selected by a switch. The weighted (or unweighted, if none of
the weighting curves has been selected) signal then becomes amplified and then
passes through a root-mean-square amplifier, becomes converted to logarithmic
(i.e., decibel) form, and fed to either a digital or analog readout device. Some SLM
models contain output jacks so that AC and DC signals from the meter can serve as
inputs to other instruments, such as Fast Fourier Transform (FFT) analyzers, print-
ers, or graphic plotters. By taking advantage of the PCMCIA modular technology,
a meter can be designed to provide a variety of other functions such measuring
Leq, Ln, reverberation times, and so on.

9.8 Proper Procedures for Using the Sound Level Meter

To ensure that a sound level meter is in proper working order, an acoustic calibrator
should be employed just prior to beginning a series of measurements and after
completing the series. The calibrator is a single-tone, battery-driven device that
fits over the microphone and produces a precise reference sound pressure level for
calibrating the meter. The calibrator, illustrated in Figure 9.9, employs a zener-
stabilized oscillator to provide impetus to a piezoelectric driver element that causes
a diaphragm to vibrate at 1 kHz ±1.5%. The diaphragm produces a sound pressure
level of 1 Pa (corresponding to rms SPL of 94 ± 0.3 dB) in the coupler volume.
The cavity at rear of the diaphragm behaves as a Helmholtz resonator with a
natural frequency of 1000 Hz. Calibrators operate at 1 kHz, the international
reference frequency for weighting networks. Therefore, no correction is required
for calibrating instruments for weighted and unweighted measurements.



(a)

(b)

Figure 9.7. (a) Sound level meters. Some models come equipped with built-in octave
or 1/3-octave filters for band measurements or with provisions for attaching separate
filter units to perform such measurements. (b) Close-up of a sound level meter capable
of providing an octave-band spectrum. Its compactness is apparent in this photograph.
(Courtesy of Brüel & Kjær.)
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Figure 9.8. Block diagram of the principal elements of a sound level meter.

Periodically, every 6 months to a year depending on frequency and rigor of
usage, both the SLM and the calibrator should be rechecked with calibration in-
struments which, in turn, have been calibrated periodically in a manner traceable
to direct comparison with the standards set up by the U. S. National Institute of
Science and Technology (NIST) or the appropriate standards bureau in another
nation. Updated certifications of calibration are necessary for both SLM and its
calibrator as proof of the accuracy and reliability of the measurement devices.
While executing measurements and entering data, one should also record suffi-
cient information to identify all measuring instruments at a later date should the

Figure 9.9. Cross section of an oscillator-driven sound level calibrator. This model pro-
duces an 1-kHz tone at a SPL of 94 dB. (Courtesy of Brüel & Kjær.)
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need arise to prove the accuracy of the instruments at the time of its questioned
usage.

One of the simplest case of noise measurements is that of steady noise, say, a
motor running at steady speed in a factory. In this situation it would be necessary
to take only a few sound level readings in dB(A) near the worker’s ear and to check
the measured values with established permissible levels. In the more common case
of fluctuating levels, moving noise sources or receivers, etc., it may be necessary
to take more readings over longer time intervals. Other types of meters or mea-
surement procedures may be more suitable for sustained noise exposures, such as
the use of the integrating sound level meter and the dosimeter which are described
in the following sections.

9.9 The Integrating Sound Level Meter

In Chapter 3 the equivalent sound level was defined as

Leq = 10 log
1

T

∫ T

0
10L/10 dt

or in terms of N sound level measurements taken during Nequal intervals:

Leq = 10 log

(
1

N

N∑
i=1

10L1/10

)
(9.5)

Integrating sound level meters are based on the application of Equation (9.5) in
measurements of fluctuating noise over a considerable interval. For example, a
meter may be preset to measure in intervals of 1 s over a total time period of
15 min, thus calling for 900 individual sets of measurements. A measurement over
12 h may be programmed for 720 intervals of 1 min each. More elaborate meters
designed for 24-h surveillances can compute the day–night equivalent sound level
in which a 10-dB penalty is automatically added to noise levels occurring between
the hours of 10 p.m. and 7 a.m. The integrating sound level meter is also capable
of measuring the sound exposure level (SEL), which characterizes a single event
on the basis of both the pressure level and the duration. This parameter is defined
by

SEL = 10 log

(∫ T

0

p2
rms

p2
ref

dt

)
= 10 log

(∫ T

0
10L/10 dt

)
(9.6)

where T is measured in seconds. If we consider a 2-s burst of sound at the
rms pressure of 1 Pa, use of Equation (9.6) will indicate an SEL of 97 dB.
Comparison of Equations (9.5) and (9.6) leads to the relationship between SEL
and Leq:

SEL = Leq + 10 log T (9.7)
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Example Problem 3
What is the SEL for an equivalent sound level pressure of 98 dB(A) lasting 8 s?

Solution
From Equation (9.7)

SEL = 98 + 10 log 8 = 107 dB(A)

Equation (9.6) provides the means of computing SEL when the integrating sound
level meter does not offer an automatic SEL mode.

9.10 Dosimeters

It is not generally a practical matter to trail continuously an industrial worker
performing his or her duties in order to gauge the amount of noise exposure,
particularly if that individual moves from place to place and is exposed to varying
degrees of noise levels in the course of the day. A more convenient method of
measuring the total exposure is to have this person wear either a personal sound
exposure meter or a noise dose meter (also called a noise dosemeter or noise
dosimeter). The personal sound exposure meter, which is schematically described
in Figure 9.10, consists of a small microphone attached to a small extension cord
so that it may be mounted close to the ear, a tiny amplifier that incorporates an
A-weighting network, and a circuit that squares and integrates the electrical signal
with respect to time. The unit normally includes a sound exposure indicator which
can come separate from the wearable unit. This device should be able to respond
to a wide range of frequencies and sound levels without the presence of a manual
control. A latching overload indicator is also incorporated to provide a warning
that excessive sound pressure levels are occurring within the frequency range of the
instrument. The unit must be small, battery-powered, tamperproof, and constructed
to withstand harsh environment.

Figure 9.10. Schematic of a personal noise-exposure meter.
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Figure 9.11. Schematic of a noise dosimeter.

The noise dosimeter is a device designed to measure the percentage of the max-
imum daily noise dose permitted by regulations. Its functional elements are given
in Figure 9.11. Both the noise dosimeter and the personal sound exposure meter
share the same requirements for operation under severe operating conditions; and
both types of instruments include a microphone, an amplifier, A-weighting net-
work, a squaring device, a time integrator, and an indicator. The personal sound
exposure meters contain a latching overload but the noise dosimeter may include
a latching upper-limit indicator. Additionally, the dosimeter must include expo-
nential time-weighting usually incorporating the slow-response characteristic and
a manufacturer-specified threshold sound level,1 neither of which is found in the
personal sound exposure meter.

American National Standard ANSI S1.25 gives the specifications for a noise
dosimeter. Slow-time weighted, A-weighted sound pressure is integrated with a
5-dB exchange rate2 in accordance with the regulations of U.S. Occupational
Safety and Health Administration (OSHA, 1983) and Mine Safety and Health

1 Threshold sound level, stated in decibels, is the A-weighted sound level specified by the manufacturer
of the noise dosimeter below which the instrument provides no significant indication. The threshold
sound level should be at least 5 dB less than the criterion sound level.

2 The terminology exchange rate, expressed in decibels, refers to the change in decibels required to
double (or halve) the exposure time in order to maintain the same amount of noise exposure. For
example, with the 5 dB exchange rate, exposure to 90 dB for 8 h is equivalent to exposure to 95 dB
for 4 h or to 100 dB for 2 h.
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Administration (MSHA, 1982). The exchange rate may also be 3 or 4 dB depending
on the application. ANSI S1.25 also specifies limits for the effects of changes in
air pressure, temperature, vibration, and magnetic field on the noise dosimeter.
The British standard BS 6402 calls for a personal sound level meter to measure
sound exposure, i.e., the timed-integrated A-weighted sound pressure level with
a 3-dB exchange rate and without exponential time weighting (British Standards
Institution, 1983). A latching overload indicator is also mandated by the British
standard to provide warning that the sound level received at the microphone has
exceeded the measuring range of the instrument (up to 132 dB peak).

An IEC international standard for personal sound exposure meters defines a
wider operating range for a Type-2 integrating averaging SLM. Under this specifi-
cation, measurements are made of the exposures produced by impulsive, fluctuat-
ing, and intermittent sounds over a range of A-weighted sound levels from 80 dB
to 130 dB. Excessive input sound levels should trigger the mandatory overload
indicator.

9.11 Noise Measurement in Selected Frequency Bands,
Band Pass Filters

A valuable means of analyzing noise is the evaluation of sound in each frequency
band. If a machine emits a noise that indicates it is malfunctioning, the analysis
of the sound output according to frequency can provide vital clues as to which
component of the machine is defective. This situation calls for the use of a
spectrum analyzer, which is a device that analyzes a noise signal in the frequency
domain by electronically separating the signal into various frequency bands. This
separation is executed through the use of a set of filters. A filter is a two-port
electrical network with a pair of terminals at each port. A filter can be constructed
with as few as two passive electrical components (e.g., a resistor and a capacitor),
or it can be more complex involving a large number of passive components, or a
combination of passive elements operating in conjunction with active components
(e.g., op amps). Analog filters embody electronic circuitry tuned to pass certain
frequencies, whereas digital filters make use of active electronic elements.

Figure 9.12 illustrates the effects of ideal and real filters. An ideal bandpass
filter is a circuit that transmits only that part of the input signal within its bandpass
( f1 ≤ f ≤ f2) and completely attenuates all of the components at all frequencies
outside of the bandpass ( f ≤ f1 and f ≥ f2). The ideal low-pass filter passes all
signals up to frequency flp and rejects all signals having frequencies above flp.
The ideal high-pass filter passes all signals above frequency fhp and rejects all of
the contents of the input signal below fhp. In the real world, filters alter the shapes
of the input signals to some degree. The amplitude and phase characteristics of the
filter can be ascertained by computing the transfer function (or filter response),
which is the ratio of the filter output to the filter input for all possible values of
frequency. Both ideal and actual frequency responses are shown in Figure 9.12.
The actual filters have characteristics of the form shown on the right-hand side
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Figure 9.12. Real and ideal filters.

of Figure 9.12. In the case of the low-pass filter of Figure 9.13(a), the amplitude
transfer function for the circuit is expressed as

|H (ω)| =
∣∣∣∣ Eo

Ei

∣∣∣∣ = 1√
1 + (ωRC)2

(9.8)

where the subscripts i and o to voltage E denote the input and output values,
respectively; R is the resistance in ohms and C the capacitance in farads. Equation
(9.8) can be written to yield in decibels the characteristic of the form shown, plotted
on the semi-logarithmic plot [Figure 9.13(b)] as follows:

∣∣H ′(ω)
∣∣ = 20 log

∣∣∣∣ Eo

Ei

∣∣∣∣ = 20 log

[
1√

1 + (ωRC)2

]
dB

= −20 log
√

1 + (2π f RC)2 dB (9.9)
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Figure 9.13. (a) Circuit for a single, low-pass filter and (b) frequency response of the
low-pass filter.

Equation (9.9) becomes∣∣H ′(ω)
∣∣ ≈ −20 log 1 = 0 for (ωRC )2 	 1

that is, for relatively small frequency values the amplitude transfer function is 0 dB.
In the case of large values of frequency, i.e., (ωRC)2  1, Equation (9.9) becomes∣∣H ′(ω)

∣∣ ≈ −20 log(2π f RC)

The amplitude characteristic therefore exists as a slope of 20 dB per decade. The
intersection f1 of the two asymptotes is the cutoff frequency given by

f1 = 1

2πRC

According to Equation (9.9) the amplitude decreases by 1/
√

2 at the cutoff fre-
quency, or 3 dB. Because power is proportional to the square of the pressure am-
plitude, the cutoff frequency is also the half-power point. The amplitude responses
of complex filters can be obtained in a similar manner.

Filters may be grouped in bands so that serial analysis is rendered possible
by switching manually or automatically from one band to the next. The octave
band analyzer constitutes an example of a commonly used serial analyzer. This
device is so called because it is capable of resolving the noise-signal spectrum
into frequency bands that are one octave in width. We have already seen in Chap-
ter 3 that the center frequency of an octave band is

√
2 times the lower cutoff

frequency, and the upper cutoff frequency is twice the lower cutoff frequency. The
octave bands in the audio range are designated by their center frequencies and are
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Figure 9.14. Filter response typical of an octave-band filter set.

standardized internationally at 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000,
16,000 Hz. Figure 9.14 illustrates the frequency response typical of an octave-band
filter.

In order to obtain more details of the noise spectrum, filters with bandwidths
narrower than one octave must be used. Narrow band analyzers constitute excel-
lent tools for diagnosing noises in industrial environments. Typical narrow-band
analyzers measure in 1/3-octave and 1/12-octave bandwidths, with the former
being more commonly used. These analyzers resolve the noise spectrum into third
octaves and twelfth octaves. Denoting f1 as the lower cutoff frequency, f2 the
upper cutoff frequency, and f0 the center frequency, the relationship between the
upper and lower cutoff frequencies for a 1/nth octave filter is

f2 = 21/n f1 (9.10)

The center frequency is the geometric mean of the product of the upper and lower
cutoff frequencies:

f0 =
√

f1 f2 (9.11)

and the bandwidth bw is expressed as follows:

bw = f2 − f1 = (2
1

2n − 2− 1
2n ) f0 (9.12)

The smaller the bandwidth, the more detailed the analysis, and it obviously
follows that the equipment becomes more costly. The advantages of narrower-band
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analyzers become more apparent in the detection of prominent components of
extremely narrow-band noise.

9.12 Real Time Analysis

Real time analysis entails the evaluation of a signal over a specified number
of frequency bands simultaneously. This type of parallel process is schemati-
cally illustrated in Figure 9.15. Most real time analyzers rely on digital filter-
ing of a sampled time series. A fluctuating noise signal is converted by a mi-
crophone assembly into an electric signal that is entered simultaneously into a
parallel set of filters, detectors, and storage components. The scanned output is
displayed as a bar graph of sound pressure levels versus frequency on a cathode
ray tube (CRT) monitor or another type of display such as liquid crystal dis-
play (LCD) or plasma screen. The display must be refreshed several times per
second as the level and frequency content of the input signal change. The scan-
ning interval may be adjusted to meet different conditions, becoming longer to
cover the cycling of a specific machine operation, or shortened to evaluate impact
sounds.

A considerable variety of features are available on current real-time analyzers.
Some features may include alphanumeric displays, choice of weighting and linear
(unweighted) sound levels, linear and exponential averaging, time constants, spec-
trum storage for recall and comparison with other data, and integrated or external
software packages for further analysis of analyzer output. A number of real time
analyzers operate on batteries, and models are available that provide a choice of
battery or AC operation.

Figure 9.15. Schematic of the processing of a signal through a parallel bank of filters in
a real-time analyzer.
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9.13 Fast Fourier Transform Analysis

The Fast Fourier Transform (FFT) technique, rendered feasible by the advent of
microcomputers, employs both digital sampling and digitization. Instead relying
on bandpass filters to measure the analog amplitudes that formulate a signal’s
spectrum, the FFT analyzer executes an efficient transformation of the signal from
the time domain to the frequency domain. As it is capable of executing nearly any
analysis function on the signal at high speed, the FFT technique is an extremely
powerful analytical method. The FFT analyzer captures a block of sampled data
of finite length (generally 1024 or 2048 samples) for a processing interval. In
transforming from the time domain to the frequency domain, the Fourier transform
relates a function of time g(t) to a function of frequency F(ω) in the following
manner:

F(ω) =
∫ +∞

−∞
g(t)e−iωt dt (9.13)

In measuring noise, a microphone assembly generates a voltage proportional to
sound pressure. A time series is formed when the voltage is sampled at equal inter-
vals, as shown in Figure 9.16. In order to transform this series into the frequency
domain, Equation (9.13) must be reformulated into the discrete Fourier transform
(DFT), given by

F(k) = 1

N

n=N−1∑
n=0

g(n)e−2π ikn/N (9.14)

The matrix format of Equation (9.14) (Randall, 1977) is

F = 1

N
[A] g (9.15)

Figure 9.16. Sound pressure sampling at discrete intervals.
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Figure 9.17. The effect of aliasing in generating a “false” wave.

where F is a column array of N complex frequency components, [A] is a square
matrix of unit vectors, and g a column array of N samples in the time series.

Direct evaluation of the discrete Fourier transform obviously requires a large
amount of number crunching, and the DFT methodology was rendered possible
only in recent years by the development of efficient data processors. The FFT
algorithm, developed by Cooley and Tukey, originally for the implementation
on mainframe computers but now utilized even in portable FFT analyzers and
laptops, cuts down on the number of calculations required to find a discrete Fourier
transform (Cooley and Tukey, 1965). The Cooley–Tukey algorithm rearranges the
[A] matrix of Equation (9.15) by interchanging rows and factoring, with the result
that reduces memory requirements and saves computing time. Computing time
can be cut even more so by tabulating sine and cosine values.

In the FFT process, the signal is modified in three ways, giving rise to the three
potential traps of the FFT, these being the aliasing, leakage, and the so-called
picket fence effect. Aliasing is the apparent measurement of a false or incorrect
frequency. Higher frequencies (after sampling) appear as lower ones, as in Figure
9.17 in which a solid line represents a sound wave pressure with a period T . The
wave is sampled at intervals of Ts corresponding to the sampling frequency of
fs = 1/Ts . The frequency of the dotted line that results from the sampling rate can
then be incorrectly identified as the frequency of the solid line. This ambiguity can
be avoided by having a sampling rate at least twice the frequency of the highest
frequency present in the signal, i.e.,

fs > 2 fmax

This minimum sampling frequency 2 × fmax is called the Nyquist frequency. The
use of very steep antialiazing filters (typically 120 dB/octave) prevents frequencies
that cannot be adequately sampled from being analyzed and renders it possible
to utilize a major portion of the computed spectrum (e.g., 400 lines out of 512
calculated). In most FFT units this is done automatically when the frequency
range is selected (This step also sets the appropriate sampling frequency).
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Figure 9.18. Illustration of the picket fence effect. If the frequency coincides with a line,
it is indicated at its full level. Otherwise, it is represented at a lower level if the frequency
falls between the lines.

The effect of leakage, or window error, becomes apparent when the power in
a single-frequency component appears to leak into other frequency bands. Two
primary causes exist for window error: (1) the signal is not fully contained within
the observation window or (2) it is not periodic within the window. The simplest
case is that of a monofrequency sinusoidal wave, which should yield only one
frequency component in the FFT analysis if there are an integral number of pe-
riods of the sine wave in the finite record length. But a nonintegral number of
periods will generally occur, and the cyclic repetition will yield a signal whose
spectrum covers a range of frequencies. Leakage may be counteracted by forcing
the signal in the data window to correspond to an integral number of period of
all significant frequency components through a process called order or tracking
analysis, where the sampling rate is related directly to basic frequency of the noise
generating process (such as the shaft speed of a machine) and in modal analysis
measurements where the analyzer cycle synchronizes with the periodic excitation
signals.

The picket fence effect (Figure 9.18), which is not unique to FFT analysis, occurs
in any set of discrete fixed filters. The magnitude of the amplitude error occurring
from this effect depends on the degree of overlap of adjacent filter characteristics,
a consideration that influences the selection of a data window.

9.14 Data Windows and Selection of Weighting Functions

If a steady pure-tone of an unknown frequency were to be analyzed, it would
usually be sampled over a short-time interval that is termed window duration. A
rectangular window will allow passage of a portion of the input signal without ad-
justment. That short segment obtained is presumably representative of the original
signal, and this would also hold true if that segment embodies an integer number
of periods of the original signal. The effect of window duration arising from the
scanning of (usually) noninteger number of periods is depicted in Figure 9.19.
Such a signal would be analyzed as if the segment iterated itself as in the figure.
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Figure 9.19. Effect of window deviations in FFT scanning of noninteger number of
periods.

The discontinuities at the ends of the segments will engender a frequency spectrum
differing from the true frequency content of the original signal. Aperiodic signals
may also be misinterpreted on account of the finite length of sampling.

The weighting or window function modifies the shape of the observation win-
dow by tapering off both the leading and trailing edges of the data. Because the
weighting function is used to obviate the effects of duration limiting, it increases
the effective bandwidth. This increase is stated in terms of the noise bandwidth
factor (NBF) defined as

NBF = Effective bandwidth with window function

Effective bandwidth without window function
(9.16)

The ideal value of NBF is unity. Another important consideration in the use of
weighting functions is the side-lobe ratio (SLR) or highest side-lobe level, ex-
pressed as

SLR = Most sensitive out-of-band response

Center of bandwidth response
dB (9.17)

A greater negative value of SLR (in decibels) is more desirable. But the selection
of the two parameters given by Equations (9.16) and (9.17) requires a compromise,
i.e., a tradeoff between the steepness of the filter characteristic on one hand and the
effective bandwidth on the other. Table 9.1 lists the popular types of data windows
and their parametric values. The Hanning window (one period of a cosine-squared
function) constitutes a good choice for stationary signals, because that function
has a zero value and slope at each end and thus renders a gradual transition over
the discontinuity of data. Figure 9.20 illustrates the rectangular, Hanning, and
Hamming weighting functions.
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Table 9.1. Properties of Data Windows.

Maximum Side lobe Noise bandwidth Maximum
side lobe, falloff, (relative to line amplitude

Window type dB dB/decade spacing) error, dB

Rectangular −13.4 −20 1.00 3.9
Hanning −32 −60 1.50 1.4
Hamming −43 −20 1.36 1.8
Kaiser-Bessel −69 −20 1.80 1.0
Truncated Gaussian −69 −20 1.90 0.9
Flattop −93 0 3.70 0.1

9.15 Resolution

The smallest increment in a parameter that can be displayed by a measurement
system is the resolution for that system. In FTT analysis, the resolution is expressed
by

β = fs N

N
= 2 fR

N
(9.18)

Figure 9.20. Typical weighting functions for FFT analysis, with corresponding noise band
factor (NBF) and side lobe ratio (SLR).
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where

β = the resolution which is the frequency increment between lines in a
spectrum, Hz

fs = sampling frequency, the reciprocal of sampling period Ts

N = number of samples in the original time series
fR = frequency range, normally from 0 to the Nyquist frequency

Some versions of FFT analyzers incorporate a “zoom” capability which displays
selected portions of a spectrum with finer reduction. Normally, in order to in-
crease the resolution (which means that β must decrease) the number of samples
must be larger. This is not always feasible since either the processing time will
increase or the block size is limited by machine memory capacity. The zoom
capability overcomes this limitation by permitting the spectrum analyzer to con-
centrate its entire resolution, whether it be 200 or 800 or 1000 lines, on a small
frequency interval selected by the user. While arbitrarily fine resolution is achiev-
able, a compromise must be effected between resolution and the required sampling
time, as attested by Equation (9.18). Note that according to this equation, if the
frequency resolution for a signal is 10 Hz, the sampling time is 0.1 s, but if the
frequency resolution is changed to 0.1 Hz, the corresponding sampling time will be
10 s.

A number of FFT analyzers incorporate large digital processing capacities
that can present measurement results in the format of three-dimensional plots
(or “waterfall” or “cascade” plots) with the vertical coordinate representing the
amplitudes of the spectra as functions of the other two coordinates, one repre-
senting the frequency f and the other time t . The scan presented on a display
can show a “running” plot that moves in the direction of increasing t . This type
of display is most useful in observing the behavioral characteristics of transient
sounds.

9.16 Measurement Error

Noise is usually random in nature, i.e., its sound pressure level cannot be predicted
for any instant. But statistical means can be used to describe random noise. If the
noise is relatively constant in level and frequency content then it may be deemed
a stationary random process, one in which statistical parameters are invariant
with respect to time. A machine operating in a constant cyclic manner may emit
different levels of sound, with corresponding changes in frequency content, for
each successive instant of the cycle, but a measurement interval over a group of
cycles will yield a consistent spectral distribution over time. Analysis data based
on a very short interval that is less than the length of a single cycle is certain to
yield misleading results.

Let us consider noise with an idealized Gaussian or normal probability distribu-
tion. The standard deviation ε, which is the uncertainty in the rms signal divided
by the long-term average rms signal, relates to the ideal filter bandwidth bw and
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the averaging time T , according to

ε = 1

2
√

bw × T
(9.19)

The measurement uncertainty is twice that given by Equation (9.19).

Example Problem 4
A normal distributed noise is to be analyzed in 20 Hz bands, with the measurement
uncertainty not to exceed 4%. Find the necessary averaging time T .

Solution
Using Equation (9.19) modified to give the measurement uncertainty, we obtain

T = 1

bw × ε2
= 1

20 × 0.042
= 31.3s

9.17 Sound Power

Sound power denotes the rate per unit time at which sound energy is radiated. This
rate is expressed in watts. The sound power Lw level defined by

Lw = 10 log

(
W

W0

)
is given in decibels. W is the power of the sound energy source in watts and W0 =
1 pW is the standard reference power in watts.

The principal advantage of using sound power level rather than the sound pres-
sure level given by Equation (3.22) to describe noise output of stationary equipment
is that the sound power output radiated by a piece of equipment is independent of
its environment. The sound energy output of the machine will not change if that
unit is moved from place to place, provided it operates in the same manner. Sound
power is primarily used to describe stationary equipment, but it is not generally
used to rate mobile equipment since the operational situations may be too highly
variable, as is the case with construction equipment.

Sound power may be measured directly using spund intensity instrumentation
or indirectly, either determined from the rms sound pressures at a number of
microphone locations spatially averaged over an appropriate surface enclosing
the source in a free field over a reflecting plane (as exemplified by the use of
a semianechoic chamber) or in a totally free field (full anechoic chamber), or
averaged over the volume of a reverberation chamber in which the measurements
are conducted.

Some sources are omnidirectional, i.e., they radiate sound uniformly in all di-
rections. Most sources are highly directional, radiating more sound energy in some
directions than in others. Hence, the directivity, or directional characteristic, con-
stitutes an important descriptor of a sound source. In a free field or anechoic
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chamber, the directivity is readily apparent, owing to the absence of reflections.
But in a highly reflective environment, such as that of an echo chamber, the multi-
ple reflections that occur render the directivity less important and the sound field
becomes more uniform.

9.18 Measurement of Sound in a Free Field over a
Reflecting Plane (Semianechoic Chamber)

We can summarize the measurement procedure in a free field over a reflecting
plane as follows:

1. The source is surrounded with an imaginary surface of area S, either a hemi-
sphere of radius r or a rectangular parallelepiped.

2. The area of the hypothetical surface is calculated. S = 2πr2 in the case of
a hemispherical surface, and S = ab + 2(ac + bc) in the case of the paral-
lelepiped having length a, width b, and height c.

3. The sound pressure is measured at designated points of the imaginary surface.
4. The average sound pressure level L̄ p is computed from the measured results of

the previous step. This is found from

L̄ p = 10 log

[
1

N

N∑
i=1

10Li/10

]
(9.20)

where N is the total number of measurements and Li denotes the measured
value of the SPL at the designated point i.

5. The sound power level is then calculated from the following:

Lw = L̄ p + 10 log(S/S0) (9.21)

where S0 is the reference area of 1 m2.
The above procedure applies only if the source is not too large, i.e., the radius

r of the hypothetical hemisphere should be at least 1 m and at least twice the
largest dimension of the source (or the perpendicular distance between the source
inside the imaginary parallelepiped and a measurement surface is 1 m), and the
background noise level is more than 6 dB below that of the source. The rectangular
parallelepiped setup is preferred for large rectangular sources.

Figure 9.21 shows the designated points on the hemispherical surface where
the microphones are located. The corresponding points for the rectangular paral-
lelepiped are given in Figure 9.22. These designated points are associated with
equal areas on the surface of the hemisphere or the rectangular parallelepiped. The
SPL is usually measured at the designated points with A-weighting or in octave
and partial octave bands, with the meter set in the slow-response mode.

The applicable international standards for acceptable sound power measurement
techniques under semianechoic conditions are given in ISO 3744 and ISO 3745.
Adjustments in the values of the measured SPL should be made for the presence
of background noise. Equations (9.20) and (9.21) are used to convert the measure-
ments into the desired values of averaged SPL, L̄ p, and sound power level Lw.
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Figure 9.21. Locations of the microphones on the surface of an imaginary hemisphere
surrounding a source whose sound power level is to be measured according to ISO 3744.

The directivity index DI of the source may be computed from measurements in
a semianechoic chamber from the following equation:

DI = L pi − L̄ p + 3 dB (9.22)

where L pi is the sound pressure level measured at point i , located on the measuring
surface and defining the direction along which the DI is desired at a distance from
the source.

9.19 Measurement of Sound Power Level in a Free Field
(Full Anechoic Chambers)

The procedure for measuring sound power in a free field is basically the same
as that for a free field with a reflecting surface (semianechoic condition), with
some modifications. In this case, the source is centered in a hypothetical sphere
of radius rand surface area S = 4πr2. The sound pressure levels are measured at
specific points on the spherical surfaces; these points are stipulated by ISO 3745
and shown in Figure 9.23, and defined in terms of Cartesian coordinates in Table
9.2. Equations (9.20) and (9.21) also apply to yield the average sound pressure
level L̄ p and the sound powerLw. The surface area ratio S/S0 in Equation (9.21)
now refers to two spheres, the hypothetical one (of radius r ) used for placement
of measuring sensors and the other a reference sphere with an area of unity, with
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Figure 9.22. Locations of the microphones on the surface of an imaginary parallelepiped
surrounding a source whose sound power level is to be measured according to ISO 3744.

the result that this ratio is equal to simply 4πr2. Equation (9.21) becomes simply

Lw = L̄ p + 20 log r + 10.99 (9.23)

where all dimensions are stated in SI units. The rectangular measurement surface
is not generally used for measurements in a free field. As specified by ISO 3745,
the radius of the test sphere should be at least twice as large as the major source
dimension, but never less than 1 m. A large source will necessitate a very large
anechoic chamber for measurement purposes.

9.20 Sound Power Measurement in a Diffuse Field
(Reverberation Chamber)

Reverberation chambers are rooms with extremely reflective walls, ceilings, and
floors. If the surfaces are made nonparallel to each other, standing waves can
be avoided. When a steady noise source is operating, the sound field is diffused
everywhere in the room except in the immediate vicinity of the source, as the
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Figure 9.23. The locations of microphones on an imaginary spherical surface surrounding
the source in a free field, according to ISO 3755.
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Table 9.2. Microphones Array Positionsa in a Free Field According to
ISO 3745.

No. x/r y/r z/r

1 −0.99 0 0.15
2 0.50 −0.86 0.15
3 0.50 0.86 0.15
4 −0.45 0.77 0.45
5 −0.45 −0.77 0.45
6 0.89 0 0.45
7 0.33 0.57 0.75
8 −0.66 0 0.75
9 0.33 −0.57 0.75

10 0 0 1.0
11 0.99 0 −0.15
12 −0.50 0.86 −0.15
13 −0.50 −0.86 −0.15
14 0.45 −0.77 −0.45
15 0.45 0.77 −0.45
16 −0.89 0 −0.45
17 −0.33 −0.57 −0.75
18 0.66 0 −0.75
19 −0.33 0.57 −0.75
20 0 0 −1.0

a This table lists the Cartesian coordinates (x, y, z) with the origin located at the center
of the source. The vertical axis is perpendicular to the horizontal plane z = 0.

result of sound waves reflecting back and forth between room surfaces until they
die out. A steady noise source generates sound and builds up the sound pressure
level from ambient level in the room, until an equilibrium sound pressure level
is reached. This occurs when the new acoustic energy emanating from the source
offsets the dissipation of reflected sound energy in the slightly elastic reflecting
surfaces (however hard they may be) and in the slightly viscous air of the chamber
and through energy leakage from the room. The applicable international standards
for measuring the sound power levels in reverberation chambers are ISO 3741
and ISO 3742, the former giving details for broadband noise and the latter for
discrete-frequency and narrow-band sources. The relationship between the sound
power of a source and the average reverberant sound level can be determined and
allows calculation of the sound power.

The procedure for measuring the sound power level in an echoic chamber may
be summarized as follows:

1. The reverberation time T60 is measured by using a standard technique prescribed
by ISO 354.3

3 Reverberation time T60 for an enclosure is the time interval required for a sound pressure level to
drop 60 dB after the sound source has been stopped. More detail treatment of T60 is rendered in
Chapter 11.



206 9. Sound-Measuring Instrumentation

2. The room volume V and the total surface area A of the test chamber are cal-
culated from its internal dimensions. The barometric pressure B is measured
but this constitutes only a small influence on the sound power level of the
source.

3. The average sound pressure level L̄ p in the room is obtained by sweeping a
microphone at steady speed over a path at least 3 m in length while its output
signal is measured and averaged on a root-mean-square-pressure basis. The
sweep time should be at least 10 s for the 200 Hz band and higher and 30 s for
lower frequencies. Measurements in the near field (close to the source) and very
near the chamber surfaces should be avoided. The microphone should not be
located closer to a surface than one half the wavelength of the lowest pertinent
frequency. Alternatively, the average value may be obtained by averaging the
output of an array of three fixed microphones spaced a distance of λ/2 apart
(wavelength λ corresponds to the lowest frequency of interest). L̄ p constitutes
the average band pressure level corrected for the background noise (the sound
level that exists in the measurement chamber when the source is not operating).

4. The contribution of each frequency band to the sound power level Lw of the
source, is calculated by using the following equation:

Lw = L̄ p − 10 log

(
T60

1s

)
+ log

(
V

1m3

)
+ log

(
1 + Sλ

8V

)

−10 log

(
B

1000 mbar

)
− 14 dB (9.24)

where wavelength λ corresponds to the center frequency of the frequency band of
interest. The A-weighted sound power level LwA may be computed from octave-
band or one-third-octave band levels, according to ISO 3741, Annex C.

9.21 Substitution (or Comparison) Method for Measuring
Sound Power Level

A simpler method than the direct method described above can be used to determine
the sound power level Lw of an unknown source by comparing two measurements,
without the necessity for knowing the reverberation time of the test chamber. In
fact, this method does not even require the use of a special laboratory chamber,
and it can be applied in situations where it would be impracticable to move a
large piece of machinery to a laboratory. Commercially available reference sources
provide known values of sound power level Lwr for each octave band and one-third
octave band. Reference sound sources are classified into three types: aerodynamic
sources, electrodynamics sources, and mechanical sources. Aerodynamic sources,
the most prevalent type, consist of a specially designed fan or blower wheel driven
by a motor. Technical requirements are listed in international standard ISO 6926.2.
The comparison method, defined by ISO 3741, is as follows:
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1. The procedures for measuring the average of the sound pressure levels L̄ p are
conducted in the test room in the same manner described above for the direct
method. L̄ p is measured for the unknown source, and then the unknown sound
source is turned off.

2. The reference source is turned on, and L̄ pr is measured for the reference source.
The reference sound sources should be mounted on the floor at least 1.5 m away
from another sound reflecting surface, such as a wall or the unknown source
being evaluated.

3. The sound power level for the source undergoing measurement can be simply
computed from

Lw = L̄ p + (Lwr − L̄ pr ) dB (9.25)

9.22 Alternation Method for Measuring Sound Power Level

A reference source with adjustable sound power—for example, a wideband source
that generates pink noise (i.e., the same level in each band) or an octave band
filtered noise—is used in the alternation method for measuring sound power. A
readout meter indicates the reference source power output. The procedure is as
follows:

1. The noise source being tested is operated in a diffuse field. The spatial average
sound power level L̄ p is measured in each octave band.

2. The reference source replaces the noise source. The reference source is adjusted
until it produces the same sound level as the tested source did in the first octave
band. The sound power level Lw indicated on the reference source meter is
recorded. This procedure is repeated for each of the other octave bands.

3. The sound power levels noted in the reference source meter are the sound power
levels for the unknown source for each octave band. The total sound power can
be computed from

L̄w = 10 log
N∑

i=1

10L̄wi/10 (9.26)

where L̄wi is the spatial average sound power level for the i th octave.

9.23 The Addition Method for Measuring Sound
Power Level

The addition method is useful for situations where the machine under test cannot
be conveniently shut down, for example, a power station generator. As with the
alternation method, an adjustable reference source is used. The procedure is as
follows:
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1. The spatial average sound power level L̄ p generated by the subject machine is
measured in each octave band.

2. The reference source is placed near the machine and both are operated simul-
taneously. The reference source is adjusted until it produces an additional 3 dB
in the sound pressure level in each octave band than when the machine was
operating by itself. The reference source is then producing a sound power level
in that band equal to that generated by the machine under test. The sound power
level indicated on the meter of the reference power source is recorded. The
procedure is repeated for each of all the other octave bands.

3. The total sound power level can now be calculated from the use of Equation
(9.26).

9.24 Data Acquisition Systems

For a number of years, magnetic recorders provide a permanent record of noise
data taken in situ for subsequent analyses on instruments located elsewhere and for
archival purposes. Currently, digital recorders are being used for acoustical data
acquisition. Very few, if any, analog recorders (either AM or FM) are currently
sold. Computer technology has advanced to the stage where measured data and
its analytical results can be acquired and digitally stored in computer memory
or on recordable CD-ROMs, DVD-R, and removable cartridges or disks. A CD-
ROM can hold approximately 700 MB of data, but the DVD (which can be used
to contain digital data and not just video programs) holds nearly ten times as
much. Newer storage disks are soaring past the gigabyte range to encroach in
the terabyte territory. We are witnessing the rapid demise of the magnetic tape
recorder in favor of computerized acquisition devices and digital storage units. The
recent introduction of flash disks provides the potential for even greater portability
of data. Transient sounds, analyzed on a cascade-type FFT analyzer, are more
conveniently archived in a nonvolatile memory medium such as a random-access
removable cartridge than they would be on a magnetic tape (which obviously does
not provide random access), for the purpose of later retrieval.

9.25 Integration of Measurement Functions in Computers

Advances in computer technology and software development tools make it possi-
ble to integrate measurement functions into a personal desk computer or a laptop
equipped with the appropriate acquisition printed circuit boards, high quality sound
cards, and the applicable sensors. A specially equipped personal computer can ex-
ecute DSP-based (diagnostic signal processing) signal generation, filtering, and
spectrum analysis. Hence, a single computer can replace a whole rack of dedi-
cated analog units linked together by BNC cables. In testing the performance of
a loudspeaker through traditional analog means, a sine wave generator provides a
signal to the loudspeaker and a calibrated microphone picks up the loudspeaker’s
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acoustical output and feeds it to a spectrum analyzer, which then relays the data
to a display or a recorder. The dedicated functions of the traditional hardware—
signal generation, filtering, analysis, and data handling—can now be performed
by software in such a manner that the personal computer essentially constitutes
the test platform. The user interface can even be made to emulate familiar analog
instrumentation controls using standardized WindowsTM controls.

Measurement procedures with a PC require a high-quality D/A (digital to analog)
converter for transforming the digital representation of a sine sweep created by the
program into analog signal, and an equally good A/D converter for transforming
the measured analog signals back into the digital domain for analytical purposes.
Most sound cards provide at least 16-bit resolution, and some sound cards can even
measure frequency response from DC to 20 kHz with an accuracy of ±0.25 dB
and distortion as low as 0.003%.

The SoundCheckTM PC-based electroacoustical measurement system, essen-
tially a software package, requires only a computer, sound card, amplifier, mi-
crophone, and microphone power supply. The SoundWareTM software features
a family of “virtual instruments” that perform the functions of a signal genera-
tor, voltmeter, oscilloscope, spectrum analyzer, and real-time analyzer. The PC is
rendered capable of measuring frequency, time, phase response, total harmonic
distortion (THD), impedance, as well as performing other electrical tests. Such
a system can be applied to evaluating loudspeakers, microphones, telephones,
hearing aids, headsets, and other communication devices. Programming of test
sequences allows the PC to be used not only for research and development work,
but also in high-speed production testing and inspection procedures.
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Problems for Chapter 9

1. If a microphone has a sensitivity of −60 dB V/μbar and an output voltage of
21.6 mV is measured, what is the sound pressure level (SPL) responsible for
that output voltage?
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2. Determine the value of the output voltage of a microphone with a sensitiv-
ity level of −100 dB V/μbar if it is exposed to a sound pressure level of
85 dB?

3. A sound pressure level reading of 95 dB is taken at the standard conditions of
1 atmosphere and 68◦F. What will be the readings at 20◦F and at 95◦F.

4. Some laboratory notes indicated that a noise level reading resulted in Leq =
95 dB(A) and an SEL of 107 dB(A). How long did this noise level reading
last?

5. Assuming a sixth octave analyzer could be made available, determine the first
three center frequencies after 16 Hz. Also determine the bandwidth.

6. Calculate the lower and upper cutoff frequencies and the bandwidth for the
octave band where the center frequencies are, respectively, f0 = 63 Hz and
f0 = 500 Hz.

7. If it is desired to analyze noise in 10 Hz bandwidths with an uncertainty of
3%, what must be the necessary averaging time?

8. If we are sampling through the FFT process, a signal that ranges from 15 Hz
to 30 Hz, what must be the minimum sampling frequency?

9. Why is a spectrum analyzer necessary and possibly more useful in dealing
with noise machinery?

10. In an FFT analysis, it is desired to have a resolution of 1 Hz. If there are 1000
samples in the time series, what must be the minimum frequency sampling
rate?



10
Physiology of Hearing
and Psychoacoustics

10.1 Human Hearing

The mechanism of the human ear has been a source of much wonder for physi-
ologists, who are progressing well beyond the fragmentary knowledge of the past
by continually uncovering layers of new marvels of how the human ear really
functions. Our hearing mechanism is a complex system that consists of many sub-
systems. The mechanism of the brain’s processing of auditory stimuli is probably
beginning to be understood, with the relatively recent discovery that hearing is
metabolic in nature. Much of the pioneering work was performed by Georg von
Békésy (1899–1972) who received the Nobel Prize in Medicine or Physiology
for his investigations, particularly those entailing the frequency selectivity of the
inner ear. His work indicated that the frequency selectivity ranked far poorer than
the ear actually exhibits, but William Rhode found much greater selectivity in his
work with live animals (von Békésy worked with dead animals, which most likely
accounted for the difference). It is now realized that frequency selectivity of the
inner ear fades within minutes after the metabolism ceases.

A young, healthy human is capable of hearing sounds over the frequency range
of 20 Hz–20 kHz, with a frequency resolution as small as 0.2%, Thus, we can
discern the difference between a tone of 1000 Hz and one of 1002 Hz. With normal
hearing, a sound at 1 kHz that displaces the eardrum less than 1 Å (angstrom) can
be detected, in fact, less than the diameter of a hydrogen atom! The intensity range
of the ear spans extremes from threshold at which softest sounds can be detected to
the roar of a fighter jet taking off, thus covering an intensity range of approximately
100,000,000–1. The ear acts as a microphone in the process of collecting acoustic
signals and relaying them through the nervous system into the brain. The ear
(cf. Figure 10.1) subdivides into three principal areas: the outer, middle, and inner
ear.

The outer ear consists of a pinna that serves as a sound-collecting horn and the
auditory canal that leads to the inner ear. The collected sound enters the ear through
the opening (the meatus) into the auditory canal that forms a tube approximately
0.75 cm in diameter and 2.5 cm length. The canal terminates at the tympanic
membrane (eardrum). Under the impetus of the sound the eardrum vibrates, causing

213
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Figure 10.1. Coronal section of the right ear. (From Internet site of the Center for
Sensory and Communication Disorders, Northwestern University, funding by U.S.
National Institute of Health.)

three bones linked in an ossicular chain—namely, the malleus (or hammer), the
incus (anvil), and the stapes (stirrup)—to oscillate sympathetically. At the lowest
resonance (3 kHz) of the auditory canal, the sound pressure level at the eardrum is
about 10 dB greater than it is at the entry into the canal. Because a resonance curve
tends to be broad, human hearing tends to be more sensitive to sound in the range
of approximately 2–6 kHz, as the consequence of the resonance being centered at
3 kHz. The diffraction of sound waves inside the head has the effect of causing the
sound pressure level at the eardrum to exceed the free-field sound pressure level
by as much as 20 dB for some specific frequencies.

The eardrum itself is a thin, semitransparent diaphragm that completely seals
off the canal, marking the inner boundary of the outer ear and the outer boundary
of the middle ear. This membrane is quite flexible at its center and is attached at its
perimeter at the terminus of the auditory canal, thus demarcating the entrance to
the middle ear. The middle ear, lined with a mucous membrane, constitutes an air-
filled cavity of about 2 cm3 in volume, which contains the three ossicles (bones),
namely, the malleus, incus, and the stapes forming a bony bridge from the external
ear to the middle ear. These bones are supported by muscles and ligaments. The
malleus is attached to the eardrum; the incus connects the malleus and the stapes.
The last bone in the chain, the stapes, covers the oval window. The Eustachian
tube, which is normally closed, opens in the process of swallowing or yawning to
equalize the air pressure on each side of the eardrum; this is a tube approximately
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Figure 10.2. The membranous semicircular canals showing the cristae within the
ampullae. (From “The Internal Ear,” What’s New, 1957, Abbot Laboratories. Reproduced
with permission of the publisher.)

37 mm in length that connects the middle-ear cavity with the pharynx at the rear
of the nasal cavity.

Just below the oval window lies another connection between the middle and
inner ears, the membrane-covered round window. Between the oval and round
windows is a rounded osseous projection, formed by the basal turn of the cochlea,
called the promontory. A canal encasing the facial nerve is situated just above the
oval window.

The structures to the right of the oval and round windows shown in Figure 10.1
are collectively called the inner ear (also called labyrinth), which comprises
a number of canals hollowed out of the petrous portion of the temporal bone.
These interconnecting canals contain fluids, membranes, sensory cells, and nerve
elements. Three principal parts exist in the inner ear: the vestibule (an entrance
chamber), the semicircular canals, and the cochlea. The vestibule connects with
the middle ear through the oval and the round windows. Both of these windows are
effectively sealed, by the action of the stapes and its support on the oval window
and the presence of a thin membrane in the round window, thus preventing the
loss of the liquid filling the inner ear. The semicircular canals play no role in the
process of hearing but they do provide us with a sense of balance. The cochlea,
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Figure 10.3. Cross section of the organ of Corti in the cochlear canal. (From H. Gulick.
1971. Hearing. Physiology and Psychophysics. New York: Oxford University Press.
Reproduced with permission of the publisher.)

shown in enlarged detail in Figure 10.2, is the sensory system that converts the
vibratory energy of sound into electrical signals to the brain for the detection and
interpretation of that sound. The cochlea can be described as a 3.5-cm long tube
of roughly circular cross section, wound about 21/2 times in a snail-like coil. This
tube’s cross-sectional area decreases in a somewhat uneven manner from its base
to its apex. Its total volume is about 5 (10)–2 cm3.

The coils of the cochlea surrounds an area called the modiolus; and the mem-
branous labyrinth of the cochlear sector of the inner ear divides into three ducts or
galleries (scalae). The cochlear duct (ductus cochlearis) runs the length of the spi-
raling cochlea, and because it occupies the central portion of the cochlea’s interior,
it has been termed the scala medi (i.e., the middle gallery), whose walls effectively
partition the cochlea into two longitudinal channels, the scala vestibuli (or upper
gallery) and the scala tympani (lower gallery). The only communication between
the two galleries occurs through the helicotrema, a small opening at the apex of
the cochlea. The other ends of the upper and lower galleries terminate in the oval
and round windows, respectively.

Figure 10.3 shows an enlarged view of the cochlear duct. This duct is bounded by
Reissner’s membrane, the basilar membrane, and the stria vascularis. The basilar
membrane extends from the bony spiral lamina, a ledge extending from the central
core of the cochlea, to the spiral ligament. The length of the basilar membrane
is about 32 mm long, from the base to the apex of the cochlea; the width varies
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from about 0.05 mm at the base to about 0.5 mm at the apex; and the membrane
gradually becomes thinner as it nears the apex. Positioned on the basilar membrane
is the organ of Corti. This organ, shown in detail in Figure 10.4, consists of some
structural cells (e.g., Dieter’s cells and Hensen’s cells), the rods and tunnels of
Corti, and two types of hair cells on top of which lies the tectorial membrane. The
tunnel of Corti, isolated from the endolymph, contains the fluid cortilymph.

The hair cells constitute the sensory cells for hearing. The inner hair cells are
arranged in a single row on the modiolar side of the tunnel of Corti, and the outer
hair cells exist in three parallel rows on the strial side of the tunnel of Corti. The
inner hair cells are round and squat; their upper surfaces contain about 50–70 hairs
called stereocilia. The outer hair cells, which look more reedlike than do the inner
hairs, contain about 40–150 stereocilia arranged in a W-shaped pattern. There are
3000–3500 ciliated cells in the single row of inner hair cells and a total of 9000–
12,000 ciliated cells in the three rows of the outer hair cells. The hair cells are
connected to some 24,000 transverse nerve fibers in a complex network leading
into the central core of the cochlea. The nuclei of these nerve fibers form the spiral
ganglion, which unite to form the cochlear branch of the VIIIth nerve.

The cochlear branch joins with the vestibular branch to form the VIIIth cranial
nerve, also called the auditory or vestibulocochlear nerve. The VIIIth cranial nerve
along with the VIIth (facial) cranial nerve proceeds in a helical fashion through
the internal auditory meatus to nuclei in the brain stem. From the brain stem
the auditory pathway extends through various nuclei to the cerebral cortex in the
temporal lobes of the brain.

The VIIIth cranial nerve is primarily as sensory nerve, i.e., it conveys sensory
information from the cochlea and the vestibular system to the brain.

10.2 The Mechanism of Hearing

Sound waves are directed by the pinna into the auditory canal. The longitudinal
changes in air pressure of the sound wave propagate to the eardrum, causing it
to vibrate. Because the handle of the malleus is imbedded in the eardrum, the
ossicular chain is set into vibration. These tiny bones vibrate as a unit, elevating
the energy from the eardrum to the oval window by a factor of 1.31 to 1. Sound
energy is further enhanced by the difference in area between the eardrum and the
stapes footplate by a factor of approximately 14. Multiplying this effective areal
difference of 14 by the lever action of the ossicular chain (1.31) yields an energy
increase of 18.3 to 1, which translates into an amplification factor of 25.25 dB
on the sound pressure level (SPL) scale. The middle ear acts as a transformer, by
changing the energy collected by the eardrum into greater force and less excursion,
thereby matching the impedance of the air to the impedance of the inner ear’s fluid.

Because the fluid of the inner ear is virtually incompressible, provision for relief
of the pressure produced by the movement of the footplate of the tapes is provided
by the interaction of oval window and the round window, with the fluid motion
from the oval to the round window being transmitted through the cochlear duct.
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Figure 10.4. A cross section of the organ of Corti: (A) low magnification; (B) higher
magnification. (From A. T. Rasmussen, 1947. Outlines of Neuro-Anatomy, 3rd edition.
Dubuque, IA: Wm. C. Brown Company.)



10.2 The Mechanism of Hearing 219

When the footplate of the stapes pushes into the perilymph of the scala vestibuli,
the vestibular membrane (or membrane of Reissner) bulges into the cochlear duct,
causing movement of the endolymph within the cochlear duct and displacement
of the basilar membrane. Von Békésy’s experiments with cochlear models led him
to formulate a theory that the displacement of the basilar membrane is in the form
of a traveling wave that proceeds from the base to the apex of the cochlea. The
maximum amplitude of the wave occurs at a point along the basilar membrane
corresponding to the frequency of the stimulus, i.e., each point of the basilar
membrane corresponds to a specific value of the simulating frequency.

The cilia of the hair cells are embedded in the gelatinous tectorial membrane,
so that when the basilar membrane is displaced, it generates a “shearing” force
on the cilia. The sidewise motion of the cilia creates an alternating electrical
current, also referred to as the cochlear microphonic (CM), cochlear potential, or
the Wever-Bray effect1. The deflection of the hair cells triggers responses in the
neurons connected to the hair cells. Impulses are borne along the nerve fibers to
the main trunk of the cochlear portion of the VIIIth nerve and onward to the brain.
This is how the cerebral cortex eventually “hears” the vibrations that strike the
eardrum.

Research over the past decade indicates that the cochlea does not act passively.
Active processes occur that indicate that energy is being added to the cochlea
through mechanisms that are not yet fully understood. More energy is contained in
the cochlea than that from the sound going into it. One phenomenon that has been
identified is that of otoacoustic emission, which is a sound in the external ear canal
believed to have originated from vibrations within the cochlea and propagated
back through the middle ear. Otoacoustic emissions can be measured by placing
a miniature microphone in the ear canal. A spontaneous otoacoustic emission
is identified as a constant low-level sound that occurs spontaneously in half of
normal ears. When a high-level click is introduced to the ear, an evoked otoacoustic
emission occurs some 5 msec later as a low-level sound. Also, when two different
tones are presented at high levels to a normal ear, the otoacoustic emission occurs
in the form of new tones generated at frequencies other than the two original
frequencies. These new tones are termed distortion products.

When the sound striking the eardrum is sufficiently loud, the middle ear muscles
contract reflexively. This acoustic reflex occurs as a contraction in the stapedius
muscle, which results in a pull against the ossicular chain and a reduction in the
energy transmitted through the oval window into the perilymph in the vestibule.
The largest amount of reduction in sound due to acoustic reflex—ranging approx-
imately from 20 to 30 dB—occurs for low frequencies. Above 2 kHz this acoustic
reflex is fairly negligible.

As we mentioned previously, a line of hair cells in the organ of Corti senses
sense the movements of basilar membrane. Each hair cell holds fine rods of protein,
i.e., the stereocilia, hinged at their respective ends. When the basilar membrane

1 So named after the two investigators who discovered in 1930 that the speech delivered to a cat’s ear
could be understood when the CM signal was picked up from the cochlear nerve and amplified.
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moves, these stereocilia sway under the impact. The deflections initiate a chain of
electrochemical events that generate electrical spikes or action potentials in the
cells of the spiral ganglion. These signals are transmitted to a relay station called
the cochlear nucleus in the brain stem. The information flows through other nuclei
along the path to the auditory cortex, the portion of the brain that processes auditory
information.

Within this cellular circuitry, the frequency of a sound is encoded by two mech-
anisms. The first mechanism is a place code that indicates the location along the
tapered basilar membrane that moves the greatest distance. Stereocilia on the hair
cells respond to this displacement and produce action potentials among the nearest
spiral-ganglion neurons. The other mechanism is a temporal code that is created
when neurons become synchronized (or phase-locked) into the period of an acous-
tic wave. In normal hearing, neural responses can readily match frequencies up
to about 1 kHz, but this phase-locking capability declines progressively at higher
frequencies. It is conceivable that perception of frequency is based on some com-
bination of phase and temporal orders, with the temporal code being effective only
at lower frequencies.

10.3 Hearing Loss

Nearly a quarter of the population between the 15 and 75 years of age suffer hear-
ing impairment. Impaired hearing, which is often caused by infectious diseases or
overexposure to loud noise or simply the process of aging, is common enough to
be on a par with the onset of poor vision. When hearing loss occurs in early child-
hood, its consequences become more obvious than when it occurs in adulthood. A
child’s progress in learning and developing social relationships may be hindered
and the child may even be deemed “not too bright” if professional help and guid-
ance are not forthcoming. The primary problem of hearing loss, regardless of the
age of the affected individual, is a diminution of a person’s ability to understand
speech.

Even milder forms of hearing loss early in life can generate great difficulty,
particularly for children who developed within normal limits but are not doing
well in school, due to their being inattentive. Such moderate hearing losses are
not uncommon and may even be on the increase due to heightened exposure to
“rock” music. When a mild hearing loss is corrected, the child often becomes
“like a different person.” Fortunately, many of the hearing impaired can be helped
through the use of hearing aids.

The gradual waning of hearing loss affects adults in a more underhand man-
ner. Most people with age-induced or noise-induced hearing impairment first lose
hearing acuity at high frequencies, making it difficult for them to distinguish con-
sonants, especially s versus f , and t versus z. Such persons must strain harder to
understand conversations. Going to the movies, listening to lectures, conversing
with friends and other pleasures become stressful chores. This can result in an
individual’s becoming withdrawn from his friends and relatives. Some of these
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patients can be helped through counseling and rehabilitation, but no cure exists for
most cases of sensorineural deafness.

Hearing loss falls into two principal categories: conductive and sensorineural.
Conductive hearing loss occurs from any condition that impedes the transmission
of sound through the external or the middle ear. Sound waves are not transmit-
ted effectively to the inner ear because of some blockage in the auditory canal,
interference in the eardrum, the ossicular chain, the middle ear cavity, the oval
window, the round window, or the Eustachian tube. For example, damage to the
middle ear, which carries the task of transmitting sound energy effectively, or to the
Eustachian tube, which sustains equal air pressure between the middle ear cavity
and the external canal, may result in mechanical deficiency of sound transmission.
In pure conductive hearing loss, no damage exists in the inner ear or the neural
system. Conductive hearing losses are generally treatable.

Sensorineural deafness, which is a far more accurate term than the ambiguous
terms “nerve deafness” and “perceptive deafness,” describes the effect of damage
that lies medial to the stapedial footplate—in the inner ear, the auditory nerve,
or both. In the majority of cases sensorineural deafness is not curable. The term
“sensory hearing loss” is applied when the damage is localized in the inner ear.
Applicable synonyms are “cochlear” or “inner-ear” hearing loss. “Neural” hearing
loss is the proper terminology to describe the result of damage in the auditory nerve
proper, anywhere between its fibers at the base of the hair cells and the auditory
nuclei. This category also encompasses the bipolar ganglion of the eighth cranial
nerve.

Mixed hearing loss results from conductive hearing loss accompanied by a
sensory or a neural (or a sensorineural) in the same ear. Otologic surgery may
help in cases of mixed hearing loss in which the loss is primarily conductive
accompanied by some sensorineural damage of a lesser degree.

Functional hearing loss, which occurs far less frequently than the hearing loss
types described above and presents a greater diagnostic challenge to clinics, de-
notes the condition in which the patient does not seem to hear or to respond, yet
the handicap cannot be attributable to any organic pathology in the peripheral or
the central auditory pathways. The basis for this type of hearing difficulty may be
caused by entirely emotional or psychological etiology. Psychiatric or psycholog-
ical therapy may be called for, rather than otological treatment.

Central hearing loss, or central dysacusis, remains mystifying to otologists,
although information about this type of hearing defect is accumulating. Patients
suffering this type of condition cannot interpret or understand what is being said,
and the cause of the difficulty does not lie in the peripheral mechanism but some-
where in the central nervous system. In central hearing loss, the problem is not
a lowered pure-tone threshold but the patient’s ability to interpret what he or she
hears. It is obviously a more complex task to interpret speech than to respond to
pure-tone signals; consequently, the tests necessary to diagnose central-hearing
impairment must stress measuring the patient’s ability to process complex audi-
tory information. It requires an extremely skilled, intuitive otologist to make an
accurate diagnosis.
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10.4 Characteristics of Hearing

If the sound is audible, the amplitude of the sound is said to be above threshold; and
if the sound is inaudible, the amplitude is considered to be below threshold. The
amplitude of the sound at the transition point between audibility and inaudibility is
defined as the threshold of hearing. When sound amplitude exceeds threshold, the
sound is processed and perceived as having certain qualities including loudness,
pitch, and a variety of other perceptive traits such as information. The study of
auditory perception in relation to the physical characteristics of sound defines the
field of psychoacoustics.

Sensitivity
The ear is not equally sensitive to all frequencies. The absolute sensitivity of the
ear, defined by its threshold, depends on a variety of factors, the most important of
which is the sound pressure level and the frequency of the sound. The resonance
of the ear canal, the level effect of the ossicles, and the difference between the
surface area of the eardrum and that of the stapes footplate all affect the intensity
of the sound that actually penetrates the cochlea.

An audiometer which generates signals of varying frequency and intensity is
used to measure an individual’s hearing sensitivity. The signals produced by the
audiometer can be directed either to earphones or to a loudspeaker in an anechoic
chamber. As it is far more difficult to ascertain the intensity of the sound at the
level of the cochlea, and such a determination would not accurately represent
how well an individual hears under normal circumstances, we generally specify
hearing sensitivity in terms of thresholds for sounds of various frequencies of
which sound pressure levels were determined in a sound field without the listener
present. Figure 10.5 maps the hearing sensitivity of the normal young human
ear over a range of frequencies. The solid curve, referred to as the minimum
audible field, or MAF, describes the minimum intensities that can be detected
when the listener is positioned before a loudspeaker at a prescribed distance. Both
of the listener’s ears are stimulated simultaneously by the sound source (i.e., the
loudspeaker).

However, most clinical work in audiology entails measurements in reference to
a single ear rather than to both ears. This is usually performed by directing the test
signals to the appropriate earphone of a headset rather than to a loudspeaker. The
use of a headset as opposed to exposure to a loudspeaker considerably modifies the
listening situation. For example, the resonant frequency of the ear canal is shifted
because both ends of the canal are sealed in contrast to the situation when the canal
is open to the sound field. Moreover, the placement of the earphones may give rise to
unwanted physiological noise that can interfere with the detection of low-frequency
sounds. Also, the method of calibrating sound from a loudspeaker differs from that
for calibrating sound from an earphone. Because of these differentiating and other
factors, the measurement of thresholds through the use of headphones is called
minimum audible pressure, or MAP. The MAP measurements are contrasted with
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Figure 10.5. The area of human audibility. The two lower curves represent the lowest
(best) thresholds of hearing of young adults. The solid curve is the minimum audible field
(MAF) and the dashed curve is minimum audible pressure (MAP). (From American Na-
tional Standard Specification for Audiometers, ANSI S3.6–1969, revised 1989, American
National Standards Institute. New York: Acoustical Society of America.) The dotted curve
represents the current standard for the audiometric zero. The upper three lines represent
averages for sensations of discomfort, tickle, and pain. The ordinates define intensity in
terms of pressure in dynes/cm2, sound pressure level in dB, and power flow in W/cm2.

MAF measurements in Figure 10.5. The threshold curve for the MAP condition
appears to be several dB higher (i.e., showing lower sensitivity) than the MAF
curve, a situation referred to as the “missing 6 dB.” This can be attributed to the
fact that using both ears in a sound field enhances sensitivity, in contrast to listening
with only one ear under an earphone, and other factors occur such as the diffraction
of sound around the head in a sound field, the different resonances of the external
ear canal, and so on.

The two curves of Figure 10.5 represent thresholds that are two standard devi-
ations below the mean, i.e., the curves represent the thresholds of approximately
2.5% of young adults (16–25 years of age) determined by examination to be oto-
logically normal. These curves are based on data given in two separate studies
performed 4 years apart conducted by the National Physical Laboratory in Great
Britain. Tables 10.1 and 10.2 list the mean and standard deviations reported in
these two studies and the data points (two standard deviations below the means)
on which the MAP and MAF curves are based.

The intensities defining an audiometric zero at each of the standard frequencies
on a pure-tone audiometer are represented by the dotted curve of Figure 10.5. These
intensity values were established by international agreement among scientists as
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Table 10.1. The Means and Standard Deviations and the Data Points (Two
Standard Deviations Below the Means) on Which MAP Curves of Figure 10.5
Were Based.

Frequency, SPL at 2σ
Hz or kHz Mean SPL, dB σ, dB below mean ANSI, 1969

80 Hz 61.0 8.0 45.0
125 45.5 6.8 31.9 45.5
250 28.0 7.3 13.4 24.5
500 12.5 6.5 −0.5 11.0

1 kHz 5.5 5.7 −5.9 6.5
1.5 8.5 6.1 −3.7 6.5
2 10.5 6.1 −1.7 8.5
3 7.0 5.9 −4.8 7.5
4 9.5 6.9 −4.3 9.0
6 10.5 9.1 −7.7 8.0
8 9.0 8.7 −8.4 9.5

10 17.0 9.0 −1.0
12 20.5 9.6 1.3
15 39.0 10.7 17.6
18 74.0 21.9a 30.2

a Calculated from reported standard of error of the mean. Data on mean sound-pressure
levels and standard deviations (σ ) for 80 Hz through 15 kHz taken from Dudson and King
(1952). The data for 18 kHz were taken from Harris and Myers (1971).

Table 10.2. The Means and Standard Deviations and the Data
Points (Two Standard Deviations Below the Means) on Which the
MAF Curves of Figure 10.5 Were Based.a

Frequency, SPL at 2σ
Hz or kHz Mean SPL, dB σ, in dB below mean

25 Hz 63.5 8.0 47.5
50 43.0 6.5 30.0

100 25.0 5.0 15.0
200 15.0 4.5 6.0
500 5.5 4.5 −3.5

1 kHz 4.5 4.5 −4.5
2 0.5 5.0 −9.5
3 −1.5 6.0 −13.5
4 −5.0 8.0 −21.0
6 4.5 8.5 −12.5
8 13.5 8.5 −3.5

10 16.5 11.5 −6.5
12 13.0 11.5 −10.0
15 24.5 17.0 −9.5

a Data on mean sound-pressure levels and standard deviations (σ ) taken from
Robinson and Dudson (1956).
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being representative of the average minimum audible sound pressure levels for
young adult ears and have been incorporated in the standards for audiometric
calibration throughout most of the world. This standard as the result of being
adopted in 1969 by the American National Standards Institute, is referred to as
ANSI-1969 standard and it is listed with the MAP values in Table 10.1 (American
National Standards Institute, 1969).

Loudness
While the sensation of loudness correlates to the amplitude of the sound above
threshold, loudness is not perceived by the human ear in equal measures as the
amplitude increased over different frequencies above the threshold. Individual
judgment constitutes the deciding factor in ascertaining the degree of loudness.
This had led to the development of equal loudness contours which are curves
connecting SPL points of equal loudness for a number of frequencies, as judged
by tested listeners. These curves, also called phon2 curves, are constructed by
asking subjects to judge when tones of various frequencies are considered equal in
loudness to a 1-kHz tone at a given SPL. The official definition (ANSI, 1973) of the
phon specifies binaural (two-ear) listening to the stimuli in a sound field (American
National Standards Institute, 1986). Equal-loudness contour curves are given in
steps of 10 phons in Figure 10.6, with the dashed MAF curve from Table 10.2
included in the plot as a threshold reference.

As an example of how humans perceive sound, consider a 30-Hz tone at 95 dB
SPL. It would be judged by a typical listener as being as equally loud as a 1000-Hz
tone at 70 dB SPL or a 5000-Hz tone at 65 dB SPL. As sound is steadily increased
in intensity above the threshold, it will eventually cause the listener to experience
physiological discomfort. A further increase in the intensity produces a tickling
sensation in the ear, and an additional increase in intensity causes the listener to
experience pain. These three levels constitute, respectively, the thresholds of dis-
comfort, tickle, and pain, which are represented by the upper three lines of Figure
10.5. While these threshold values of 120, 130, and 140 dB SPL represent statis-
tical averages for young adult ears, different individuals have different tolerance
thresholds, but these values do not differ markedly from the statistical averages.
Thus, in Figure 10.5, the region between the discomfort and the audiometric zero
constitutes the usable dynamic range of hearing for humans.

Pitch
The sensation of pitch is obviously related to the frequency of the tone. The actual
pitch of a sound is affected by other factors, including the sound pressure level and
the presence of component frequencies. Pitch perception is a complex process, one
that is not yet fully understood. Pitch elicited by some sounds may evoke the same

2 A phon is a unit of loudness that, at the reference frequency of 1 kHz, is equated to the decibel scale.
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Figure 10.6. Equal loudness contours. (From Peterson, A. P. G. and E. E. Gross. Handbook
of Noise Measurement. 1980. Concord, MA: General Radio.)

aural response whether or not the fundamental frequency is present. The average
adult male voice carries a fundamental between 120 and 150 Hz and that of a
typical adult female lies between 210 and 240 Hz. Yet we generally find it easy
to distinguish between male and female voices even though the telephones does
not transmit frequencies much lower than 300 Hz. Somehow we are able to atone
aurally for the fundamental frequency missing from the signal passing through the
telephone receiver.

The spectrum of a sound generates a psychological sensation of quality. This
permits us to distinguish the difference, say, between a trumpet and an English
horn playing the same note. This is because of the differences in their respective
sound spectra (i.e., the frequency content or the presence of overtones), which, in
turn, are functions of the complex vibrations and the resonance modes inherent
in their respective structures. We are also able to discern different speech sounds
because of the differences in the sound spectra. Even over the telephone, individual
voices are recognizable because of the differences in their sound spectra.

Masking
Masking is said to have occurred when the audibility of a sound is interfered with
by the presence of noise or other background sound. The “cocktail party” effect,
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which makes it difficult to carry on a private conversation against a backdrop of
other people’s chatter, is a familiar example of masking. Speech becomes unintel-
ligible by the presence of excessive background noise. Although masking is almost
always undesirable, broadband noise may be purposely introduced into an office
environment to make conversation unintelligible to potential eavesdroppers in an
adjacent office. Because most of the intelligence in speech is generally contained
in the frequency range between 200 Hz and 6 kHz, noise in that frequency range
is most objectionable in terms of speech masking. But excessively loud noise in
any frequency band can adversely affect speech intelligibility by causing such an
overload of the auditory system that one cannot effectively discriminate speech
from the prevailing total signal. Consonants essential to conveying verbal infor-
mation tend to be pronounced softly, so they become readily indiscernible in the
presence of noise.

A person speaking normally produces an unweighted sound level of 55–70 dB
at 1 m. It is more taxing for that person to speak more loudly for a sustained time.
A typical maximum voice effort, in the form of a shout, produces about 90 dB at
1 m. Speech intelligibility generally improves when the speaker and the listener
are near each other and if the speaker increases the signal-to-noise (S/N) ratio by
talking louder. Maximum intelligibility usually can be obtained if the unweighted
level of the speech is between 50 and 75 dB at 1 m from the speaker. Speaking more
loudly does not always guarantee greater intelligibility, even though the S/N ratio
(defined as the intensity of the signal divided by the intensity of the noise) may
be increased, because the formation of speech sound above 75 dB may degrade
sufficiently that there is little or no improvement in intelligibility. If a listener is
familiar with the words and the dialect used, intelligibility will be greater. It is for
this reason that critical communications, particularly those of air controllers, are
based on a limited vocabulary. In ordinary face-to-face conversation, the listener
has the additional luxury of making out the context of the words by observing the
speaker’s facial expressions and gestures.

10.5 Prediction of Speech Intelligibility:
The Articulation Index

In order to assess the effect of noise on speech communication, it is necessary
to conduct speech-intelligibility tests with actual speakers and listeners in the
presence of interfering noise. The test materials may be sentences, digits, disyl-
labic words, monosyllabic words, or nonsense syllables. The listeners are scored
according to the percentage of the speech materials heard correctly. The back-
ground interfering noise is generally recorded and played back in the testing
laboratory.

From such experiments came the realization that speech intelligibility is a func-
tion of the intensity and the frequency characteristics of the interfering noise.
Regarding the S/N ratio, Licklider and Miller stated that the S/N should exceed
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Figure 10.7. The effect of white noise on the thresholds of detectability and intelligibility
of running speech (Hawkins and Stevens, 1950).

6 dB for satisfactory communication, although the presence of speech may be
detected for S/N as low as −18 dB. If the intensity of the signal (speech) exceeds
the noise, the sign of the S/N value is plus; conversely, a negative value of S/N
indicates that the noise is more intense than the signal.

Figure 10.7 maps the effect of white noise on the thresholds of detection and
intelligibility of running speech. According to this figure, which was developed
by Hawkins and Stevens based on extensive tests making use of running speech
and white noise (Hawkins and Stevens, 1950), the threshold of intelligibility oc-
curs when the level of the speech exceeds the noise level by about 6 dB (S/N
of 6 dB). As the sound pressure level of the noise is increased above this value,
the threshold of intelligibility is proportionally increased so that the S/N value of
−6 dB remains fairly constant over a wide range of intensities. For other kinds
of speech materials and different masking noises, the relationship between the
threshold of intelligibility and the level of the interfering noise may not necessar-
ily remain the same. At an S/N of −18 dB, running speech can be detected but not
understandable.

Other but simpler methods have been developed for measuring the effect of
interfering noise on the intelligibility of speech. A principal method of predicting
speech intelligibility is the articulation index, or AI, which is a value that ranges
from 0.0 to 1.0 and represents the proportion of the speech spectrum that occurs
above the noise. French and Steinberg of the Bell Laboratories developed the
concept of articulation index on the basis of the assumption that most of the intel-
ligence in speech is contained in the frequency bands between 200 and 6100 Hz.
The articulation index can be calculated from the levels of the masking signal and
the speech level in the frequency bands. The contribution of each frequency band
to speech intelligibility is defined as 12 dB plus the sound level of the speech
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Table 10.3. Weighting Factors as a Function of Center Frequency
for One-Third Octave Band-Based Calculation of Articulation
Indexes. Speech Levels Given in the Second Column are Those for a
Typical Male Voice at 1 m.

Center frequency (Hz) Speech level (+12 dB) Weighting factor

200 67 4
250 68 10
315 69 10
400 70 14
500 68 14
630 66 20
800 65 20

1000 64 24
1250 62 30
1600 60 37
2000 59 37
2500 57 34
3150 55 34
4000 53 24
5000 51 20

less the masking level. Each frequency band’s contribution is limited to the range
between 0 and 30 dB. The sound level of the speech signal is based on a long-term
energy average in each frequency band, and each frequency band contribution is
multiplied by a weighting factor. The sum of the weighted contributions divided
by 10,000 yields the AI.

Table 10.3, based on the division of the speech spectrum into one-third octaves,
provides the data necessary to calculate AI. The first column lists the center fre-
quency of the one-third octave, the second column gives the typical male voice
long-term average speech level plus 12 dB at 1 m distance. The weighting factor
for each one-third octave band is listed in the third column. If the masking noise
has been measured only in full octave bands, Table 10.4 may be used instead of
Table 10.3.

Table 10.4. Weighting Factors for One Octave Band-Based
Calculation of Articulation Indexes. This is for the Typical Male
Voice Level at 1 m.

Center frequency (Hz) Speech level (+12 dB) Weighting factor

250 72 18
500 73 50

1000 78 75
2000 63 107
4000 58 83
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Table 10.5. Calculation for the Articulation Index in the Sample Problem.

Center Speech Weighting Noise SL − N = WF ×
frequency (Hz) level (SL) (+12 dB) factor (WF) (N) DIFF DIFF

250 72 18 47 25 450
500 73 50 47 26 1300

1000 78 75 47 303 2250
2000 63 107 47 16 1712
4000 58 83 47 11 913

Example Problem 1: Calculation of AI
Let us compute the articulation index of a male voice speaking at a normal level
1 m from the listener in the presence of pink noise that contributes 47 dB in each
octave band.

Solution
Table 10.4 is used for this calculation. The 47-dB octave-band noise level is sub-
tracted from the values in the second column; and the difference (up to a maximum
of 30 dB) is multiplied by the weighting factors of the third column. The resulting
weighted contributions are added and divided by 10,000, yielding the articulation
index. Table 10.5 below gives details of the calculations, with the values given in
the fifth column produced by subtracting 47 dB from the speech level of the second
column, and each of the values in the fifth column is multiplied by the weighting
factor of the third column to yield the figures listed in the sixth column.

Articulation index (AI) = (450 + 1300 + 2250 + 1712 + 913)/10000 = 0.6625

The articulation index is 0.6625, or 66.25%.

10.6 Speech-Interference Level (SIL)

Measurements to obtain data for articulation indexes require special laboratory
equipment for determination of S/N in a number of frequency bands. A simpler
procedure for estimating the effect of noise on verbal communication makes use
of octave-band levels as measured in a typical noise survey. The parameter that
is called the speech-interference level, abbreviated SIL, can be obtained by com-
puting the arithmetic average of octave-band levels in the three octave bands of
600–1200, 1200–2400, and 2400–4800 Hz. However, the current practice uses
the arithmetic level in the “preferred” octave bands with center frequencies at 500,
1000, and 2000 Hz. Speech-interference level defined thusly is referred to as PSIL.

3 The value of the following expression (Speech Level + 12 dB—Noise Level) must fall between
0 and 30.
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Table 10.6. PSIL (in dB) at Which Effective Speech Communication is
Barely Possible.

Normal Raised Very Loud Shouting

Distance (m) M F M F M F M F

0.3 68 63 74 69 80 75 86 81
1 58 53 64 59 70 65 76 71
2 52 47 58 53 64 59 70 65
3 48 43 54 49 60 55 66 61
4 46 41 52 47 58 53 64 59

The speech-interference level (PSIL = 68 dB) has been identified as the level
at which reliable speech communication is barely possible in a normal male voice
at a distance of 0.3 m (or 1 ft) outdoors. If a male speaker talks in a raised voice, a
very loud voice, or in a shout, the speech interference levels have been identified,
respectively, as PSIL = 74, 80, and 86 dB. A female speaker, on the average, has
PSIL levels 5 dB less than the corresponding values for a male. Table 10.6 lists
the PSIL (in dB) at which effective speech communication is barely possible. The
table is based on minimally reliable communication, at which about 60% of the
communication of uttered numbers and words out of context can be discerned. In
order to roughly approximate PSIL in terms of dBA, 7 dB can be added to the
values of PSIL.

Example Problem 2: SIL
Background noise levels for an industrial plant were measured to be 62, 65, and
74 dB, respectively, in the 500-, 1000-, and 2000-Hz center-frequency bands. What
are the implications for speech interference at a distance between a speaker and a
listener standing 1 m apart?

Solution
To solve this problem, the arithmetic average of the noise level in three bands
are first determined. This will be (62 + 65 + 74)/3 = 67 dB. From Table 10.6 we
establish that reliable speech is barely possible for a male, speaking in a raised
voice or a female speaking in a very loud voice.

10.7 Prosthetics for Hearing

Hearing Aids
A conventional hearing aid works by amplifying sound and delivering that am-
plified sound to the eardrum. Sound is received by a miniature microphone that
converts acoustic signals into electrical signals that is amplified and then relayed to
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a receiver (i.e., a mini-loudspeaker) that converts the signals into amplified sound.
Current hearing aids evolved from a long history of continuously improving tech-
nology, from the bulky electrical hearing aids of the 1930s (which were powered
by rather large multiple batteries) to the smallest models inserted into the ear canal.
The electronic part of a hearing aid can be based on different technologies: ana-
log, programmable, and digital. Each of these technologies has advantages and
disadvantages, but the choice rests on the optimum benefit to the user.

In the analog models, variable resistors perform the trimming adjustments, and
any changes of resistor value will change the properties of the circuit accordingly,
thus providing a change in the frequency response, usually prescribed by a qual-
ified audiologist, to meet the needs of the user. In principle, the same applies to
a programmable hearing aid. In this case the total variable resistor component
consists of a ladder of resistors, each attached to a digital switching element. Set-
ting the individual switches either “on” or “off,” thereby bypassing some of the
resistors in the ladder changes the total resistor value. These switches or gates are
the fundamental building blocks of all digital circuits. CMOS are used to produce
gates that function as long as there is electrical power. But in order to avoid losing
the switch settings (and hence the adjustment), a common solution is to construct
a secondary set of switches, using a technology that enables the switch settings
to be retained even when there is no battery attached. This technology known as
E2PROM (programmable read only memory) provides the nonvolatility necessary
to retain the settings.

By their very nature digital adjustments are discreet, i.e., the resistor can only
take on a finite number of values. Although there is theoretically no limit on
how fine the resolution can be, the penalty is a larger circuit using more power.
The resolution is therefore set to be sufficiently adequate for the parameter to be
adjusted, typically in the region of 0.5–5 dB. Programmable hearing aids may
also use digital switching to select functions (ON/OFF, M/T). The M/T function
represents a choice between the microphone (M) and telephone (T) mode. In the
telephone mode, induction signals are received from the telephone receiver rather
than the acoustic signal, so as to provide better coupling and eliminate feedback.
A digital volume control may be used to work in steps, typically 1 dB.

In digital hearing aids, an analog-to-digital converter reads the analog voltage
signal from the microphone and converts it to a digital signal. The digital signal
represents the original sound as a series of number, which then can be manipulated
mathematically by the digital signal processor (DSP). Once digitized, the signal is
more robust and is no longer subject to electronic noise and distortion. To obtain
the highest possible signal quality the input signal is sampled at a very high rate
(500 kHz–1 M Hz) before the digitization. The sampling rate at the input affects the
signal quality, so as the sampling rate increases, so does the quality of the signal.
Another important parameter for sound quality is the resolution, which determines
the initial precision of the signal and the precision that later can be achieved during
the mathematical manipulations that constitute signal processing. After the sam-
pling, the converted signal is then ready for manipulation by a specially designed
digital signal processor (DSP). The DSP is programmed by an audiologist on a



10.7 Prosthetics for Hearing 233

computer to provide the frequency equalization curve on the basis of the results
from testing the patient’s hearing. Algorithms in the DSP can continuously divide
sounds into frequency channels and emphasize the higher frequencies containing
vital consonant sounds in speech over the distracting rumble of low-frequency
noise. Algorithms also manage noise: owing to the fact that speech sound in-
tensities can change radically in a millisecond whereas noise is more acoustically
stable over a comparatively longer time. On a time basis, DSP can reduce the levels
of continuous sounds such as traffic noise and household appliances. And it si-
multaneously readjusts when changes occur, restoring amplification when shorter
duration sounds are detected. In relatively quiet surroundings, the digital algo-
rithm can detect the consistency of softer environmental sounds from ventilation
systems and appliances, and it also automatically reduces amplification in the
appropriate frequency range, immediately restoring proper levels when the sound
pattern changes. Digital hearing aids carry the disadvantage of considerably higher
costs and may not provide enough amplification as the other types of hearing aids.

Implantable hearing aids, referred to by the acronym, IHA, can be used by
people having sensorineural hearing loss but a healthy middle ear. The IHA, which
is still in the stages of final development, converts sound to vibrations inside the
middle ear. This gives the IHA several advantages of traditional hearing aids. If
the bones of the middle ear can be directly used, sound quality may be improved
along with much less feedback. Also, there are no external components to the IHA,
which is, after all, completely implantable.

Three versions of IHA are being tested in human trials. Either the receiver,
which collects the sound energy, or the entire hearing device is surgically inserted
into the middle ear. The surgical procedure is as follows: skin and tissues around
the ear are laid back, and a magnet (which may no may not include electronics) is
nestled into the bone behind the ear. A component is then attached to one of the
middle ear bones. One prototype is called the Envoy Totally Implantable Hearing
Restoration System. This device utilizes the eardrum as the microphone that sends
sound energy to the piezoelectric crystal in the middle ear. Two other prototypes
use electromagnetic technology. The Vibrant Soundbridge (made by Symphonix
Devices, Inc.) has already received an Investigational Device Exemption (IDE)
from the Federal Drug Administration (FDA). IDE represents the preliminary stage
in receiving FDA approval. Another system, Otologies, is also in the IDE stage of
the FDA process. Both of these systems are partially implantable; only the receiver,
consisting of the magnet and transducer coil, is implanted. The microphone and
amplifier are worn externally. These devices may be more suitable for a wider
range of hearing losses than the one using piezoelectric technology, which can be
used by those having not more than a moderate (50 dB) hearing loss.

Cochlear Implants
In Section 10.2 we have examined how the cochlea produces signals to the cochlea
nucleus. When air cells become so damaged that they cannot be stimulated cells
of the spiral ganglion, hearing is lost. Without regular activity, the portion of
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the ganglion that receives signals, the dendrite, may atrophy and the cells may
die. However, and fortunately, even in the case of complete hearing loss, some
ganglion cells survive and remain connected to the appropriate frequency receptors
in the cochlear nucleus. If the electrical action from implant electrodes can cause
action potentials among the remaining cells, then hearing can be restored. Also,
if multiple groups of neurons can be compelled to respond to low-, middle-, and
high-frequency components of the cochlea, then perception of speech will be
restored.

The next question is: how many channels of portions of the frequency spectrum
are necessary to encode speech? Dorman, Louizon, and Rainey determined through
the use of bandpass filters that as few as four channels of simplified audio signals
to normal-hearing listeners were required to achieve a 90% comprehension rate
of words spoken in simple sentences (Dorman Wilson, 2004). Eight channels
allowed these listeners to identify 90% comprehension of spoken isolated words.
With background noise, more channels were needed to retain this performance,
and the more channels used, the better the comprehension.

It is obvious that hair-cell failures engender a roadblock between the peripheral
and central auditory systems, resulting in deafness. Cochlear implants restores the
link, though bypassing the hair cells to stimulate the direction of the cell bodies in
the spiral ganglion. A cochlear implant consists of five components, only two of
which are inside the body. In Figure 10.8, an external microphone picks up sounds
and directs them to a sound processor that is enclosed in a case behind the ear. The
processed signals are sent on to a high-bandwidth RF transmitter, which then relays
the information through a few millimeters of skin to a receiver/stimulator that has
been surgically implanted in the temporal bone above the ear. The signals pass on
to an array of electrodes inside the cochlea. Target cells on the spiral ganglion are
segregated from the electrodes by a bony partition.

Continuous interleaved sampling, or CIS, is a strategy used to covert signals
into a code for stimulating the auditory nerve. It begins by filtering a signal into
frequency bands (16 bands or more). For each band, the CIS algorithm converts the
slow changes of the sound envelope into amplitude-modulated groups of biphasic
(i.e., having both positive and negative values) pulses at the electrodes. The pro-
cessor senses the information from low-frequency channels to the electrodes in the
apex and information for high-frequency channels to electrodes in the base of the
cochlea. Thus, this setup sustains the logic of the frequency mapping in a normal
cochlea.

The efficacy of the cochlea, however, depends on a number of factors, among
them are the number and location of the surviving cells in the ganglion, the spatial
pattern of current flow from the electrodes, and the manner in which the neurons in
the brainstem and cortex can encode frequency. If the period of deafness is a long
one and only a few cells survive in the spiral ganglion, the electrode stimulation is
less likely to convey frequency-specific information to the cochlear nucleon and
cortex. Then there is a possibility of surviving cells clustered at one location in the
ganglion at the cortex, which results in the lack of range of frequencies necessary
for speech understanding.
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Figure 10.8. The components of a cochlear implant. There are five main components,
only two of which are inside the body. A microphone above the ear receives sound waves
that are directed to a tiny computer behind the ear. The computer transforms the input
into specifications for stimuli to be conveyed to the implanted electrodes. The disk-shape
transmitter uses high-bandwidth radio waves to send these instructions to a receiver just
under the skin. The receiver converts the instructions into electrical stimuli and relays them
to the appropriate electrode in the cochlea, which, in turn, excites neurons in the auditory
nerve. (Courtesy of Michael F. Dorman and American Scientist.)

Adults who lost their hearing and later receive a cochlear implant can associate
the new stimulation patterns with their recall of what speech should sound like.
Children born deaf do not have this advantage, but it has been found that congeni-
tally deaf children who received cochlear implants during their first or second year
can learn spoken language as well as, or almost as well as, children with normal
hearing. Children receiving implants later in life have greater difficulty in coping
with signals from an implant.

Ongoing cochlear implant research is now focused on the combination of electric
and acoustic stimulation (EAS). A number of hearing-impaired people have some
ability to hear low frequencies but little or no sensitivity to higher frequencies.
When an electrode array is inserted about two thirds of the way into the cochlea,
hearing at 1 kHz and above may possibly be restored by electrical stimulation.
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Gene Therapy: Formation of New Cochlear Hair Cells
In 1998 the geneticist Huda Y. Zoghbi of the Baylor College of Medicine discovered
the key to generation of new hair cells in a gene called Atohl, first discovered in
fruit flies. Variations of this gene have since been discovered in almost all species
of animals. During fetal development, the gene converts some cells in the ear into
hair cells. In other ear cells, called supporting cells, its activity is suppressed.
Researchers have demonstrated that working in laboratory dishes, the gene could
convert supporting cells into hair cells.

In 2003, Yehoash Raphael and Kobei Kawamoto at the University of Michigan
Medical School reported that inserting the gene into live guinea pigs produced
thousands of new hair cells (Kawamoto et al., 2003; University of Michigan Health
System, 2003). But in those experiments, the researchers did not deafen the animals
first. Later they did, using toxic chemicals to kill the hair cells in both ears of ten
guinea pigs. Microscopic images taken 3 days later confirmed that all the hair cells
were destroyed.

On the fourth day, they used gene therapy with a viral vector to insert the Atohl
gene into the guinea pigs’ left ears. Within 2 months, new hair cells appeared
in treated ears, but not in the untreated right ears. In order to determine whether
the new hair cells were functional, the team applied tests of auditory brainstem
response to measure the guinea pigs’ ability to hear sounds. In effect, they observed
increases in brain activity when they exposed the animals to noises, which indicates
that their ability to hear was at least partially restored.

Raphael and his colleagues are presently trying to determine how good the
restored hearing is. To indicate whether the guinea pigs can hear and how well,
they are working with a psychologist who is an expert at training animals to
display various behaviors. They are trying to determine, for example, whether
the animals can differentiate between loud and soft sounds and between different
frequencies. They are also studying animals that have been deafened by other
means, older animals and animals that have been deaf for longer periods of time
before treatment begins. If these experiments turn out to be successful, the studies
necessary to ensure safety and efficacy must be conducted before the technique
can be tried on humans, and this phase may take the better part of a decade.

Direct Drive Hearing System (DDHS)
A conventional hearing aid operates by amplifying sound and delivering the sound
to the eardrum. From there, the amplified sound passes through the three hearing
bones on its way to the cochlea. The direct drive hearing system (DDHS) under-
going testing at the Department of Otolaryngology and Virginia Merrill Bioedel
Hearing Research Center at the University of Washington replaces this acoustic
path with an electromagnetic one (Von Ilberg et al., 1999). Instead of producing
high-volume sound, this hearing aid is attached to an electromagnetic coil that fits
inside the earmold. The coil is used to drive a magnet that is attached to the third
hearing bone. This system effectively bypasses the ear canal, the eardrum, and
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the hearing bones. It is claimed that the fidelity at the third ear bone is improved
through the use of this system. Outpatient surgery is required to attach the magnet
to the hearing bone. The surgery is performed under local anesthetic and requires
about an hour.

One of the advantages of the DDHS is that it eliminates the feedback problem
that often occurs with a loose earmold of a conventional hearing aid. There is no
feedback because the DDHS does not produce amplified sound. It is also claimed
that sound quality is improved by the electromagnetic system and that earmolds
do not have to be fitted so tightly. The original study with five volunteers was
successful, and FDA authorized a larger study entailing 100 patients. The DDHS
is initially targeted at patients with a moderate hearing loss.

Drug Therapy
Drug delivery systems are being integrated into newer designs of cochlear implants.
The purpose of these drugs is to arrest the shriveling or demise of remaining hair
cells and neural structures in the cochlea and to promote the growth of neural
tentacles (called neurites) from spiral ganglion cells toward the electrodes. The
neurites help each electrode to function as an independent channel of stimulation.

Recent experiment with deafened guinea pigs demonstrated that injecting brain-
derived neurotrophic factor and ciliary neurotropic factor could increase the sur-
vival and, more importantly, the sensitivity of spiral ganglion cells.

A second approach is to block apoptosis, the normal process of cell death fol-
lowing injury. Self-destruct messages can be triggered by a number of events, for
example, acoustic trauma or ototoxic drugs that work through mitogen-activated
protein kinase (MAPK) signaling pathway. The pathway can be blocked at vari-
ous points, thanks to a protein called c-Jun N-terminal kinase (JNK). A peptide
inhibitor, developed by a multinational team at the University of Miami, targets
this enzyme. By blocking JNK, this team headed by Jing Wang and Thomas Van
De Water, prevented hair-cell death and hearing loss following acoustic trauma or
administration to the ototoxic antibiotic neomycin (Wang et al., 2003).

10.8 Hearing in Animals

Because their lives depend on the acuity of their hearing, many animals hear a
much wider range of frequencies than humans do (cf. Figure 10.9). The average
hearing range for humans is about 20 Hz–17 kHz, but killer whales have responded
to tones with the frequency range of approximately 0.5–125 kHz with a peak sensi-
tivity at about 20 kHz. Odontocetes (toothed whales) can produce sounds for two
overlapping functions: communicating and navigating. Higher frequency clicks
probably function primarily in echolocation. Most sound reception, or hearing,
seems to take place through the lower jaw. A killer whale may also receive sound
through soft tissue and bone surrounding the ear.
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Figure 10.9. Range of hearing in animals. Many animals hear a much wider range of
frequencies than the human ear can sense.

The term echolocation refers to an ability that odontocetes (and a few other
animals such as bats) possess that enables them to locate and discriminate objects
by projecting high-frequency sound waves and listening for the echoes. The hearing
of bats spans a 10 Hz–100 kHz range. Big brown bats (Eptesicus fuscus) produce
the frequency range of 10–100 kHz for sonar or for acoustic social communication
and they also hear those ultrasonic frequencies. They have a lower frequency region
of auditory sensitivity from 10 Hz to 5 kHz and may use these lower frequencies
to detect insect prey by passive hearing of the insect’s own sounds. The hearing
is tuned to 0.7–1.3 kHz indicating that some specialization of the auditory system
may underlie the capacity to hear these lower frequencies.

An Indian elephant is sensitive to low-frequency tones and could hear as low
as 16 Hz at 65 dB. However, the elephant is insensitive to high-frequency tones
and it generally could not hear above 12 kHz. The high-frequency hearing ability
is the poorest of any mammal yet tested and the failure of the elephant to hear
much above 10 kHz demonstrates that the inverse correlation between the head
size (i.e., the interaural distance) and high-frequency hearing acuity is valid even
for the largest of terrestrial mammals.

Psychophysical investigations in a number of avian (bird) species over the past
three decades have added significantly to the knowledge of hearing capabilities
of this vertebrate group. Behavioral measurements of absolute auditory sensitivity
in a wide variety of birds show a region of maximum sensitivity between 1 and
5 kHz, with a rapid decrease in sensitivity at higher frequencies. Data accumulated
to date suggest that, in the region of 1–5 kHz, birds show a level of hearing
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sensitivity similar in most respects to that found for the most sensitive members
of the mammal class, with avian performance clearly inferior above and below
this range of frequencies. Possible exceptions to this general picture include the
echolocating oilbird (Steatornis caripensis) and growing evidence that pigeons
(Columba livia) are sensitive to infrasound at moderate intensity levels.
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Problems for Chapter 10

1. Find the articulation index for a male speaker at a normal level 1 m from a
listener if we have the following background noise spectrum:

Center Frequency, Hz Noise Level, dB

200 42
250 39
315 44
400 46
500 48
630 38
800 30

1000 26
1250 20
1600 23
2000 18
2500 15
3150 14
4000 10
5000 10
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2. Find the PSIL from the following octave-band noise spectrum.

Center Frequency Background Noise Level, dB

500 55
1000 63
2000 72

3. Find the PSIL from the following octave-band noise spectrum:

Center frequency, Hz 63 125 250 500 1k 2k 4k 8k
Band-pressure level, dB 52 56 57 62 55 51 50 45

4. Determine the voice level necessary to effectively communicate of a distance
of 4 ft with a background of
(a) 63 dB
(b) 72 dB
(c) 85 dB

5. Why does the U.S. Occupational Safety and Health Administration prohibit
impact noises of 130 dB or more even if the overall sound pressure level is less
than 90 dB during the course of an 8-h day?

6. Express 35 dB I terms of pressure in pascals and in terms of intensity (W/cm2).
At 62.5 Hz, is this considered audible for normal hearing? If so, how much
above the MAP is the sound pressure level?

7. How loudly must one speak, in terms of decibels, with a white noise background
of 50 dB in order to be understood? How loud must the speech be in order to
be detected, if not necessarily understood?

8. At 500 Hz, a 40-dB tone sounds as equally loud as a 5-kHz tone. What is the
dB level of that 5 kHz tone?
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Acoustics of Enclosed Spaces:
Architectural Acoustics

11.1 Introduction

Although people have gathered in large auditoriums and places of worship since
the advent of civilization, architectural acoustics did not exist on a scientific basis
until a young professor of physics at Harvard University accepted an assignment
from Harvard’s Board of Overseers in 1895 to correct the abominable acoustics
of the newly constructed Fogg Lecture Hall. Through careful (but by present-day
standards, rather crude) measurements with the use of a Gemshorn organ pipe
of 512 Hz, a stopwatch, and the aid of a few able-bodied assistants who lugged
absorbent materials in and out of the lecture hall, Wallace Sabine established
that the reverberation characteristics of a room determined the acoustical nature
of that room and that a relationship exists between quality of the acoustics, the
size of the chamber and the amount of absorption surfaces present. He defined a
reverberation time T as the number of seconds required for the intensity of the
sound to drop from a level of audibility 60 dB above the threshold of hearing to the
threshold of inaudibility. To this day reverberation time still constitutes the most
important parameter for gauging the acoustical quality of a room. The original
Sabine equation

T = 0.049V∑
i

Si αi

is deceptively simple, as effects such as interference or diffraction and behavior
of sound waves as affected by the shape of the room, presence of standing waves,
normal modes of vibration, are not embodied in that equation. Here V is the room
volume in cubic feet, Si the component surface area and αi the corresponding
absorption coefficient. On the basis of his measurements Sabine was able to cut
down the reverberation time of the lecture hall from 5.6 s through the strategic
deployment of absorbing materials throughout the room. This accomplishment
firmly established Sabine’s reputation, and he became the acoustical consultant
for Boston Symphony Hall, the first auditorium to be designed on the basis of
quantitative acoustics.

243
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In this chapter we shall examine the behavior of sound in enclosed spaces, and
develop the fundamental equations that are used in optimizing the acoustics of
auditoriums, music halls, and lecture rooms. We shall also study the means of im-
proving room acoustics through installation of appropriate materials. This chapter
concludes with descriptions of a number of outstanding acoustical facilities.

11.2 Sound Fields

The distribution of acoustic energy, whether originating from a single or multiple
sound sources in an enclosure, depends on the room size and geometry and on the
combined effects of reflection, diffraction, and absorption. With the appreciable
diffusion of sound waves due to all of these effects it is no longer germane to
consider individual wave fronts, but to refer to a sound field, which is simply the
region surrounding the source. A free field is a region surrounding the source,
where the sound pattern emulates that of an open space. From a point source the
sound waves will be spherical, and the intensity will approximate the inverse square
law. Neither reflection nor diffraction occurs to interfere with the waves emanating
from the source. Because of the interaction of sound with the room boundaries and
with objects within the room, the free field will be of very limited extent.

If one is close to a sound source in a large room having considerably absorbent
surfaces, the sound energy will be detected predominantly from the sound source
and not from the multiple reflections from surroundings. A free field can be sim-
ulated throughout an entire enclosure if all of the surrounding surfaces are lined
with almost totally absorbent materials. An example of such an effort to simulate
a free field is the extremely large anechoic (echoless) chamber at Lucent Tech-
nologies Bell Laboratories in Murray Hill, New Jersey, shown in the photograph
of Figure 11.1. Such a chamber is typically lined with long wedges of absorbent
foam or fiberglass and the “floor” consists of either wire mesh or grating suspended
over wedges installed over (and covering entirely) the “real” floor underneath. Pre-
cisely controlled experiments on sound sources and directivity patterns of sound
propagation are rendered possible in this sort of chamber.

A diffuse field is said to occur when a large number of reflected or diffracted
waves combine to render the sound energy uniform throughout the region under
consideration. Figure 11.2 illustrates how diffusion results from multiple reflec-
tions. The degree of diffusivity will be increased if the room surfaces are not
parallel so there is no preferred direction for sound propagation. Concave surfaces
with radii of curvature comparable to sound wavelengths tend to cause focusing,
but convex surfaces will promote diffusion. Multiple speakers in amplifying sys-
tems auditoriums are used to achieved better diffusion, and special baffles may be
hung from ceilings to deflect sound in the appropriate directions.

Sound reflected from walls generates a reverberant field that is time dependent.
When the source suddenly ceases, a sound field persists for a finite interval as
the result of multiple reflections and the low velocity of sound propagation. This
residual acoustic energy constitutes the reverberant field. The sound that reaches a
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Figure 11.1. Photograph of the large anechoic chamber at the Lucent Bell Laboratory
in Murray Hill, NJ. Dr. James E. West, a former president of the Acoustical Society of
America, is shown setting up test equipment. (Courtesy of Lucent Technologies.)

listener in a fairly typical auditorium can be classified into two broad categories: the
direct (free field) sound and indirect (reverberant) sound. As shown in Figure 11.3,
the listener receives the primary or direct sound waves and indirect or reverberant
sound. The amount of acoustic energy reaching the listener’s ear by any single
reflected path will be less than that of the direct sound because the reflected path is
longer than the direct source–listener distance, which results in greater divergence;
and all reflected sound undergo an energy decrease due to the absorption of even
the most ideal reflectors. But indirect sound that a listener hears comes from a great
number of reflection paths. Consequently, the contribution of reflected sound to
the total intensity at the listener’s ear can exceed the contribution of direct sound
particularly if the room surfaces are highly reflective.

Figure 11.2. Sound diffusion resulting from multiple reflections.
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Figure 11.3. Reception of direct and indirect sound.

The phases and the amplitudes of the reflected waves are randomly distributed
to the degree that cancellation from destructive interference is fairly negligible. If a
sound source is operated continuously the acoustic intensity builds up in time until a
maximum is reached. If the room is totally absorbent so that there are no reflections,
the room operates as an anechoic chamber, which simulates a free field condition.
With partial reflection, however, the source continues to add acoustic energy to the
room, that is partially absorbed by the enclosing surfaces (i.e., the walls, ceiling,
floor and furnishings) and deflected back into the room. For a source operating in
a reverberation chamber the gain in intensity can be considerable—as much as ten
times the initial level. The gain in intensity is approximately proportional to the
reverberation time; thus it can be desirable to have a long reverberation time to
render a weak sound more audible.

11.3 Reverberation Effects

Consider a sound source that operates continuously until the maximum acoustic
intensity in the enclosed space is reached. The source suddenly shuts off. The
reception of sound from the direct ray path ceases after a time interval r/c, where
r represents the distance between the source and the reception point and c the sound
propagation velocity. But owing to the longer distances traveled, reflected waves
continue to be heard as a reverberation which exists as a succession of randomly
scattered waves of gradually decreasing intensity.

The presence of reverberation tends to mask the immediate perception of newly
arrived direct sound unless the reverberation drops 5–10 dB below its initial level
in a sufficiently short time. Reverberation time T , the time in seconds required for
intensity to drop 60 dB, offers a direct measure of the persistence of the reverber-
ation. A short reverberation time is obviously necessary to minimize the masking
effects of echoes so that speech can be readily understood. However, an extremely
short reverberation time tends to make music sound harsher—or less “musical”—
while excessive values of reverberation time T can blur the distinction between
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Figure 11.4. Typical reverberation times for various auditoriums and functions.

individual notes. The choice of T, which also depends on the room volume, there-
fore represents an optimization between two extremes.

Figure 11.4 represents the accumulation of optimal reverberation time data as
functions of intended use and enclosure volume. Lower values of T occur from
increased absorption of sound in the surfaces of the enclosures. Hard surfaces
such as ceramic tile floors and mirrors tend to lengthen the reverberation time. In
addition to reverberation time, the ability of a chamber or enclosure to screen out
external sound minimizes annoyance or masking effects. The acoustic transmission
of walls, treated in Chapter 12, constitutes a major factor in enclosure design. A
short reverberation time with its attendant high absorption tends to lessen the
ambient noise level generated by external sounds that penetrate the walls of the
enclosure.

11.4 Sound Intensity Growth in a Live Room

We now apply the classic ray theory to deal with a sound source operating con-
tinuously in an enclosure, which will yield results in fairly good agreement with
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Figure 11.5. Geometric configuration for setting up the relationship between energy
density and intensity of sound.

experimental measurements. The process of absorption in the medium or the en-
closing surfaces prevents the intensity from becoming infinitely large. Absorption
in the medium is fairly negligible in medium- and small-sized enclosures, so the
ultimate intensity depends upon the absorption power of the boundary surfaces. If
the enclosure’s boundary surfaces have high absorption the intensity will quickly
achieve the maximum which exceeds only slightly the intensity of the direct ray.
If the enclosure has highly reflective surfaces, i.e., low absorption, a “live” room
ensues; the growth of the intensity will be slow and appreciable time will have
elapsed for the intensity to reach its maximum.

After a sound source is started in a live room, reflections from the wall become
more uniform in time as the sound intensity increases. With the exception of close
proximity to the source, the energy distribution can be considered uniform and
random in direction. In reality a signal source having a single frequency will result
in standing-wave patterns, with resultant large fluctuations from point to point in
the room. But if the sound consists of a uniform band of frequencies or a pure tone
warbling over at least a half octave, the interference effects of standing waves are
obliterated.

Referring to Figure 11.5, we establish the relationship between intensity (which
represents the energy flow) and energy density of randomly distributed acoustic
energy. In the figure dS represents an element of the wall surface and dV the volume
element in the medium at a distance r from dS. The distance r makes an angle θ
with the normal NN′ to dS. Let the average acoustic energy density E (in W/m3) be
assumed uniform throughout the region under consideration. The acoustic energy
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in incremental volume dV is E dV. The surface area of the sphere of radius r
encompassing dV is 4πr2. The projected area of dS on the sphere is cos θ dS. The
portion of the total energy contained in dV is given by the ratio dS cos θ /4πr2. The
energy from dV that strikes dS directly becomes

d E = E dV dS cos θ

4π r2
. (11.1)

Now consider the volume element dV as being part of a hemisphere shall of
radius rand thickness dr. The acoustic energy rendered to S by the complete shell
is found by assuming a circular zone of radius r sin θ (with θ treated as a constant)
in Figure 11.5 and integrating over the entire surface of the shell. The volume of
the resultant element is 2πr sin θ r dr dθ . From θ = 0 to θ = π /2, and Equation
(11.1) yields

E = E dS dV

2

∫ π/2

0
sin θ cos θ dθ = E dS dr

4

This energy arrives during time interval t = dr/c. Hence, the rate of acoustic energy
impinging dS from all directions is

E

t
= Ec dS

4

or Ec/4 per unit area, which is therefore the intensity I of the diffused sound at
the walls. This is also equal to one fourth of a plane wave of energy intensity I
incident at a normal angle onto a plane. The intensity I of the diffuse sound at the
wall becomes

I = Ec

4
(11.2)

11.5 Sound Absorption Coefficients

All materials constituting the boundaries of an enclosure will absorb and reflect
sound. A fraction α of the incident energy is absorbed and the balance (1 – α) is
reflected. Reflection is indicated by the reflection coefficient r defined as

r = amplitude of reflected wave

amplitude of incident wave

Because the energy in a sound wave is proportional to the square of the amplitude,
the sound absorption coefficient α and the reflection coefficient are related by

α = 1 − r2

The value of the sound absorption coefficient α will vary with the frequency of the
incident ray and the angle of incidence. Materials comprising room surfaces are
subject to sound waves that impinge upon them from many different angles as are-
sult of multiple reflections. Hence, published data for absorption coefficients
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Table 11.1. Absorption Coefficients.

Octave-Band Center Frequency (Hz)

125 250 500 1000 2000 4000

Brick, unglazed 0.03 0.03 0.03 0.04 0.05 0.07
Brick, unglazed, painted 0.01 0.01 0.02 0.02 0.02 0.03
Carpet on foam rubber 0.08 0.24 0.57 0.69 0.71 0.73
Carpet on concrete 0.02 0.06 0.14 0.37 0.60 0.65
Concrete block, coarse 0.36 0.44 0.31 0.29 0.39 0.25
Concrete block, painted 0.10 0.05 0.06 0.07 0.09 0.08
Floors, concrete or terrazzo 0.01 0.01 0.015 0.02 0.02 0.02
Floors, resilient flooring 0.02 0.03 0.03 0.03 0.03 0.02

on concrete
Floors, hardwood 0.15 0.11 0.10 0.07 0.06 0.07
Glass, heavy plate 0.18 0.06 0.04 0.03 0.02 0.02
Glass, standard window 0.35 0.25 0.18 0.12 0.07 0.04
Gypsum, board 0.5 in. 0.29 0.10 0.05 0.04 0.07 0.09
Panels, fiberglass, 1.5 in. thick 0.86 0.91 0.80 0.89 0.62 0.47
Panels, perforated metal, 4 in. thick 0.70 0.99 0.99 0.99 0.94 0.83
Panels, perforated metal with 0.21 0.87 1.52 1.37 1.34 1.22

fiberglass insulation, 2 in. thick
Panels, perforated metal with 0.89 1.20 1.16 1.09 1.01 1.03

mineral fiber insulation, 4 in. thick
Panels, plywood, 3/8 in. 0.28 0.22 0.17 0.09 0.10 0.11
Plaster, gypsum or lime, rough 0.02 0.03 0.04 0.05 0.04 0.03

finish on lath
Plaster, gypsum or lime, smooth 0.02 0.02 0.03 0.04 0.04 0.03

finish on lath
Polyurethane foam, 1 in. thick 0.16 0.25 0.45 0.84 0.97 0.87
Tile, ceiling, mineral fiber 0.18 0.45 0.81 0.97 0.93 0.82
Tile, marble or glazed 0.01 0.01 0.01 0.01 0.02 0.02
Wood, solid, 2 in. thick 0.01 0.05 0.05 0.04 0.04 0.04
Water surface nil nil nil 0.003 0.007 0.02
One person 0.18 0.4 0.46 0.46 0.51 0.46
Air nil nil nil 0.003 0.007 0.03

Note: The coefficient of absorption for one person is that for a seated person (m2 basis). Air absorption
is on a per cubic meter basis.

are for “random” incidence as distinguished from “normal” or “perpendicular”
incidence.

The angle–absorption correlation appears to be of somewhat erratic nature,
but at high frequencies the absorption coefficients in some materials is roughly
constant at all angles. At low frequencies the random-incidence absorption tends
to be greater than for normal incidence. However, as Table 11.1 shows, α varies
considerably with frequency for many materials, and the absorption coefficients
are generally measured at six standard frequencies: 125, 250, 500, 1000, 2000,
and 4000 Hz. Absorption occurs as the result of incident sound penetrating and
becoming entrapped in the absorbing material, thereby losing its vibrational energy
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that converts into heat through friction. Ordinarily the values of α should fall
between zero for a perfect reflector and unity for a perfect absorber. Measurements
of α > 1.0 have been reported, owing possibly to diffraction at low frequencies
and other testing condition irregularities.

Let α1, α2, α3, . . . αi denote the absorption coefficient of different materials of
corresponding areas S1, S2, S3, . . . . Si forming the interior boundary planes (viz.
the walls, ceiling and floor) of the room as well as any other absorbing surfaces
(e.g. furniture, draperies, people, etc.). The average absorption coefficient α for an
enclosure is defined by

α = α1 S1 +α2 S2 +α3 S3 + · · · + αi Si

S1 + S2 + S3 + · · · + Si
= A

S
(11.3)

where A represents the total absorptive area
∑
αi Si , and S the total spatial area.

11.6 Growth of Sound with Absorbent Effects

The rate W of sound energy being produced equals the rate of sound energy ab-
sorption at the boundary surfaces of the room plus the rate at which the energy
increases in the medium throughout the room. This may be expressed as a differ-
ential equation governing the growth of acoustic energy in a live room:

V
dE

dt
+ AcE

4
≡ W (11.4)

The solution for E in Equation (11.4) is

E = 4W

Ac

(
1 − e−(Ac/4V )t

)
(11.5)

with the initial condition that the sound source begins operating at t = 0. From the
relationship of Equation (11.2) the intensity becomes

I = W

A

(
1 − e−(Ac/4V )t

)
(11.6)

and from Equation (3.58) the energy density is

E = p2

2 ρ0 c2
(11.7)

The mean square acoustic pressure becomes

p2 = 4W ρ0 c

A

(
1 − e−(Ac/4V )t

)
(11.8)

Equation (11.8) is analogous to the one describing the growth of direct current in
an electric circuit containing an inductance and a resistance. The time constant of
the acoustic process is 4V/Ac. If the total absorption is small and the time constant
is large, a longer time will be necessary for the intensity to approach its ultimate
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value of I∞ = W/A. The ultimate values of the energy density and mean square
acoustic pressure are given by

E∞ = 4W

Ac
, p2

∞ = 4W ρ0c

A

A number of caveats pertain to the use of Equation (11.8). In order that the assump-
tion of an even distribution of acoustic energy be cogent, a sufficient time t must
have elapsed for the initial rays to undergo several reflections at the boundaries.
This means approximately 1/20 of a second should have elapsed in a small cham-
ber; and the time must approach nearly a full second for a large auditorium. The
final energy density, being independent of the size and shape of the room, should
be the same at all points of the room and dependent only upon the total absorption
A. But Equation (11.6) does not hold for spherical or curved rooms which can
focus sounds; neither is Equation (11.8) applicable to rooms having deep recesses
nor to oddly shaped rooms or rooms coupled together by an opening, and nor to
rooms with some surfaces of extraordinarily high absorption coefficients α (these
cause localized lesser values of energy densities).

11.7 Decay of Sound

We can now develop the differential equation describing the decay of uniformly
diffuse sound in a live room. The sound source is shut off at time t = 0, meaning
W = 0 at that instant. E0 denotes the uniformly distributed energy density at that
instant. From Equation (11.4)

AcE

4V
dt = d E (11.9)

and the solution to Equation (11.9) becomes

E = E0 e−(Ac/4V )t (11.10)

The intensity I at any time t after the cessation of the sound source is related to
the initial intensity I0 by

I

I0
= e−(Ac/4V ) (11.11)

Applying the operator 10 log to both sides of Equation (11.11) results in

I L = 10 log e−(Ac/4V )t = 10

2.3
ln e−(Ac/4V )t = −1.087Act

V
(11.12)

where IL denotes the intensity level change in decibels. The intensity level in a
live room decreases with elapsed time at a constant decay rate D (in dB/s),

D = 1.087Ac

V
.
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Following Sabine’s definition, we define the reverberation time T as the time
required for the sound level in the room to decay by 60 dB:

T = 60

D
= 55.2V

Ac
(11.13)

Expressing volume V in m3 and area S used to compute A in m2, and setting sound
propagation speed c = 343 m/s, Equation (11–13) becomes

T = 0.161V

A
(11.14)

Equation (11.14) becomes for English units

T = 0.049V

A
(11.15)

where volume V is rendered in ft3 and A in ft2 (or sabins, with 1 sabin equal to
1 ft2 of absorption area αS). (One metric sabin is equal to 1 m2 of absorption area.)
It becomes apparent here that the reverberation time for a room can be controlled
by selecting materials with the appropriate acoustic absorption coefficients. The
absorption coefficient of a material can be measured by the introduction of a definite
area of the absorbent material in a specially constructed live room or reverberation
(or echo) chamber. A photograph of such a chamber is given in Figure 11.6.

Figure 11.6. Photograph of a reverberation chamber. (Courtesy of Eckel Industries, Inc.)
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Example Problem 1: Reverberation Prediction
A room 8 m long, 4 m wide, and 2.8 m high contains four walls faced with gypsum
boards. The only exceptions to the wall area are a glass window 1 m by 0.5 m and a
plywood-paneled door 2.2 m by 0.6 m. In addition the door has a gap underneath,
1.5 cm high. In order to estimate the reverberation time of the room at 500 Hz we
make use of the data in Table 11.1. Predict the reverberation time T .

Solution
The absorption area (in m2) is found as follows:

A = ! Si αi = [2(8 × 2.8) + 2(4 × 2.8) − 2.2(0.6) − (0.015)(0.6) − 1.0(0.5)]

× 0.05 + (2.2)(0.6)(0.17) + (0.015)(0.6)(1) + 1.0(0.5)(0.18)

+ (4)((8)(0.81) + (4)(8)(0.81) = 32.70 m2.

Applying Equation (11.14):

T = 0.161 × 8 × 4 × 2.8

32.7
= 0.82 s.

The gap at the bottom of the door is treated as a complete sound absorber with a
coefficient of unity. From the above estimated value of the reverberation time of
0.44 s and a chamber volume of 89.6 m3, the room may be suitable for use as a
classroom according to Figure 11.4.

11.8 Decay of Sound in Dead Rooms

The derivation of Equation (11.14) was based on the assumption that a sufficient
number of reflections occur during the growth or decay of sound and also that
the energy of the direct sound and the energy of the fractional amount of sound
reflected were both sufficient to ensure a uniform energy distribution. In the case
of anechoic chambers, where the absorption coefficient of the materials constitut-
ing the boundaries is very close to unity, it is apparent that the derivations of the
preceding equations for growth and decay of sound are not applicable. The only
energy present is the direct wave emanating from the sound source. The rever-
beration time must be zero, whereas application of Equation (11.14) would yield
a finite reverberation time of 0.161V/S, where S is simply the total area of the
interior surfaces of the chamber. Thus, it is apparent that Equation (11.14) would
be increasingly in error as the average sound absorption coefficient increases. If
the average value of the absorption coefficient exceeds 0.2, Equation (11.14) will
be in error by approximately 10%.

A different approach to ascertaining the decay of sound in a dead room, which
was developed by Eyring (1930), is to consider the multiplicity of reflections as a
set of image sources, all of which are considered to exist as soon as the real source
begins. Let ᾱ, found from the relationship ᾱ = (

∑
αi Si )/

∑
Si denote the average
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sound absorption coefficient of the room’s boundary materials. The growth of
acoustic energy at any point in the room results from the accumulation of successive
increments from the sound source, from the first-order (single reflection) images
with strengths W (1 – ᾱ), from the second-order (secondary reflection) images
with strengths W (1 – ᾱ)2, and so on, until all the image sources of appreciable
strengths have rendered their contributions. When the true sound source is stopped,
the decay of the sound occurs with all the image sources stopped simultaneously
along with the source. The energy decay in the room occurs from successive losses
of acoustic radiation from the source, then from the first-order images, the second-
order images, and so on.

Eyring derived the following equation for the growth in acoustic energy density:

E = − 4W

cS ln (1 − α)

[
1 − ecS ln (1−α)t/4V

]
(11.16)

The above equation is very similar to Equation (11.5) excepting that the total room
absorption is given by

α = −S ln(1 − α) (11.17)

Here S is the total area of the boundary surfaces of the room. In a like fashion the
analogy to Equation (11.6) for the decay of sound energy is given by

E = E0 ecS ln(1−α)t/4V

and the decay rate in dB/s is expressed as

D = −1.08cS ln(1 − α)

V

with the reverberation time expressed by

T = 0.161V

−S ln(1 − α)

For small values of absorption (α 	 1) the term ln(1 – α) may be replaced by α,
the first term in an infinite series. This results in recovering the Sabine formula
for live rooms. It should also be noted that the coefficient 0.161 for the Sabine
and the Eyring formulas, which is based on the speed of sound at 24◦C, will vary
according to air temperature. The coefficient becomes somewhat higher at lower
air temperatures and vice versa.

Another formula for determining the reverberation time of a room lined with
materials of widely ranging absorption coefficients was developed by Millington
and Sette (Millington, 1932; Sette, 1993). The Millington–Sette theory indicates
that the total room absorption is given by

A =
∑

−Si ln(1 − ᾱi )

which yields the reverberation time

T = 0.161V∑− Si ln(1 − ᾱi )
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11.9 Reverberation as Affected by Sound Absorption
and Humidity in Air

We have previously not considered the effect of absorption of sound and humidity in
air on reverberation times. The volume of air contained in very large auditoriums
or a place of worship can absorb an amount of acoustic energy that cannot be
neglected as in the case with smaller rooms. If a room is small, the number of
reflections from the boundaries is large and the amount of time the sound wave
spends in the room is correspondingly small. In this situation acoustic energy
absorption in the air is generally not important. In very large room volumes the
time a wave spends in the air between reflections becomes greater to the extent
that absorption of energy in air no longer becomes negligible. The reverberation
equations must now include the effect of air absorption, particularly at higher
frequencies (>1 kHz).

Sound waves lose some energy through viscous effects during the course of
their propagation through a fluid medium. The intensity of a plane wave lessens
with distance according to the equation

I = I0e−2βx = I0e−mx .

Here m = 2β represents the attenuation coefficient of the medium. Some texts use
α rather than β to denote the attenuation constant of the medium; we eschew its
use in order to avoid confusion with α used in this chapter to denote the absorption
coefficient of a surface. During time interval t , a sound wave travels a distance
x = ct, and the preceding equation may be revised to read

I = I0 e(β/4V +m)ct

The expression for the reverberation time becomes

T = 0.161V

A + 4mV
(11.18)

where the constant mis expressed in units of m–1. The total surface absorption A
is given either by Equation (11.3) or (11.17) depending whether that room fits into
the category of being an acoustically live or dead chamber. As the room volume V
becomes larger, the second term in the denominator of Equation (11.18) increases
in magnitude, as air absorption becomes more significant, due to increasing path
lengths between the walls. Since m also increases with frequency, air absorption
also becomes more manifest at higher frequencies (above 1 kHz) than at lower
frequencies. The values of m are given in Figure 11.71 as a function of humidity
for various frequencies at a normal room temperature of 20◦C. More details, also
given in tabular form, for a range of air temperatures and humidities are given
in the NASA report (1967), prepared by Cyril M. Harris, listed at the end of this
chapter. It is seen from Figure 11.7 that the effect of humidity reaches a maximum

1 The plot of Figure 11.7 applies to indoor sound propagation, not to outdoor propagation that includes
meteorological effects not present indoors.
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Figure 11.7. Values of the total attenuation coefficient m versus percent relative humidity
for air at 20◦C and normal atmospheric pressure for frequencies between 2 kHz and
12.5 kHz. Values are rendered in both SI units and U.S. Customary System units. (After
Harris, 1966, 1967.)

in each of the given frequencies in the 5–25% relative humidity range and then
trails off at higher humidities.

Example Problem 2
Find the air absorption at a frequency of 6300 Hz and 25% relative humidity for a
room volume of 20,000 m3.

Solution and Brief Discussion
From Figure 11.7 the value of m is equal to 0.026 m–1. The air absorption Aair =
4mV in Equation (11.18) is equal to 4 × (20,000 m3) × 0.026 m–1 = 2080 m2. If
we consider absorption at 500 Hz the effect of air absorption would be negligible
in comparison.
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11.10 Early Decay time (EDT10)

A modification of the reverberation time T60 is the early decay time, or EDT10,
which represents the time interval required for the first 10 dB of decay to occur,
multiplied by 6 to produce an extrapolation to 60 dB decay Originally proposed by
Jordan (1974), EDT10 is based on early psychoacoustical research, and according
to Cremer and Muller (1982), “the latter part of a reverberant decay excited by
a specific impulse in running speech or music is already masked by subsequent
signals once it has dropped by about 60 dB.”

11.11 Acoustic Energy Density and Directivity

In order to account for uneven distribution of sound in some sources, we express
the sound intensity I (W/m2) due to a point source of power W (W) in the direct
field (i.e., reflections are not considered) as

I = W Q(θ, φ)

4π r2
(11.19)

where r is the distance (m) from the source and Q(θ ,φ) is the directivity factor. The
directivity factor Q(θ ,φ) equals unity for an ideal point source that emits sound
evenly in full space. For an ideal point source above an acoustically reflective
surface, in an otherwise free half-space, Q(θ ,φ) equals 2. The sound or acoustic
energy density is the sound energy contained per m3 at any instant. In the direct
field in full space, the direct sound energy density DD (W s/m3) is given by

DD = I

c
= W Q(θ, φ)

4π r2 c
(11.20)

where c is the speed of sound in m/s.

11.12 Sound Absorption in Reverberant Field:
The Room Constant

The product IS gives the rate of acoustic energy striking a surface area S; and IS
cos θ gives that rate for the incidence angle θ . In an ideal reverberant field, with
equal probability for all angles of incidence, the average rate of acoustic energy
striking one side of the surface is given by IS/4. The power absorbed by the surface
having an absorption coefficient α is

Power absorbed = α IS

4
= αcDR S

4

where DR denotes the reverberant sound field density. In a fairly steady state
condition the power absorbed is balanced by the power supplied by the source to
the reverberant field. This is the portion of the input power W that remains after
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one reflection:

Power supplied = W (1 − α)

The steady-state condition results in

c DR Sα

4
= W (1 − α)

which we rearrange to obtain the energy density in the reverberant field,

DR = 4W
1 − α

αcS
= 4W

cR
(11.21)

where the room constant R is by definition

R = αS

1 − α
.

In most cases, the boundaries of the actual enclosure and other objects inside the
enclosure are constructed of different materials with differing absorption coeffi-
cients. The room constant R of the enclosure is then described in terms of mean
properties by

R = ST α

1 − α

where

R = the room constant (m2)
ST = total surface area of the room (m2)
ᾱ = mean sound absorption coefficient =

∑
αi Si/ST .

11.13 Sound Levels due to Direct and Reverberant Fields

Near a point of nondirectional sound source, the sound intensity is greater than
from afar. If the source is sufficiently small and the room not too reverberant,
the acoustic field very near the source is independent of the properties of the
room. In other words, if a listener’s ear is only a few centimeters away from a
speaker’s mouth, the room surrounding the two persons has negligible effect on
what the listener hears directly from the speaker’s mouth. At greater distances
from the source, however, the direct sound decreases in intensity, and, eventually
the reverberant sound predominates.

If we are more than one-third wavelength from the center of a point source, the
energy density of a point r is given by Equation (11.20) for the direct sound field.
Combining the Equations for the direct and the reverberant sound intensities, i.e.,
Equations (11.20) and (11.21), we get the total sound intensity I given by

I = W

[
Q(θ, φ)

4π r2
+ 4

R

]
(11.22)



260 11. Acoustics of Enclosed Spaces: Architectural Acoustics

It is assumed that reverberant sound comes from nearly all directions in a fairly even
distribution. The modes generated by standing waves must be rather insignificant;
otherwise the assumption of uncorrelated sound is not valid and Equation (11.22)
will not truly constitute the proper model for the actual sound field.

The sound pressure level within the room can now be found from

L p = 10 log

(
I

Iref

)
= 10 log

[
W

(
1

4πr2
+ 4

R

)]
+ 120

= LW + 10 log

(
1

4πr2
+ 4

R

)
(11.23)

for an ideal point source emanating equally in all directions. The reference sound
intensity Iref is equal to 10–12 W/m2, and the sound power level LW of the source
is defined as

LW = 10 log

(
W

10−12

)

which is given in dB re 1 pW. For an ideal point source over an acoustically
reflective surface

L P = 10 log

[
W

(
1

2πr2
+ 4

R

)]
+ 120 = LW + 10 log

(
1

2πr2
+ 4

R

)
(11.24)

Equations (11.23) and (11.24) are based on the fact that the absorption coefficients
do not vary radically from point to point in the room and the source is not close
to reflective surfaces. If the sound power and room absorption characteristics are
assigned for each frequency band, the sound pressure level L P can be determined
for each frequency band in dB/octave, dB/one-third octave, and so on. If the sound
power level is A-weighted, and if the room constant is based on frequencies in the
same range as the frequency content of the source, the sound power level will be
expressed in dB(A).

Example Problem 3
Predict the reading of a sound pressure level meter 12 m from a source having
a sound power level of 108 dB(A) re 1 pW in a room with a room constant
R = 725 m2 (at the source frequencies). The source is mounted directly on an
acoustically hard floor.

Solution
We apply Equation (11.24) as follows:

L p = LW + 10 log

(
1

2πr2
+ 4

R

)
= 108 + 10 log[(2π × 122 m2)−1 + 4/725 m2]

= 86.2 dB(A)
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If the meter would be placed at R = 3 m from the source, the SPL meter reading
for L p will increase to 91.7dB(A).

11.14 Design of Concert Halls and Auditoriums

Ideally, the main objective of auditorium design is to get as many members of the
audience as close as possible to the source of the sound, because sound levels de-
crease with increasing distances from the sound source. A good visual line of sight
usually results in good acoustics, so stepped seating becomes desirable for larger
rooms seating more than 100 people. Reverberation should be controlled in order
to provide optimum reinforcement and equalization of sound. For speech the room
design should provide more in the way of direct sound augmented by reflections,
while the clarity of articulation of successive syllables must be sustained. Rooms
for music typically have longer reverberation times because the requirements for
articulation are not as stringent, and more enhancement of the sound is desirable.

The aim of the design of a listening type of facility is to avoid the following
acoustic defects (Siebein, 1994).

� Echoes, particularly those from the rear walls of the facility. Echoes can be
lessened or eliminated by placing absorbent panels or materials on the reflecting
walls or introducing surface irregularities to promote diffusion of the sound.

� Excessive loudness can occur from prolonged reverberation. Again, the proper
deployment of absorbent materials should alleviate this problem.

� Flutter echo results from the continued reflection of sound waves between two
opposite parallel surfaces. This effect can be especially pronounced in small
rooms; and this can be contravened by splaying the walls slightly (so as to avoid
parallel surfaces) or using absorbent material on one wall.

� Creep is the travel of sound around the perimeter of domes and other curved
surfaces. This phenomenon is also responsible for whispering gallery effects in
older structures with large domed roofs.

� Sound focusing arises when reflections from concave surfaces tend to concen-
trate the sound energy at a focal point.

� Excessive or selective absorption occurs when a material that has a narrow range
of acoustical absorption is used in the facility. The frequency that is absorbed is
lost, resulting in an appreciable change in the quality of the sound.

� Dead spots occur because of sound focusing or poorly chosen reflecting panels.
Inadequate sound levels in specific areas of the listening facility can result.

11.15 Concert Halls and Opera Houses

Three basic shapes exist in the design of large music auditoriums, namely (1)
rectangular, (2) fan-shaped, and (3) horseshoe, all of which are illustrated in floor
plans of Figure 11.8. A fourth category is the “modified arena”, nearly elliptical in
shape. The Royal Albert Hall (constructed in 1871) in London, the Concertgebouw
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Figure 11.8. Three basic hall configurations: rectangular, fan shaped, and horseshoe
shaped.

(1887) in Amsterdam, the Sidney Opera House (opened in 1973), and the Colorado
Symphony’s Boettcher Concert Hall in Denver (opened in 1978 and acoustically
remodeled in 1993) are examples of this type of facility.

The rectangular hall is quite traditional, and it has been built to accommodate
both small and large audiences. But these halls will always generate cross reflec-
tions (flutter echoes) between parallel walls. Sound can also be reflected from
the rear walls back to the stage, depending on balcony layout and the degree of
sound absorption. These reflections can help in the buildup of sound and provides
a reasonable degree of diffusion in halls of modest interior dimensions. A con-
siderably larger hall can result in standing wave resonances and excessive flutter
echoes.

It is interesting to note that the first music hall to be designed from a scientific
viewpoint, by none other than Wallace C. Sabine, is the Boston Symphony Hall
(1900), views of which are given in Figures 11.9 and 11.10. The structure contains
a high, textured ceiling and two balconies extending along three walls. Volume is
602,000 ft3; seating capacity 2631; and the reverberation time in the 500–1000 Hz



Figure 11.9. A view of the Boston Symphony Hall from the stage. Wallace Clement
Sabine was the principal acoustical consultant for this facility. Reprinted with permission
from Leo Beranek, Concert Halls and Opera Houses: Music, Acoustics, and Architecture,
2nd ed. (New York, NY: Springer, 2004), 48.

Figure 11.10. A stage area of the Boston Symphony Hall. Reprinted with permission
from Leo Beranek, Concert Halls and Opera Houses: Music, Acoustics, and Architecture,
2nd ed. (New York, NY: Springer, 2004), 48.
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range is 1.8 s (occupied). Another example of a great rectangular hall is the vener-
able Grösser Musikvereinssaal (1870) in Vienna which has a reverberation time of
2.05 (occupied) in a volume of 530,000 ft3. Its superior acoustics can be attributed
to its relatively small size, high ceiling, irregular interior surfaces and the plaster
interior (Beranek, 2004).

A fan-shaped hall accommodates, through its spread, a larger audience within
closer range from the sound source (stage). It features nonparallel walls that
eliminate flutter echoes and standing waves; and most audience members can
obtain a pleasing balance between direct and reflected sounds. A disadvantage
in terms of early time delay gap is the distance from the side walls. Often it is
necessary to add a series of inner reflectors or canopies hanging from ceilings over
the proscenium area to maintain articulation and other acoustical characteristics.
Many architects in the United States have resorted to the fan-shaped hall design in
order to accommodate larger audiences while retaining an appreciable degree of
both visual and aural coupling to the stage area. Relatively modern examples of
this design are the Dorothy Chandler Pavilion (1964) in Los Angeles; the Orchestra
Hall (completed in 1904 and most recently renovated in 1997, Chicago; the East-
man Theater (opened in 1922 as a movie theater and converted into a concert hall
in 1930) in Rochester, New York; and the Kleinhaus Music Hall (1940, designed
by Eliel and Eero Saarinen) in Buffalo, New York.

Over a number of centuries horseshoe-shaped structures have been used as the
preferred design for opera houses and concert halls of modest seating capacity. This
design provides for a greater sense of intimacy, and the textures of convex surfaces
promote adequate diffusion of sound. The multiple balconies allow for excellent
line of sight and short paths for direct sound. The La Scala Opera House (Figures
11.11a, b) in Milan is probably the most notable example of the horseshoe design. It
was opened in 1778. This edifice, formally known as Teatro alla Scala, was closed
in 2001 for 3 years to undergo a badly needed renovation. A tubular structure and
a 17-story fly tower designed by Mario Botta were added to provide stagecraft
storage, dressing rooms, and rehearsal rooms. In addition to repairing the ravages
of time on the structure, modern stage machinery and new wiring were installed,
as well as a new heating, ventilation and air conditioning system. The acoustics
were improved by the prominent acoustician, Higini Arau from Barcelona. Other
celebrated examples of the horseshoe design are the Carnegie Hall (completed
1897, renovated 1983–1995) in New York City and the Academy of Music (the
first opera house in the United States, opened in 1857) in Philadelphia.

Nearly all concert halls have balconies, which were designed to accommodate
additional seating capacity within a smaller auditorium volume, so that listeners
can sustain an intimate relationship with the stage. The depths of the balconies gen-
erally do not exceed more than twice their vertical “window” (opening) to the stage.
In fact a smaller ratio is desirable to minimize undue sound attenuation at the rear
wall. A rule of the thumb in contemporary acoustical design: the depth of the bal-
cony should not exceed 1.4 times its outlook to the stage at the front of the balcony.

In all types of auditorium design, ceilings constitute design opportunities for
transporting sound energy from the stage to distant listeners. In Figure 11.12, it is
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(a)

(b)

Figure 11.11. (a) View looking toward the stage of the La Scala Opera House. The theater
was closed down for three years for seriously needed renovations; (b) a classic example
of the horseshoe configuration. (Courtesy of Dr. Antonio Acerba Cantier Escala)
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Figure 11.12. Transmission of sound to all areas of an auditorium through the ceiling and
floor profiling.

shown how a ceiling can convey sound to the listeners without imposing a great
time difference between direct and ceiling-reflected sound. Floor profile is also
important in establishing the proper ratio of direct to indirect sound. Splays on the
side walls have proven effective in promoting diffusion and uniformity of loudness.
Rear walls generally should be absorbent to minimize echoes being sent back to
the stage.

Many concert halls have been built throughout the world, some with outstanding
acoustics and others resulting in dismal sound. Among the features common to all
of the aurally superior halls are a limited audience capacity (generally 2800 seats
or less), extreme clarity of sound so that the audience can clearly distinguished the
individual instruments of the orchestra without loss of fullness or blending of tones
associated with reverberation. A good hall also allows the orchestra to hear itself.

Table 11.2 contains a summary of the characteristics of a number of promi-
nent musical facilities all over the world. Figure 11.13 shows the stage view of
the Orchestra Hall in Minneapolis (1974), which is patterned after the classical
rectangular design. The hall contains a slanted floor with 1590 seats and an addi-
tional 983 seats are located in the three-stepped balcony tiers, making for a total
audience capacity of 2573. A random pattern of plaster cubes covers the ceiling,
providing effective diffusion of sound throughout the hall. This overlay of cubes
also continues down the back wall, behind the stage, as shown in Figure 11.13.
Wood paneling partially covers the walls, and both the flooring of the stage and
audience areas are wood. This concert hall is notable for its clarity, dynamic range,
and balance.

Another acoustic success among the contemporary musical facilities is the
Kennedy Center for the Performing Arts which opened in Washington, D.C. in
1971. The Center consists of a single structure that contains a 2759-seat concert
hall, a 2319-seat opera house (Figure 11.14), and a 1142-seat theater. The loca-
tion was environmentally challenging, for the Center is situated on a site near the
Potomac River, in close proximity to the Washington Ronald Reagan National
Airport on the other side of the river. Both commercial and private aircraft fly as
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Table 11.2. Reverberation Times of Leading Concert Halls and Auditoriums.

Reverberation Timea

Volume (ft3) Seating Capacity Occupied Unoccupied

United States
Baltimore, lyric Theatre 744,000 2616 1.47 2.02
Boston Symphony Hall 662,000 2631 1.8 2.77
Buffalo, Kleinhans Music Hall 644,000 2839 1.32 1.65
Cambridge, Kresge Auditorium 354,000 1238 1.47 1.7
Chicago, Aric Crown Theatre 1,291,000 5081 1.7 2.45
Cleveland, Severance Hall 554,000 1890 1.7 1.9
Detroit, Ford Auditorium 676,000 2926 1.55 1.95
New York, Carnegie Hall 857,000 2760 1.7 2.15
Philadelphia Academy of Music 555,000 2984 1.4 1.55
Purdue University Hall of Music 1,320,000 6107 1.45 1.6
Rochester, New York, Eastman Theatre 900,000 3347 1.65 1.82

Austria
Vienna, Grosser Musikvereinssaal 530,000 1680 2.05 3.6

Belgium
Brussels, Palais des Beaux-Arts 442,000 2150 1.42 1.95

Canada
Edmonton and Calgary, Alberta Jubilee Halls 759,000 2731 1.42 1.8
Vancouver, Queen Elizabeth Theatre 592,000 2800 1.5 1.9

Denmark
Tivoli Koncertsal 450,000 1789 1.3 2.25

Finland
Turku, Konserttisali 340,000 1002 1.6 1.95

Germany
Berlin, Musikhochschule Konzertsaal 340,000 1340 1.65 1.95
Bonn, Beethovenhalle 555,340 1407 1.7 1.95

Great Britain
Edinburgh, Usher Hall 565,000 2760 1.65 2.52
Liverpool Philharmonic Hall 479,000 1955 1.5 1.65
London, Royal Albert Hall 3,060,000 5080 2.5 3.7
London, Royal Festival Hall 755,000 3000 1.47 1.77

Israel
Tel Aviv, Frederic R. Mann Auditorium 750,000 2715 1.55 1.97

Italy
Milan, Teatro Alla Scala 397,300 2289 1.2 1.35

Netherlands
Amsterdam, Concertgebouw 663,000 2206 2.0 2.4

Sweden
Gothenburg, Konserthus 420,000 1371 1.7 2.0

Switzerland
Zurich, Grosser Tonhallesaal 402,500 1546 1.6 3.85

Venezuela
Caracas, Aula Magna 880,000 2660 1.35 1.8

a At 500–1000 Hz.
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Figure 11.13. The stage area of the Minnesota Orchestra Hall in Minneapolis. (Courtesy
of the Minnesota Orchestral Association.)

low as a few hundred feet directly over the roof, and occasionally helicopters pass
by along the Potomac River at rooftop levels. In addition, vehicular traffic runs
across the river and directly beneath the plaza of the Center.

To deal with these external noise sources, the Center was constructed as a
box-within-a-box, so that each of the auditoriums is totally enclosed within an
outer shell. The columns within each auditorium are constructed to isolate interior

Figure 11.14. The interior of the John F. Kennedy Opera House in Washington, DC.
(Courtesy of the John F. Kennedy Center. Photograph by Scott Suchman.)
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ceilings, walls, and floors from both airborne and mechanical vibrations. The
double-wall construction generally consists of 6-in. solid high-density blocks sep-
arated by a 2-in. air gap. The huge windows in the Grand Foyer facing the river
consist of 1.27-cm (1/2-in.) and 0.64-cm (1/4-in.) thick glass sheets separated by
a 10-cm (4-in.) air gap. Resilient mounts are used to isolate interior noise sources
(e.g. transformers, air-conditioning units, etc.) The ductworks are acoustically
lined, flexible connectors are used, special doors are installed at all auditorium
entrances together with “sound locks” between foyer and the auditoriums.

The rectangular concert hall encompasses a volume of 682,000 ft3 and accom-
modates an audience of 2759. Large contoured wall surfaces and a coffered ceiling
abet the diffusion of sound at low and high frequencies. The 11 massive crystal
chandeliers, each weighing 1.3 metric ton, donated by the Norwegian government,
also contribute to the diffusion. The balconies are purposely shallow to prevent
reduction of sound below the balcony overhang. Unoccupied, the concert hall has
a reverberation time of 2.2 s at 500 Hz and 2.0 s at 1 kHz; the corresponding values
are 2.0 s and 1.8 s for the fully occupied hall.

Located in downtown Seattle, Washington, Benaroya Hall opened in September
1998, contains two spaces for musical performances: a 2500-seat main auditorium
(Figure 11.15) and a more intimate 540-seat recital hall. The main auditorium, the
S. Mark Taper Foundation Auditorium, is a classic rectangular configuration with
the stage enclosed in a permanent acoustic shell. LMN (Loschky, Marquartdt and

Figure 11.15. Seattle Symphony performing in Benaroya Hall in Seattle, WA under the
direction of Music Director Gerard Schwarz. (Courtesy of the Seattle Symphony, photo-
graph by Craig Raymond.)
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Nesholm) Architects and the acoustical consultant, Cyril M. Harris, combined
the shoebox design with state-of-the-art materials to achieve maximum warmth
and balance.

The location of Benaroya Hall in a busy sector of Seattle posed special challenges
to the designers. They had to contend with a railroad tunnel running diagonally
beneath the auditorium and a nearby underground bus tunnel. A slab of concrete
more than 2m (6 ft) thick, 24 m (80 ft) wide, and 131 m (430 ft) long was poured
under the hall to swallow the sound from the tunnels. In order to combat other
exterior noises, the designers essentially encased a building within a building. The
auditorium, weighing 12 million kilograms, rests on 310 rubber pads, which absorb
vibration from the tunnels. The pads are 38 cm2 and are composed of four layers
of natural rubber sandwiched with 0.32-cm (1/8-in.) steel plates.

All electrical, plumbing, and other noise-generating equipment are located out-
side the auditorium box. Any penetration of the box is made with flexible connec-
tions. Water is known to transmit sound very well, so the fire sprinkler system is
left dry and it will flood with water only when a fire is detected. The ventilation
system is connected to the outside by a sound trap, which channels air through
narrow openings between perforated aluminum boxes of sound insulation. Very
large vents collect air below the floor and move it slowly behind the auditorium
to another sound trap and from thereon to fans. The basic idea of the ventilation
system is to move a high volume (2400 m3/min) of air at low speed, eliminating
noise created by fast-moving air in conventional systems.

Instead of frame construction, the walls are built of precast concrete panels. The
heavy mass helps to cut down building vibration and provides a stiff, hard surface to
reflect concert sound. Side walls, back walls, and ceiling are covered with paneling
shaped like truncated pyramids to reflect sound at various angles to aid diffusion.
Randomly spaced wood blocking behind the angled paneling creates framed sound
boxes that reflect both high and low frequency sounds so that no tone is eliminated
from the music. Side walls are covered with particle boards veneered with a dense,
fine-grained hardwood from a single makore tree. The ceiling is suspended from
the roof by hundreds of metal strips. The ceiling is coated with 3.8 cm (1.5 in.)
of plaster in irregularly shaped panels to diffuse sound. The plaster is sufficiently
dense to prevent the ceiling from vibrating. House lighting is imbedded in the
ceiling to minimize sound leakage. Access to the light bulbs is achieved above the
ceiling through heavy, removable plaster caps.

11.16 Band Shells and Outdoor Auditoriums

Over the past several decades there has been an increasing trend toward outdoor
concerts, either at band shells or in semi-open structures. These types of struc-
tures are more economical to construct than full-fledged indoor concert halls, and
they also meet the criteria of providing an informal setting for audiences seek-
ing entertainment in a usually rural environment, away from the metropolitan
areas.
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Figure 11.16. The Hollywood Bowl in Los Angeles, California, after its reconstruction
in 2004. (Courtesy of the Los Angles Philharmonic, photograph by Mathew Imaging.)

It is generally not possible for a large orchestra to play effectively in open air.
The use of a band shell becomes necessary, as this permits the members of a
musical group to hear each other and directs the music toward the audience area.
The band shell site should also be carefully selected. Ideally, the region should
be isolated from the noise of passing traffic and overhead aircraft. The topology
of the land also ranks important in providing the proper acoustics. If the land can
be contoured properly, there can be appreciably less attenuation of the sound than
would be the case if the band shell were located on flat ground.

The Hollywood Bowl (Figure 11.16) is an example of an orchestra shell strategi-
cally located in a natural hollow. The only reflected sound is that reflected from the
shell, but the stage distances are sufficiently short so that the sound is heard without
any discernable time delay gap. However, shells can never equal the dynamic range
of sound power and sonority that are achieved in an enclosed reverberant concert
hall. The use of high quality amplification systems is therefore often necessary at
many outdoor concerts.

The Bowl, the summer home of the Los Angeles Philharmonic, has under-
gone a number of changes throughout its years of operation. The previous shell
design—the fourth since 1922—has been subjected to a great deal of criticism from
performers and audiences alike. In 2004, the shell and stage area was reconstructed
and made 30% larger to accommodate a full orchestra. The new shell is provided
with a set of adjustable reflectors above the orchestra, mounted on a 27.5 m ×
18.2 m (90 ft × 60 ft) elliptical structure that also supports an improved lighting
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Figure 11.17. A view looking toward the interior of the Tanglewood Music Shed in Lenox,
MA. The ceiling canopy reflects sound, adding dynamic range and brilliance. (Photograph
by Kim Knox Beckhius.)

system. Advantage was also taken of the opportunity to install a completely new
sound system.

Another type of “outdoor” structure is the “music shed,” a semi-enclosed struc-
ture specifically designed for musical performances. The Tanglewood Music Shed
in the Berkshires region of Massachusetts (Figure 11.17) is the summer home of
the Boston Symphony Orchestra, and the quality of its acoustics exceeds that of
any band shell for an audience of 6000 persons. An additional 6000 people on
the lawn adjacent to the shed can listen to the music through the open segments
of the pavilion. The canopy of the interior projects and diffuses sound through
a volume of 42,500 m3 (1,500,000 ft3). The ceiling is constructed of 5-cm thick
wooden planks; the side and rear walls are of 2 cm fiberboard; and the floor is
simply packed earth. When occupied, the shed embodies a reverberation time of
2 s in the frequency range of 500–1000 Hz, which is quite excellent considering the
rustic nature of its construction. The Tanglewood shed is the precursor to similar
structures at Wolf Trap in Vienna, Virginia, the Performing Arts Center at Saratoga
Spring, New York (the summer home of the Philadelphia Symphony Orchestra),
and the Blossom Music Center near Cleveland, Ohio.

On July 16, 2004, the Jay Pritzker Pavilion (Figure 11.18), a radical outdoor
concert facility located at Chicago’s Millennium Park near the banks of Lake
Michigan, presented its first musical program. Working in concert with the emi-
nent architect Frank Gehry, the consulting firm TALASKE of Oak, Park, Illinois
dealt with the acoustic challenge of outdoor orchestral performances. TALASKE
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Figure 11.18. The Jay Pritzker Pavilion in Chicago. The radical design also features a
trellis system from which loudspeakers are suspended. (Courtesy of TALASKE, graphics
by DOXA.)

established the overall shape and arrangement of the stage enclosure and, in the
course of design, refined the shapes and finishes of the interior surfaces. The stage
of the pavilion (Figure 11.19), the permanent home of the Grant Park Music Fes-
tival Orchestra and Chorus, can accommodate a 100 plus member orchestra and

Figure 11.19. The stage of the Pritzker Pavilion can accommodate an orchestra of more
than 100 members plus a 150-member chorus. (Photograph by Richard H. Talaske.)
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also a 150-member chorus. The walls and the ceiling of the stage incorporate
contours and angles precisely planned to enhance cross-room reflections so that
musicians can hear each other from one side of the stage to the other and from
front to back. When an orchestra performs at high volume it is often difficult for
musicians playing in the high register to hear instruments in the lower registers. To
circumvent this problem, the orchestra risers feature a platform system, researched
and designed by the acousticians and musicians together, that allows the musicians
to feel the vibration created by the cellos and bass instruments. The riser system,
essentially a floating floor with rigid interconnections and resilient materials just
below the floor surface, acts to maximize cross stage vibrations. This enables a
more precise ensemble and tonal balance.

To compensate for the lack of reflected sound in an outdoor setting and the lack
of envelopment, modern technology was recruited to improve the sound environ-
ment by blending architecturally created and electronically processed sound. The
Jay Pritzker Pavilion, which replaces the Petrillo Music Shell constructed in 1931
and still in use on a more limited basis, is the first orchestral facility that distributes
sound by using an overhead steel trellis structure from which loudspeakers are sus-
pended (Figure 12.20). The trellis area that incorporates the network of speakers
is 100 m (325 ft) wide by 180 m (600 ft) long. These loudspeakers are strategi-
cally suspended at predetermined heights and orientations, in concentric circles
outward from the stage. A distributed sound reinforcement system provides di-
rect or “frontal” sound to the audience. A separate acoustic enhancement system,

Figure 11.20. View from the stage of the Pritzker Pavilion. The trellis overhead of the
audience contains a distributed loudspeaker system.
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Figure 11.21. Distribution of sound from the speakers distributed on a trellis system
overhead of the audience at the Pritzker Pavilion. (Courtesy of TALASKE, graphics by
DOXA.)

LARESTM (Lexicon Acoustic Reinforcement and Enhancement System), delivers
lingering, enveloping sound characteristics through supplemental loudspeakers. It
uses a time varying technique to maintain stability by shifting the output in time
enough to maintain stability but not enough to introduce tonal coloration. This
system simulates reflections and reverberations using specialized electronics and
digital processing. Time delay creates the impression that sound is coming from
the stage rather than from the speakers. These two systems work together to de-
liver sound throughout the seating area and the Great Lawn (cf. Figure 11.21).
The system makes use of eight microphones deployed around the stage area for
the enhancement system and 30 or so microphones for reinforcement, 143 am-
plifiers housed in three separate equipment rooms, 90 CobraNetTM channels, and
185 speakers. The beauty of this system is that the acoustic environment can be
adjusted to work equally well for orchestral music, staged opera, blues, jazz, rock,
and other music. The fixed seating area accommodates 4000 concertgoers, and the
Great Lawn has a capacity for a lawn crowd of up to 7000 stretching more than a
city block behind the front area.

Backstage facilities include warm-up rooms that are shared with the Harris
Theater for Music and Dance. A bridge near the concert area was configured to
help mask the traffic noises at the pavilion.

11.17 Subjective Preferences in Sound Fields
of Listening Spaces

Beyond the Sabine realm of architectural acoustics, which is based on the rela-
tively simple but effective formula T60 = (0.161V )/ !Aiαi , other considerations
come into play in determining optimal configurations for listening spaces (Ando,
1998). This involves combining the elements of psychoacoustics, modeling of
the auditory-brain system, and mapping of subjective preferences. The physi-
cal properties of source signals and sound fields in a room are considered, in
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particular the autocorrelation function (ACF) that contains the same information
as power density spectrum but it is adjusted to account for hearing sensitivity.
Effective duration of the normalized ACF is defined by the delay τ e at which the
envelope of the normalized ACF becomes one-tenth of its maximal value. The
response of the ear includes the effects of time delay due not only to the room’s
acoustical characteristics, but also the spatially incurred differences in the signals
reaching the right and the left ears. The difference in the sounds arriving at the
ear is measured by the “interaural cross-correlation function” or IACF, which is
defined by

IACF(τ ) =
∫ t2

t1
pL (t)pR(t + τ )√∫ t2
t1

p2
L

∫ t2
t1

p2
R dt

(11.25)

where L and R denotes entry to the left and right ears, respectively. The maximum
possible value of IACF is unity. The time t = 0 is the time of the arrival of the
direct sound from the impulse radiated by a source. Integration from 0 to t2 ms
includes the energy of the direct sound and any early reflections and reverberant
sounds occurring during the t2 interval. Because there is a time lapse of about 1 ms
for a sound wave to impinge the other side of the ear after impinging one side, it
is customary to vary τ over the range from –1 ms to +1 ms. In order to obtain a
single number that measures the maximum similarity of all waves arriving at the
two ears with the time integration limits and the range of τ , it is customary to choose
the maximum value of IACF, which is then called the interaural cross-correlation
coefficient (IACC), i.e.

IACC = |IACF(t)|max

Different integration periods are used for IACC. The standard ones include
IACCA (t1 = 0 to t2 = 1000 ms), and IACCE(arly) (0–80 m), IACC L(ate) (80–
1000 m). The early IACC is a measure of the apparent source width ASW and the
late IACC is a measure of the listener envelopment LEV. IACC is generally mea-
sured by recording on a digital tape recorder the outputs of two tiny microphones
located at the entrances to the ear canals of a person or a dummy head, and quanti-
fying the two ear differences with a computer program that performs the operation
of Equation (11.25). IACCA is determined with a frequency bandwidth of 100 Hz–
8 kHz and for a time period of 0 to about 1 s.

Subjective attributes for a sound field in a room have been developed experimen-
tally with actual listeners. The simplest sound field is considered first, a situation
which consists of the direct sound and a single reflection acting in lieu of a set
of reflections. The data obtained are based on tests in anechoic chambers (which
allowed for simulation of different concerts halls) with normal hearing subjects
listening to different musical motifs. From these subjective tests the optimum de-
sign objectives are established, namely the listening level, preferred delay time,
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preferred subsequent reverberation time (after the early reflections), and dissimi-
larity of signals reaching both ears (involving IACC).

These factors are each assigned scalar values and then combined to yield a
subjective preference that can vary from seat to seat in a concert hall. Some rather
interesting results of investigations include the fact that the right hemisphere of
the brain is dominant for “the continuous speech.” while the left hemisphere is
dominant when variation occurs in the delay time of acoustic reflection. The left
hemisphere is usually associated with speech and time-sequential identifications,
while the right hemisphere is allied with nonverbal and spatial identifications. A
proposed model for the auditory-brain system was developed (Ando, 1998) that
incorporates a subjective analyzer for spatial and temporal criteria and entails
the participation of the left and the right hemispheres of the brain. The power
density spectra in the neural processes in the right and left auditory pathways yield
sufficient information to establish autocorrelation functions.

It is obvious that different individuals are likely to have different subjective
preferences with respect to the same musical program, so seating requirements
can differ, with respect to the preferred listening level and to the initial time delay,
and even lighting. For example, evaluations were conducted for a performance of
Handel’s Water Music with 106 listeners providing the input on their preferences
with respect to listening level, reverberation time, and IACC. The information thus
obtained can provide insight into how the acoustic design of a concert hall and
a multipurpose auditorium can be accomplished. Procedures for designing sound
fields include consideration of temporal factors, spatial factors, the effect of sound
field on musicians, the conductor, stage performers, listener, and the archetypal
problem of fusing acoustical design with architecture. Multipurpose auditoriums
present bigger challenges, some of which have been met very well and many which
have not. In the design procedure, a number of factors other than acoustical include
measurable quantities such as temperature, lighting levels, and so on, and other
less tangible determinants that can be aesthetically evocative.
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Problems for Chapter 11

1. The amplitude of the reflected wave is one-half that of the incident wave for
a certain angle and frequency. What is the reflection coefficient? What is the
corresponding sound absorption coefficient?

2. Find the average sound coefficient of 125 Hz and 2 kHz for a wall constructed
of different materials as follows:

Area (m2) Material

85 Painted brick
45 Gypsum board on studs
35 Plywood paneling

4 Glass window

3. Find the time constant of a room that is 8 × 10 × 2.5 m and an average sound
absorption coefficient of 0.34.

4. A room has dimensions 3.5 m high × 30 m length × 10 m width. Two of the
longer walls consist of plywood paneling; the rear wall is painted brick and the
front has gypsum boards mounted on studs. The ceiling is of acoustic paneling
and the floor is carpeted. For 250 Hz and 125 people in the audience:
(a) Determine the reverberation time from the Sabine equation.
(b) Compute the room constant R.
(c) Comment on the suitability of the room for use as an auditorium.

5. An auditorium has dimensions 6.0 m high × 22.0 m length × 15.5 m width. The
floor is carpeted and one of the longer walls has gypsum boards mounted on
studs the entire length, while the other three walls and the ceiling are constructed
of plaster. For 500 Hz:
(a) determine the reverberation time from the Sabine equation.
(b) compute the room constant R.

6. In Problem 5 there is a set of two swinging doors 2.5 m in height and 2.5 m in
total width. However, there are open cracks along the bottom and between the
doors 1 cm wide. In addition there is an open window on the gypsum-boarded
wall that is 0.8 × 1 m. Find the effect of these openings on the reverberation
time of the auditorium.

7. A room has dimension 4.0 m high × 18.0 m length × 9.5 m width. The floor
is carpeted and one of the longer walls has gypsum boards mounted on studs
along the entire length, while the other three walls are constructed of painted
brick. The ceiling is plastered. For 500 Hz:
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(a) determine the reverberation time from the Sabine equation.
(b) compare the reverberation time obtained from the Eyring formula with that

obtained in part (a) above.
(c) compute the room constant R.

8. An isotropic source emitting sound power level of 106 dB(A) re 1 pW is oper-
ating in the room of Problem 4. What sound pressure (on the A-weighted scale)
will be registered by a meter 5.2 m from the source? If 125 people are not seated
in the room, how will it affect the reading? Assume that no one blocks the path
of direction propagation between the meter and the signal source.

9. Why does an anechoic chamber provide what we call a free field?



12
Walls, Enclosures, and Barriers

12.1 Introduction

Acoustics constitutes an important factor in building design and in layouts of
residences, plants, offices, and institutional facilities. A building not only protects
against inclement weather; it must also provide adequate insulation against outside
noises from transportation and other sources. Interior walls and partitions need to
be designed to prevent the intrusion of sound from one room into another. Exposure
of workers to excessive occupational noises can be decreased by construction of
appropriate barriers or enclosures around noisy machinery. A shell constructed of
the densest materials may be the most effective barrier against noise transmission,
but such an enclosure can lose a major portion of its effectiveness if there are weak
links that tend to promote sound transmission rather than hinder it. For example,
a large proportion of sound energy enters a building through its windows, even
closed ones, and many cracks and crevices inevitable in real structures permit
sound to enter the structure’s interior.

12.2 Transmission Loss and Transmission Coefficients

Sound absorption materials tend to be light and porous. Sound isolation materi-
als, however, generally are massive and airtight, thereby forming effective sound
insulation structures between the noise source and the receiver. When airborne
sound impinges on a wall, some of the sound energy is reflected, some energy is
absorbed within the wall structure, and some energy is transmitted through the
wall. Sound pressure against one side of the wall may cause the wall to vibrate
and transmit sound to the other side. The amount of incident energy transmitted
to the wall depends on the impedance of the wall relative to the air. The amount
of the sound transmitted through the wall that is finally transmitted to the air on
the receiver side also depends on the impedance of the wall relative to air. A
double wall construction that incorporates airspace between panels repeats the
process between the two panels, which results in even more insulation against
sound.

281



282 12. Walls, Enclosures, and Barriers

Most construction materials transmit only a small amount of acoustic energy,
with the major portion of the energy undergoing reflection or conversion into
heat due to impedance mismatch, absorption within the material, and damping.
Heavy walls, usually of masonry, allow very little of the sound to pass through,
owing to their high mass per unit area. A wall of gypsum boards mounted on
both sides of a stud frame provides effective insulation against sound penetration
due to energy losses resulting during the passage of sound from air to solid to
air between the two panels to solid and thereon to air on the other side of the
wall.

A measure of sound insulation provided by a wall or some other structural barrier
is given by the transmission loss TL, given in units of dB by

TL = 10 log

(
W1

W2

)
(12.1)

where W1 represents the sound power incident on the wall and W2 the sound power
transmitted through the wall. Because the frequency loss varies with the frequency
of the sound, it is usually listed for each octave band or one-third octave band. The
fraction of sound power transmitted through a wall or barrier constitutes the sound
transmission coefficient, τ , written as

τ = W2

W1
(12.2)

Combining Equations (12.1) and (12.2) we obtain

TL = 10 log

(
1

τ

)
(12.3)

or

τ = 10−TL/10. (12.4)

In Figure 12.1 we consider the case of a plane wave approaching a panel in
the y–z plane (i.e., the plane is normal to the x-axis) at an angle of incidence θ .
Subscripts I , R, and T are used to identify, respectively, the incident wave, the
reflected wave, and the transmitted wave. Arrows indicate the directions of the
wave propagation. The wave equation for a plane wave

∂2 p

∂t2
= c2∇2 p

bears the solutions:

pI = PI eik(ct−x cos θ−y sin θ )

pR = PReik(ct+x cos θ−y sin θ ). (12.5)

pT = PT eik(ct−x cos θ−y sin θ )

Here the real part of p denotes the sound pressure, P, the (complex) pressure
amplitude, and k, the wave number.
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Figure 12.1. Transmission loss through a panel in the y–z plane.

12.3 Mass Control Case

Consider the panel as being quite thin, i.e., its thickness is considerably smaller
than one wavelength of the sound in air; and let us also neglect the material stiffness
and damping in the panel. We can stipulate the conditions of (a) the continuity of
velocities normal to the panel and (b) a force balance occurs inclusive of the inertial
force. From application of the first condition we express the particle velocity u at
the panel as

upanel = uT cos θ = uI cos θ − u R cos θ. (12.6)

When the sound pressure and the particle velocity are in-phase they are related by

Z = ρ

u
= ρc (12.7)

where Z denotes the characteristic resistance, which represents a special case of
specific acoustic resistance.

Setting x = 0 at the panel, we apply Equation (12.7) and Equation set (12.5) to
Equation (12.6) to obtain

PT = PI − PR . (12.8)

The second condition applied over a unit surface area of the panel gives

pI + pI − pT − mapanel = 0 (12.9)

where m represents the mass density per unit area of the panel and apanel the
acceleration normal to the surface. Through the use of Equation (12.7) we can
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correlate the panel velocity with the transmitted particle velocity:

upanel = pT
cos θ

ρc
.

Using the last of the Equation set (12.5) in the preceding expression and differen-
tiating with respect to time, we now obtain

apanel = ikcPT e
ik(ct−x cos θ−y sin θ ) cos θ

ρc

= iωPT cos θ

ρc
.

Inserting the above expression into Equation (12.9) and applying Equations (12.5)
at the panel, where x = 0, the amplitudes of the pressures are related to each other
by

PI + PR − PT = imωPT

ρc
cos θ. (12.10)

The pressure term PR in Equation (12.10) may now be eliminated through the use
of Equation (12.8). The ratio of transmitted pressure amplitude to incident pressure
amplitude may now be obtained as

PT

PI
= 1

1 + imω cos θ

2ρc

.

We now express the sound transmission coefficient as

τ = p2
rms(T )

p2
rms(I )

= |PT |2
|PI |2

= 1

1 +
(

imω cos θ

2ρc

)2 .

From the definition of Equation (12.3), we obtain the mass law transmission loss
equation:

TL = 10 log

(
1

r

)
= 10 log

[
1 +

(
mω cos θ

2ρc

)2
]
. (12.11)

Setting the angle of incidence equal to zero, Equation (12.11) reduces to

TL0 = 10 log

[
1 +

(
mω

2ρc

)2
]

(12.12)

which constitutes the statement for the normal incidence mass law for approxi-
mating transmission loss of panels with sound at 0◦ angle of incidence.

12.4 Field Incidence Mass Law

In the situation of transmission loss between two adjoining rooms, the sound source
in one room may produce a reverberant field. The incident sound emanating from
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the source may strike the wall at all angles between 0 and 90◦. For field incidence
it is customary to assume that the angle of incidence lies between 0 and 72˚, which
results in a field incidence transmission loss of approximately

TL = TL0 − 5 dB.

We can modify the mass law equation by converting the angular frequency of
sound (rad/s) into cyclic frequency (Hz), i.e. ω/2π = f , by setting the acoustic
impedance for air ρc = 407 rayls, and assuming mω/(2ρc)  1. This gives the
field incidence mass law equation

TL = 20 log( f m) − 47 dB (12.13)

where m denotes the mass per unit area (kg/m2).
Equation (12.13) indicates for the mass-controlled frequency region that trans-

mission loss of a panel increases by 6 dB per octave, Doubling either the panel
thickness or the density of the panel will also engender an additional 6 dB loss for a
given frequency. While Equation (12.13) is useful for the prediction of a material’s
acoustical behavior, laboratory or field testing should be conducted to measure the
transmission loss of actual structures under real environmental conditions.

Example Problem 1
A wall is considered to have its sound transmission mass-controlled. Plot the
transmission loss as a function of the product of frequency and mass per unit area.

Solution
Using Equation (12.13), which expresses the field incidence mass law for typical
conditions, we can write

TL = 20 log( f m) − 47 dB.

For the normal incidence mass law:

TL = 20 log( f m) − 42 dB.

Figure 12.2 shows the semilog plot of both relationships as two straight lines. It
should be noted here that these values tend to be considerably higher than those
of the actual transmission losses.

12.5 Effect of Frequencies on Sound Transmission
through Panels

Panel bending stiffness constitutes the governing factor in low-frequency sound
transmission. The panel resonances play the principal role in determining the
nature of transmission of higher frequency sounds. The panel may be considered
mass-controlled in the frequency range from twice the lowest resonant frequency
to below the critical frequency (discussed below).
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Figure 12.2. Semi-log plot of transmission loss versus product of frequency and surface
mass.

Ver and Holmer (1971) develop the sound transmission coefficient equation for
panels manifesting significant bending stiffness and damping, which is given as
follows:

τ = 1[
1 + η

(
mω cos θ

2ρc

)(
Bω2 sin4 θ

mc4

)]2

+
[(

mω cos θ

2ρc

)(
1 − Bω2 sin4 θ

mc4

)]2 .

(12.14)

The panel thickness is assumed to be small compared with the wavelength of the
incident sound, B = panel bending stiffness (N m), η = composite loss factor
(dimensionless), and m = panel surface density (kg/m2).

12.6 Coincidence Effect and Critical Frequency

In propagating though panels and other structural elements, sound can occur as
longitudinal, transverse and bending waves. Bending waves give rise to the coin-
cidence effect. In Figure 12.3 a panel is shown with an airborne sound wave of
wavelength λ incident at angle θ . A bending wave of wavelength λb is excited in the
panel. The propagation velocity of bending waves depends on the frequency, with
higher velocities occurring at higher frequencies. The coincidence effect occurs
when

θ = θ∗ = arcsin(λ/λb) (12.15)
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Figure 12.3. The coincidence effect affected by bending waves.

or

sin θ∗ = λ

λb
.

With the asterisk indicating the occurrence of coincidence, θ∗ denotes the coinci-
dence angle. Under such circumstances, the sound pressure on the surface of the
panel falls into phase with bending displacement. This results in a highly efficient
transfer of acoustic energy from the airborne sound waves on the source side of
the panel to bending waves in the panel, and thence to airborne sound waves in
the receiving room on the other side of the panel. This is a highly undesirable
situation if the panel is meant to prevent the transmission of sound from one room
to another as a noise control measure.

Figure 12.4 shows an idealized plot of transmission loss for a panel as a function
of frequency, with stiffness-controlled, resonance-controlled, mass-controlled, and
coincidence-controlled regions. The transmission loss curve drops considerably in
the region beyond the critical frequency owing to the coincidence effect.

From Equation (12.15) it can be deduced that the coincidence effect cannot
occur if the wavelength λ of the airborne sound is greater than the bending mode
wavelength λb in the panel. The minimum coincidence frequency, or the critical
frequency, exists at the critical airborne sound wavelength

λ = λ∗ = λb
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Figure 12.4. Idealized plot of transmission loss versus frequency.

where the critical frequency f ∗ is given by

f ∗ = c

λ∗

which corresponds to the grazing incidence θ = 90◦. Also, there is a critical
angle θ∗, at which coincidence will occur, for any frequency above the critical
frequency.

Figure 12.5 contains a plot of critical frequencies against thickness for a number
of common construction materials. It must be realized that the critical frequency

Figure 12.5. Thickness versus critical frequency for a number of construction materials.
(Source: Brüel and Kjær, 1980)
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often falls in the range of speech frequencies, rendering some partitions nearly
useless for providing privacy and preventing speech interference.

From Equation (12.14), it is seen that the coincidence effect depends on char-
acteristics of the plate or panel and of the airborne sound wave. At coincidence

Bω2 sin4 θ∗

mc4
= 1

and inserting the above condition into Equation (12.14) yields the sound transmis-
sion coefficient for the coincidence condition

τ = τ ∗ = 1[
1 + mωη cos θ∗

2ρc

]2 .

The corresponding transmission loss for the coincidence condition is

TL = TL∗ = 10 log

(
1

τ ∗

)
= 20 log

(
1 + f mη cos θ∗

ρc

)
.

From the above equations, it would appear that τ ∗ = 1 and TL∗ = 0 for undamped
panels (in which the loss factor η = 0). The above transmission loss equation is
premised on the theoretical behavior of an infinite plate, and the finite boundaries
of actual structures such as windows and walls and the presence of damping in
real construction materials will produce a different response to sound waves.

12.7 The Double-Panel Partition

A single-panel wall can exhibit resonant frequencies that fall below the range
of speech frequencies. Most walls are constructed of two panels with an airspace
between them, and they may yield low-frequency resonances in the speech range. A
typical interior partition consists of two gypsum board panels (ranging in thickness
from 1.3 cm to 1.9 cm, or from 0.5 in. to 0.75 in.) separated 9 cm (3.5 in.) by 5 cm ×
10 cm (2 × 4)1 wood or metal studs. In Figure 12.6 a double-panel configuration is
shown; the two panels of mass per unit area m1 and m2, respectively, are separated
by an airspace h. Because the air entrapped between the two panels behaves as
a spring, a spring-mass analogy, shown in Figure 12.7, can be applied, with k
representing the spring constant between two masses. The wall response mode
can be depicted by two masses vibrating at the same frequency. A node (i.e. a
“motionless” point) on the spring exists, thus effectively resolving the spring into
two springs with spring constants (or spring rates) k1 and k2, The natural frequency
of the dual-mass system is given by

fn =
√

k1
/
m1

2π
=

√
k2
/
m2

2π
. (12.16)

1 Lumber sizes are given by figures that are almost always nominal rather than representative of actual
values. A two-by-four stud generally measures 1.75 × 3.5 in.
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Figure 12.6. A double-panel partition.

The individual spring constants are related to the spring constant of the composite
spring by

1

k
= 1

k1
+ 1

k2
. (12.17)

Eliminating k2 between Equations (12.16) and (12.17) results in

k1 = k
m1 + m2

m2
.

Inserting the last expression into the first portion of Equation (12.16) yields the
natural frequency fn of the system:

fn =

√
k

m1 + m2

m1m2

2π
. (12.18)

In order to establish the effective spring constant of the air between the panels,
it will be assumed that an isentropic process constitutes the action of sound waves,
since the pressure changes occur too rapidly for an isothermal process to take place.
From thermodynamics, for an isentropic process the pressure p of air (considered

Figure 12.7. Spring-mass analogy of the double-panel partition of Figure 12.6.
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an ideal gas) varies in the following manner:

pvγ = constant (12.19)

where v represents the specific volume (equal to the reciprocal of density) and γ ,
the ratio of specific heats. Differentiating Equation (12.19) gives

dp

dv
= −γ p

v
. (12.20)

Sound waves cause the ambient pressure and specific volume of air to vary only
slightly from the quiescent values of p0 and v0, and thus the instantaneous values
p and v differ very little from p0 and v0 in Equation (12.20). Because the mass
of air entrapped between the panels remains constant, the ratio of panel displace-
ment (arising from the sound pressure pushing on the panels) dh to the original
(quiescent) spacing h0 should equal the ratio of the change of specific volume to
the quiescent value of the specific volume:

dh

h0
= dv

v0
(12.21)

But the spring constant represents the force per unit displacement, or for a unit
area of the wall

k = −dp

dh
. (12.22)

Combining Equations (12.21) and (12.22) and dropping the subscripts (since
h0 ≈ h, p0 ≈ p), we now have

k = −γ p

h

which, upon inserting into Equation (12.19), gives

fn =

√
γ p

m1 + m2

hm1m2

2π
.

Setting γ = 1.4 and p = 101.325 kPa (the standard atmosphere), the low-
frequency resonance of the double-panel wall may now be found from

fn = 60

√
m1 + m2

hm1m2
. (12.23)

The surface masses m1 and m2 are given in kg/m2 and the panel spacing h in
meters.

Example Problem 2
Predict the transmission loss for an 8-in. wall of poured concrete for 800-Hz sound.
The concrete has a density of approximately 150 lb/ft3 (2406 kg/m3).
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Solution
Surface density m = 8 in. × 1 m/(39.37 in.) × 2406 kg/m3 = 488.9 kg/m2

Using field incidence law Equation (12.13)

TL − 20 log(fm) − 47 = 20 log(800 × 488.9) − 47 = 65 dB

Laboratory tests indicate a TL closer to 50 dB. Actual installations may yield even
lower values because of flanking noise transmission paths.

Example Problem 3
Find the resonant frequency of a double-panel wall constructed of a 15-kg/m2 and
a 20-kg/m2 gypsum board with 9-cm airspace.

Solution
Applying Equation (12.23):

fn = 60

√
m1 + m2

h m1m2
= 60

√
15 + 20

0.09(15)(20)
= 68 Hz.

12.8 Measuring Transmission Loss

Recasting Equation (12.1) for transmission loss TL in terms of vector sound in-
tensity, we write

TL = 10 log

(
II

IT

)

where II = incident vector sound intensity and IT = transmitted vector sound
intensity, For sound pressure level and particle velocity in phase, sound intensity
is given by

I = p2
rms

ρc

with the result that transmission loss could be restated as

TL = 10 log

(
p2

rmsI

p2
rmsT

)
.

But the above equation is not usable for measurement purposes, since distinction
cannot be made between root-mean-square (rms) pressures attributable to incident
sound, transmitted sound and reflected sound.

In order to determine the transmission loss, it is required to set up a source
chamber and a receiving chamber, with a panel of the specimen material installed
in a window between the two chambers. Such a setup is shown in Figure 12.8. The
chambers must be designed so as to minimize the sound transmission paths other
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Figure 12.8. Setup for a transmission loss measurement.

than that through the evaluation specimen. Sound level is measured in the source
chamber and the receiving chamber with a microphone system, a measuring ampli-
fier, and filter. The measured sound is filtered to mitigate the effect of background
noise on the measurement procedures, with the filter settings being identical for the
generated sound and the measuring sound filters. The sound level may be averaged
by rotating the microphone about its base on the mounting tripod. The transmission
loss is found by applying the measured results in the following equation:

TL = L S − L R + 10 log

(
Am

AR

)

where

L S = average sound level in the source chamber

L R = average sound level in the receiving chamber

Am = area of the material under investigation

AR = equivalent absorption area of the receiving room.

Another measurement setup is given in Figure 12.9. A pink noise generator,
filters, audio power amplifier, and speaker constitute the sound source system.
A computer-controlled analyzer incorporates a random noise generator and
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Figure 12.9. An alternative to the setup of Figure 12.8, which provides for automatic
evaluation of transmission loss. The sound source can consist of a pink noise generator,
filters, power amplifier, and speaker. The analyzer, which can generate random noise, can
automatically position a microphone boom for spatial and temporal averaging.

provisions for automatic remote control of the microphone boom for spatial and
temporal averaging. Such an analyzer can measure in one-third octave bands the
following parameters: source chamber level, receiving chamber background SPL,
receiving chamber SPL, and receiving chamber reverberation time.

12.9 Flanking

Flanking occurs when noise from a sound source is transmitted through paths
other than direct transmission through a wall between the source chamber and the
receiver on the opposite side of the wall. Among the causes of flanking are acous-
tical leaks through cracks around doors, windows and electrical outlets, passage
of the sound through suspended ceilings with resulting reflection into adjacent
rooms, HVAC (heating/ventilation/air-conditioning) ducts, floor and ceiling joists.
The insulation effect of a partitioning wall is effectively decreased by flanking and
acoustic leaks, examples of which are shown in Figure 12.10.

12.10 Combined Sound Transmission Coefficient

A wall may contain a number of elements such as windows, doors, openings,
and cracks. The effective or combined sound transmission coefficient depends on
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Figure 12.10. Examples of flanking.

the values of the sound transmission coefficients of the individual elements and
their respective areas. Assuming the incident sound to be fairly uniform over the
individual elements, we can compute the combined sound transmission coefficient
from

τcombined =

n∑
i=1

Aiτi

n∑
i=1

Ai

(12.24)

where i designates the i-th element of the subdivided wall area A and the corre-
sponding value of τ . For cracks and open areas, τ = 1, which is to say the sound
transmission through such crevices may be considered to be virtually unimpeded.
The corresponding transmission loss of the composite wall then becomes

TL combined = 10 log

(
1

τcombined

)
= 10 log

⎛
⎜⎜⎝

n∑
i=1

Ai

n∑
i=1

Ai 10−TLi/10

⎞
⎟⎟⎠ . (12.25)

Example Problem 4
A 6.0 m × 2.5 m wall is for the most part constructed of 8-cm thick dense poured
concrete with a transmission loss of 52 dB at 500 Hz. An opening in the wall is
provided for a 2.2 m × 1.0 m wood door with a transmission loss of 25 dB at
500 Hz. There is a crack across the width of the door that is 1.0 cm high. Estimate
the effective transmission loss of the composite wall at 500 Hz.

Solution
The total area A of the wall is 6.0 × 2.5 = 15.0 m2, but the concrete
portion of the wall is 15.0 − 2.2 × 1.0 − 0.01 × 2.2 = 12.778 m2. Applying



296 12. Walls, Enclosures, and Barriers

Equation (12.25)

TL combined = 10 log
15.0

12.778 × 10−55/10 + 2.2 × 10−25/10 + 0.022 × 10−0/10

= 27.1 dB

Suppose that a door with TL = 45 dB was installed instead; what would be the

new value of the composite TL for the wall?

Solution

TL combined = 10 log
15.0

12.778 × 10−55/10 + 2.2 × 10−45/10 + 0.022 × 10−0/10

= 28.3 dB

This example shows that negligible improvement will occur because the crack
constitutes the principal means of negating the combined effectiveness of the
acoustic insulation of the concrete wall and the door. The use of an acoustical door
which effectively seals the area will result in an appreciably improved value of the
transmission loss.

12.11 Noise Insulation Ratings

Two principal methods of rating sound insulation are discussed in this section,
namely Sound Transmission Class (STC) and Shell Isolation Rating (SIR). The
former designation constitutes a single-number description of noise insulation
effectiveness of a structural element and it is widely used to describe the charac-
teristics of interior partitions or walls with respect to noise occurring in the range
of speech and music frequency. The SIR methodology was developed by Pallett
et al. (1978) at the U.S. National Bureau of Standards (now National Institute
of Science and Technology) in order to establish a simple system to predict the
capacity of building shells to attenuate transportation noise.

Sound Transmission Class (STC)
The values of STC are computed from transmission loss values measured in one-
third octave bands in the 125 Hz–4 kHz range. Figure 12.11 illustrates the standard
STC contour. This contour begins at 125 Hz, sloping upward at 3 dB per one-third
octave (i.e., 9 dB per octave) until it reaches 400 Hz. The slope of the contour then
changes at 400 Hz to 1 dB per one-third octave (3 dB per octave), and it remains
constant at 1.25 kHz. In the range from 1.25 to 4 kHz the slope is zero. The STC
single-number classification of a specific wall is designated by the value of TL
at 500 Hz. If the values of TL for the wall at the 16 one-third octave points are
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Figure 12.11. The standard STC contour.

known for the region from 125 Hz to 4 kHz and plotted, the STC for the wall is
established by superimposing the contour of Figure 12.11 upon the TL curve so
that (a) there is not more than 8-dB deficiency between the TL and the STC contour
at any one-third octave frequency and (b) the total deficiency between the STC
contour (i.e., the value of the STC contour less the value of the TL curve summed
at all one-third octave frequencies from 125 Hz to 4 kHz) must be ≤32 dB. When
the curve is adjusted to meet these two criteria, the STC value of the wall is taken
to be equal to the value of the TL of that contour at 500 Hz.

Example Problem 5
Find the STC value of the TL curve of Figure 12.12.

Solution
The standard STC contour is overlaid on the TL plot and positioned to satisfy the
two criteria described above. From the value of the contour at 500 Hz, it is seen
that the STC rating of the wall is approximately 48 dB.

Table 12.1 lists the STC ratings of a number of structural elements.
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Figure 12.12. STC overlay on a TL versus frequency plot.

Shell Isolation Rating (SIR)
The SIR method stems from intensive studies conducted by investigators at the
National Institute of Standards and Technology in the effort to develop a simple
system to predict the attenuation of A-weighted transportation noise by building

Table 12.1. Sound Transmission Class (STC) Ratings of Common Construction
Materials

Description STC

4-in.- (100-mm) thick brick wall with airtight joints 40
4-in.- (100-mm) thick brick wall with gypsum board on one side 45–50
8-in.- (200-mm) thick brick wall with gypsum board on one side 50–60
4-in.- (100-mm) thick hollow concrete block with airtight joints 36–41
4-in.- (100-mm) thick hollow concrete block with gypsum board on one side 42–48
8-in.- (200-mm) thick hollow concrete block with airtight joints 46–50
8-in.- (200-mm) thick hollow concrete block with gypsum board on both sides 50–55
2 × 4-in.- (nominal) wood or metal stud wall with gypsum board on 33–43

both sides, spackled at joints, floor, and ceiling 20–30
Single-glazed window 26–44
Double-glazed window 20–27
Hollow core wood or steel door 38–55
Specially mounted acoustical door 70
Double-walled soundproof room, 12-in.- (300-mm) thick walls including airspace 21–29
Quilted fiberglass mounted on vinyl or lead (limp mass) barrier septrum
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shells. This method is based on statistical studies, and +3 dB per octave was chosen
as the standard SIR contour. The STC contour method is generally preferred for
describing the noise attenuation effectiveness of building structures in the presence
of non-transportation sounds, viz. speech, television, and radio. The SIR system
is favored for the evaluation of noise reduction provided by building shells against
transportation noise.

An element SIR (or member SIR) is an estimate of the difference in the A-
weighted sound levels when a structural element or member is placed between the
transportation noise source and the receiver. It is assumed that all noise transmission
occurs through the subject element. A room SIR (or composite SIR) refers to the
estimate of the A-weighted sound level difference caused by the presence of all
members that act as noise transmission paths between the source and the receiver.

An estimate of the member SIR may be obtained from a set of transmission loss
measurements in one-third octave or octave bands in the following manner:

1. The transmission loss is plotted against frequency.
2. The +3 db per octave SIR reference contour is plotted on an overlay sheet,

which is then superimposed on the TL versus f plot in the highest position so
that the sum of the deficiencies is less than twice the number of test frequencies.
A deficiency is defined as the number of decibels by which the SIR reference
value exceeds the measured TL of the member.

3. The value of TL at 500 Hz on the SIR reference curve constitutes the value of
the SIR of the member.

The statistical quality of SIR prediction is improved by using a larger number
of TL laboratory measurements, and the one-third octave band measurements will
generally yield more reliable results than those based on octave bands. Manufac-
turers’ catalogues frequently report the one-third octave TL measurements used
to evaluate STC. An example of an SIR determination is given in Figure 12.13
for the TL plot of Figure 12.12. Much of the tedium of SIR contour fitting can be
eased through the use of computer plotting.

The field incidence mass law, expressed by Equation (12.13), can be utilized to
extrapolate data. If the transmission loss is known for all applicable frequencies
for a structural element 1, and it is desired to find the TL of a similar element with
a different surface mass, then

TL2 = TL1 + 20 log

(
m2

m1

)
.

If the relationship holds in the applicable frequency range, the values of SIR are
similarly related.

Example Problem 6
A shell constructed of 5-in. thick concrete with 55 lb/ft2 surface mass carries a
rating of SIR 43. Estimate the SIR rating for an 8-in. thick concrete with a surface
mass of 92 lb/ft2.
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Figure 12.13. SIR determination for TL versus f plot of Figure 12.12.

Solution

SIR8 in. = SIR5 in. + 20 log

(
m8 in.

m4 in.

)

= 45 + 20 log

(
92

55

)
= 49.5 dB

Table 12.2 gives the SIR values of a number of structural elements.

12.12 Noise Reduction of a Wall

Let us consider two rooms that are acoustically separated by a partition of area Sw
in Figure 12.14. L p1 and L p2 denote the spatially averaged values of the sound
pressure levels in room 1 and room 2, respectively. We assume the noise source
in room 1 produces a purely reverberant field near the partition. This occurs if the
sound pressure level can be described by Equation (11.23):

L p1 = Lw1 + 10 log

(
4

R1

)

where 4/R1  Q/(4πr2), R1 is the room constant of room 1, and r the distance
from the source in room 1 to the position of measured L p1. This assumption permits
us to simplify the analysis by assuming a constant sound pressure over the entire
area of the dividing wall.
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Table 12.2. Shell Isolation Rating (SIR).

Description Weight (lb/ft2) SIR rating

Dense poured concrete or solid block walls
4 in. thick 50 41
6 in. thick 73 43
8 in. thick 95 46
12 in. thick 145 49
16 in. thick 190 51

Hollow concrete block walls
6 in. thick 21 41
8 in. thick 30 43

Brick veneered frame walls — 48–53
Stuccoed frame walls — 34–52
Frame walls with wood siding — 33–40
Metal walls, curtain walls — 25–39
Shingled wood roof with attic 10 40
Steel roofs — 36–51
Fixed, single-glazed windows (the higher SIR — 22–39

values apply to windows with special mountings
and laminated glass)

Fixed double-glazed windows (the higher SIR — 22–48
values apply to windows with large spaces
between the glass and special mountings)

Double-hung windows
Single-glazed — 20–24
Double-glazed — 20–29

Casement windows, single-glazed — 19–29
Horizontal sliding windows 16–24
Glass doors 2.3–3 24
Wood doors (the higher SIR values apply to

weatherstripped doors)
Hollow core 1.2–5 14–26
Solid core 4–5 16–30

Steel doors (the higher SIR values apply to
acoustical doors) 4–23 21–50

Figure 12.14. Two rooms separated by a dividing wall of area Sw .



302 12. Walls, Enclosures, and Barriers

The partition absorbs a certain amount of power Wα from the reverberant field
in room 1, namely

Wα = Wr

(
Swαw
S1α1

)
(12.26)

where

Wα = power absorbed by the dividing wall

Wr = power in the reverberant field

Sw = area of the wall

αw = absorption coefficient of the wall

S1 = total surface area of room 1

α1 = average absorption coefficient.

Let us assume that all the power incident upon the wall will be absorbed, i.e.,
αw = 1. The portion of the power W1 of the source in room 1 that becomes the
power in the reverberant field is given by

Wr = (1 − ᾱ)W1

Substituting the above into Equation (12.26) gives

Wα = (1 − ᾱ)W1
Sw
S1
. (12.27)

The power Wα absorbed by the wall can be expressed in terms of the room constant
R1, so Equation (12.27) becomes

Wα = W1Sw
1 − ᾱ1

Sᾱ1
= W1Sw

R1

which can now be combined with Equation (12.2) to yield

W2 = W1Swτ

R1
(12.28)

where W2 represents the power transmitted into room 2 and τ the transmission
coefficient of the wall.

We can consider the direct field in the region near the partition in room 2 to be
a uniform plane wave progressing outward from the radiating wall. The energy in
the direct field equals the product of the power transmitted into the room multiplied
by the time required for the plane wave to transverse the room. This time is given
by t = L/c, where L denotes the length of room 2. The energy density δd2 of
the direct field is given by the directed field energy divided by the room volume
V = SwL:

δd2 = W2

V

L

c
. (12.29)

From Equation (11.21), the reverberant energy is given by

δr2 = 4W2

cR2
. (12.30)
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Combining the last two equations gives the total energy δ2 density near the wall:

δ2 =
(

1

Sw
+ 4

R2

)
W2

c
. (12.31)

Equation (12.28) can now be used to eliminate W2 in Equation (12.31) to yield

δ2 = 4

R1

W1

c

(
1

4
+ Sw

R2

)
τ. (12.32)

The mean-square pressure in room 2 is given in terms of energy density by

p2
2 = ρ0c2δ2

which is then inserted into Equation (12.32) to yield

p2
2 = 4W1

R1
ρ0cτ

(
1

4
+ Sw

R2

)
. (12.33)

From the use of the definitions

L p2 = 10 log

(
p2

20 μPa

)2

and LW 1 = 10 log

(
W1

10 pW

)

Equation (12.33) becomes

L p2 = Lw1 + 10 log

(
4

R1

)
− 10 log

(
1

τ

)
+ 10 log

(
1

4
+ Sw

R2

)
(12.34)

where we have assumed that ρoc = 407 rayls.
In inspecting Equation (12.34) we observe that the first two terms in the right-

hand side of the equation represents L p1 under the conditions of a reverberant field
near the wall in room 1. We also invoke Equation (12.3) which expresses TL in
terms of transmission coefficient τ , with the result that Equation (12.34) simplifies
to:

L p2 = L p1 − TL + 10 log

(
1

4
+ Sw

R2

)
. (12.35)

From Equation (12.35) one can estimate the sound pressure level L p2 near the wall
in room 2, given the TL of the wall and the acoustic parameters of room 2. On the
other hand, if we know the desired value of L p2, (which is the usual case) we can
rearrange Equation (12.35) to find the necessary transmission loss of the wall as
follows:

TL = L p1 − L p2 + 10 log

(
1

4
+ Sw

R2

)
. (12.36)

The above equation is valid in both English and metric units.
The term L p1 − L p2 is referred to as the noise reduction denoted by the term

NR. Equation (12.36) becomes

NR = TL − 10 log

(
1

4
+ Sw

R2

)
. (12.37)
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We note if room 2 is entirely absorbent, i.e., it supports no reverberation field or if
the wall is an outside wall that it radiates outdoors, the value of R2 approaches an
infinite value and Equation (12.37) revises to

NR = TL + 6 dB. (12.38)

Example Problem 7
A 20 ft × 8 ft wall with a transmission loss of 32 dB separates two rooms. Room 1
contains a noise source that produces a reverberant field with a SPL = 110 dB
near the wall. Room 2 has a room constant R2 of 1350 ft2. Determine the sound
pressure level near the wall in room 2.

Solution
We apply Equation (12.32) to find the value of L p2:

L p2 = 110 − 32 + 10 log

(
1

4
+ 20 × 8 ft2

1350 ft2

)
dB

= 73.7 dB

12.13 Sound Pressure Level at a Distance from the Wall

For the most part we wish to predict the sound pressure level at some distances
from the wall. For appreciable distances the reverberant field will dominate over
the direct field. In Figure 12.14, it is desired to find L p3 at a point located somewhat
far from the wall, which results from the sound pressure level L p1 in room 1. But
it should be noted that the difference (L p1 − L p3) does not represent noise reduc-
tion, because region 3 in the chamber of room 2 is not directly contiguous to the
wall.

An expression for L p3 will be derived on the basis that it consists almost entirely
of the energy density in the reverberant field, i.e., the energy density is given
by

δr2 = 4W2

R2c
= δ3 (12.39)

but since p2 = ρ0c2δ, Equation (12.39) becomes

p2
3 = 4W2ρ0c

R2
. (12.40)

Here p2
3 represents the mean-square pressure in those regions of room 2 where the

direct field emerging directly from the wall as a plane wave has already dispersed
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to the extent that the field can be considered a superposition of randomly reflected
components, i.e., it is essentially a reverberant field. Equation (12.28) can be used
to eliminate W2 in favor of W1 in Equation (12.40) which then becomes

p2
3 = ρ0 c

4W1

R1

Sw
R2
τ

and because τ = W2/W1, L p3 = 10 log (p3/20 μPa), we will obtain

L p3 = L p1 + 10 log

(
Sw
R2

)
− TL (12.41)

where ρoc = 407 rayls, and L p3 denotes the sound pressure level at a distance
sufficiently far from the wall that the direct field is negligible in comparison with
the reverberant field.

Example Problem 8
Find the sound pressure level of room 2 at a large distance from the wall in the
Example Problem 7.

Solution
Applying Equation (12.41) yields

L p3 = L p1 + 10 log

(
Sw
R2

)
− TL

= 110 + 10 log

(
20 × 8

1350

)
− 32 = 68.7 dB

12.14 Enclosures

Enclosures may be categorized as being either full enclosures or partial enclo-
sures. These structures of varying sizes may enclose people or noise generating
machinery. It is advisable to never enclose more volume than necessary. For ex-
ample, an entire machine should not be enclosed if only one of its components
(such as a gear box, motor, etc.) constitutes the principal noise source. In some
cases, a partial enclosure may suffice to shield a worker from excessive exposure
to noise. The walls of an enclosure should be constructed of materials that will
provide isolation, absorption, and damping—all necessary for effective noise re-
duction. Moreover, any presence of cracks or leaks can radically reduce the noise
reduction of an enclosure, so all mechanical, electrical, utility, and piping outlets
must be thoroughly sealed. Access panels should fit tightly, and viewing windows
should be constructed of double panes and be impervious to acoustical leakages.
The interior of the enclosures should be lined with highly absorbing material so
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Figure 12.15. Plan view of a hood with energy densities δ1 and δ2 just inside and outside
the hood.

that the sound level does not build up from reflections, thereby decreasing the wall
vibration and the resultant radiation of the noise.

Hoods constitute a special category of acoustical full enclosures designed specif-
ically for the purpose of containing and absorbing excessive noise from a machine.
A hood is designed to minimize leakages at its physical input and output, and ac-
cess must be provided to allow periodic servicing. Usually hoods are sized so that
the enclosed machine component does not occupy more than a third of the internal
volume. The effectiveness of a hood is denoted by the amount of noise reduction
and insertion loss.

In the equilibrium condition, the total power W1 radiated by a source is absorbed
by the interior walls of the hood. In Figure 12.15 δ1 and δ2, respectively, denote
the energy densities of the interior and the exterior of the hood in the immediately
vicinity of the enclosure wall. We assume the wall to be thin enough so that
volumes V1 and V2 are nearly equal and denoted by V . As the time t required for an
acoustic wave to travel distance L is given by L/c, the energy contained in volume
V1 may be approximated by E1 = W1L/c, with the energy density now given
by

δ1 = E1

V1
= W1L

V c
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and similarly for the external side of the wall

δ2 = E2

V2
= W2L

V c

and because the transmission coefficient τ = W2/W1

δ2 = τW1L

V c
= τδ1.

Using the relationship p2
1 = ρ0c2δ1 and p2

2 = ρ0c2δ2, and the fact L p =
10 log (p/pref)2 we readily obtain

L p1 = 10 log

(
ρ0c2δ1

p2
ref

)
and L p2 = 10 log

(
ρ0c2δ2

p2
ref

)
.

Noise reduction NR is given by

NR = L p1 − L p2 = 10 log(1/τ )

which we note is also the definition for transmission loss TL. Hence,

NR = TL

which indicates that the noise reduction from just within the hood (located in
a virtual free field) to a region very near the external hood wall is equal to the
transmission loss of the wall alone. It should be realized here the value of L p1 is
supposed to be the value obtained with the hood in place, not the original lower
value of L p1 measured in the vicinity of the noise source before the hood is placed
over it. L p2 will be correspondingly higher, as the result of the hood insertion. As
a result, it is more useful to know the insertion loss IL of the hood rather than the
noise reduction. The insertion loss IL is given by

IL = L p0 − L p2 (12.42)

where L p0 denotes the sound pressure level at a selected location without the hood;
and L p2, the sound pressure level at the same point with the hood enshrouding the
sound source.

In deriving an approximate expression for insertion loss, we shall assume that
the room is considerably larger than the hood. The sound pressure level L p0 at any
location in the room may be found from Equation (11.21)

L p0 = Lw0 + 10 log

(
Q0

4πr2
+ 4

R

)
. (12.43)

In a similar fashion we can express SPL at the same location with the hood in place
by

L p2 = Lw2 + 10 log

(
Q2

4πr2
+ 4

R

)
. (12.44)

We now need to determine the total power W2 emitted by the noise source and
its hood acting as a single unit. Since the combination of noise source (usually
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a machine) and hood maintains a fairly equilibrium condition, the space average
of the time-average energy density remains a constant value under the hood. The
entire acoustic power emitted by the source is absorbed by the hood as losses or
is radiated through the walls and from thence outside the hood. That amount of
acoustic energy which passes through the hood is W2, which can be approximated
by Equations (12.26) and (12.28):

W2 = W0

(
Shαh

ᾱ

)
τ̄ (12.45)

where

W2 = power radiated into the room by the hood

W0 = acoustic power of the source

Sh = area of the walls and ceiling of the hood

αh = absorption coefficient of the walls and ceiling

S = total area under the hood

ᾱ = average value of sound absorption coefficient under the hood

τ̄ = average value of transmission coefficient for the hood,excluding the floor.

We shall now simplify Equation (12.45) by assuming that the total surface S =
Sh + S f , where S f is the floor area, is such that S f 	 Sh so that S ≈ Sh . With
the system in equilibrium, we can set αh = 1, which means that all of the energy
impinging on the walls of the hood becomes absorbed one way or the other.
Equations (12.45) becomes

W2 = W0
τ̄

ᾱ
(12.46)

where τ̄ ≤ ᾱ ≤ 1. The limits are established so that when ᾱ approaches unity, the
defining expression for τ is satisfied. But when ᾱ approaches τ̄ , nearly the entire
acoustic power of the source is radiated outside the hood.

Setting Q0 = Q2 = Q in Equations (12.43) and (12.44) (i.e. the Q of the hood-
source combination equals that of the source alone) and substituting into Equation
(12.42), we obtain

IL = Lw0 − Lw2 = 10 log

(
W0

W2

)
. (12.47)

Inserting Equation (12.46) into Equation (12.47) yields

IL = 10 log

(
ᾱ

τ̄

)
(12.48)

where τ̄ ≤ ᾱ ≤ 1.
In actuality the average absorption coefficient ᾱ has a lower nonzero limit as the

result of air absorption inside the enclosure, viscous losses of waves near grazing
incidence in the acoustical boundary layer on inside of the hood, and the change
from adiabatic to isothermal compression in the immediate vicinity of the inner



12.15 Small Enclosures 309

walls. According to Crèmer (1961), the latter two effects may be taken into account
in terms of sound frequency f by the expression

α f = 1.8 × 10−4
√

f .

The average excess air absorption coefficient ᾱex due to air absorption in a room
or enclosure is

αex = k
4V

S

where k is an experimentally determined constant, V is the enclosed volume, and S
the room or enclosure area. Combining the last two expressions, we get a minimum
ᾱmin expressed by

ᾱmin = αex + α f = 4kV

S
+ 1.8 × 10−4

√
f (12.49)

which is also valid for reverberation rooms. Equation (12.49) helps to establish
the upper limit of the reverberation time that can be achieved in an echo chamber.

The two limiting cases for Equation (12.48) are

IL = 0 dB for ᾱ = τ̄ , IL = 10 log(1/τ ) = TL dB for ᾱ = 1.

The first case of IL = 0 obviously represents the worst case, and the second case
where IL = TL represents the best case for the insertion loss of the hood. This
connotes that ᾱ should be near unity as possible and τ̄ be made much less than
unity for the most effective noise attenuation by a hood.

The above analysis is premised on the presence of high frequencies with a diffuse
field inside the enclosure. For a more complete treatment that includes the effects
of low frequencies, the reader is referred to Ver (1973).

Example Problem 9
Determine the insertion loss of a hood with an average absorption coefficient of
0.30 and a transmission coefficient of 0.002.

Solution
Applying Equation (12.48)

IL = 10 log

(
ᾱ

τ̄

)
= 10 log

(
0.30

0.002

)
= 21.8 ≈ 22 dB

12.15 Small Enclosures

A small enclosure is one that fits closely around the noise source. If the noise
source’s geometry contains flat planes that are parallel to the walls of the enclosure,
standing wave resonances can occur at frequencies that are integer multiples of
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the half-wavelengths of the generated noise. This can render the enclosure useless
from the viewpoint of noise attenuation unless the inside of the enclosure is lined
with sound-absorption material at least one-quarter wavelength thick. If there is
no sound absorption material inside the enclosure, situations can occur where the
noise generated at resonant frequencies may actually be louder outside than would
be the case without the enclosure!

12.16 Acoustic Barriers

The term acoustic barrier (or noise barrier) refers to an obstacle that interrupts
the line of sight between a noise source and receiver but does not enclose either
source or receiver. An acoustic barrier may be in the form of a fence, a wall, a berm
(a mound of earth), dense foliage, or a building between the noise source and the
receiver. Noise attenuation occurs from the fact that noise transmission through the
barrier is negligible in comparison with refracted noise, particularly if the barrier
is solid, without holes or openings, and it is of sufficient mass. Because the sound
reaches the receiver by an indirect path over the top of the barrier, the sound level
will be less than the case would be if the sound had traveled the (shorter) direct
path. The refraction phenomenon is highly dependent upon the frequency content
of the sound. The calculations for barrier attenuation are based in part on Fresnel’s
work in optics.

In Figure 12.16 consider a room prior to inserting a barrier in the position shown.
The mean-square pressure at the sound receiver’s location is given by

p2
0 = Wρ0c

(
Q

4πr2
+ 4

R

)

where p2
0 denotes the mean-square pressure without the barrier. The sound pressure

level is expressed by

L p0 = Lw + 10 log

(
Q

4πr2
+ 4

R

)

where

L p0 = SPL without the barrier

Lw = power level of the source

Q = directivity of the source

R = room constant without the barrier

r = distance between the source and the receiver.

Now let us insert the barrier as shown in Figure 12.16. The mean-square pressure
p2

2, at the receiver with the barrier installed is given by

p2
2 = p2

r2 + p2
d2 (12.50)
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Figure 12.16. Schematic of a room with a barrier in position. Region 1 and region 2 are
separated by a plane defined by ABB′A′.

where the first term on the right of Equation (12.50) is the mean-square pressure
at the receiver due to the reverberant field and the second term represents the
mean-square pressure due to the diffracted field around the edges of the barrier.
Recognizing that L p2 = 10 log(p2

2/p2
ref), we can express the sound pressure level

L p2 at the receiver in terms of the reverberant and diffracted fields:

L p2 = 10 log

(
p2

r2 + p2
b2

p2
ref

)
. (12.51)

The barrier insertion loss IL is given in terms of SPL by

IL = L p0 − L p2 = 10 log

(
p2

0

p2
2

)
. (12.52)

For the room of Figure 12.16, we shall assume an equilibrium condition and that
the area of the barrier is considerably smaller than the planar cross section of the
room, i.e.

L H  Lbh. (12.53)



312 12. Walls, Enclosures, and Barriers

In this situation the reverberant field in the shadow zone of the barrier may be
assumed to be the same with or without the barrier’s presence. This reverberant
field represents the minimum SPL in the shadow zone. The space average δr of the
time-average reverberant energy density in the room without the barrier is given
by

δr = 4W

Rc
= p2

r

ρ0c
. (12.54)

For the condition stated by Equation (12.53) δr = δr1 = δr2, where the numerical
subscripts denote the regions on each side of the barrier in Figure 12.15. Equation
(12.54) can now be rewritten as

p2
r2 = 4Wρ0c

R
. (12.55)

Here p2
r2 denotes the mean-square pressure in the reverberant field of the shadow

zone of the barrier. Our next step is to include the mean-square pressure p2
b2 in

area 2 at the location of the receiver due to the diffracted field from the edges of
the barrier, and this is given by (see Moreland and Musa, 1972):

p2
b2 = p2

d2

n∑
i=1

1

3 + 10Ni
= p2

d2 D (12.56)

where p2
d2 represents the mean-square pressure attributable to the direct field with-

out the barrier, the Fresnel number Ni is defined by

Ni ≡ 2di

λ
(12.57)

where

di = difference in direct path and diffracted path between the source and receive

λ = wavelength of the sound

and D is the diffraction constant defined by2

D ≡
n∑

i=1

1

3 + 10Ni
. (12.58)

In the case of Figure 12.16, the following path differences exist:

d1 = (r1 + r2) − (r3 + r4)

d2 = (r5 + r6) − (r3 + r4) (12.59)

d3 = (r7 + r8) − (r3 + r4)

2 In some literature the alternative definition for the diffraction coefficient is given by

D =
n∑

i=1

1

3 + 20Ni
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In the case of rectangular barriers, three values of di , or n = 3, will usually
suffice to describe the shadow zone of the barrier. Through Equation (11.20) we
can write for the mean-square pressure p2

d2 due to the direct field as follows:

p2
d2 = QWρ0c

4πr2
. (12.60)

with r constituting the direct length from the source to the receiver. Combining
Equations (12.56) and (12.60) yields

p2
b2 = WQDρ0c

4πr2
= WQB

4πr2
ρ0c. (12.61)

where Q B ≡ Q D is the effective directivity of the source toward the direction of
the shadow zone. Inserting Equations (12.61) and (12.55) into Equation (12.50)
results in

p2
2 = Wρ0c

(
Q B

4πr2
+ 4

R

)

and the corresponding sound pressure is

L p2 = Lw + 10 log

(
Q B

4πr2
+ 4

R

)
(12.62)

where

Q B = Q
n∑

i=1

λ

3λ+ 20di
. (12.63)

In English units, where distances are expressed in feet instead of meters, Equation
(12.62) becomes

L p2 = Lw + 10 log

(
Q B

4πr2
+ 4

R

)
+ 10. (12.64)

For a rectangular barrier n = 3 in Equation (12.63), and the required path differ-
ences are given by Equation (12.59).

From Equations (12.52) and (12.62) we obtain the barrier insertion loss IL:

IL = 10 log

⎛
⎜⎝

Q

4πr2
+ 4

R
Q B

4πr2
+ 4

R

⎞
⎟⎠ . (12.65)

The above equation applies to either the metric system or English system. It is inter-
esting to note that if the barrier is located in an extremely reverberant environment,
such as an echo chamber, the acoustic field reaches the receiver by rebounding un-
abated from the surfaces of the room to the degree that the effectiveness of the bar-
rier in blocking the direct field becomes insignificant. Because 4/R  Q/(4πr2)
and 4/R  Q B/(4πr2) for a reverberant room, Equation (12.65) will give a value
of IL = 0 dB.
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12.17 Barrier in a Free Field

The case of a barrier located outdoors or in an extremely acoustically absorbent
room is of special interest. In a free field the room constant R ≈ ∞, with the result
that Equation (12.65) becomes

IL = 10 log

(
Q

Q B

)
= 10 log

(
Q

Q D

)
= 10 log

(
1

D

)
. (12.66)

where

D =
n∑

i=1

λ

3λ+ 20di
. (12.67)

In treating the rectangular barrier in a free field or an acoustically high absorptivity
chamber we expand Equation (12.67) for n = 3 and insert the result into the
rightmost term in Equation (12.66) to yield

IL = −10 log

[
λ

(
1

3λ+ 20d1
+ 1

3λ+ 20d2
+ 1

3λ+ 20d3

)]
. (12.68)

If the barrier is of semi-infinite length, i.e., L B ≈ ∞ in Figure 12.16, Equation
(12.68) reduces to

IL = −10 log

(
λ

3λ+ 20d1

)
. (12.69)

Example Problem 10
Consider the room of Figure 12.16 to be an anechoic chamber with dimensions
20 ft long × 15 ft wide × 12 ft high. A sound source is located in the room
1.5 ft above the floor, 8 ft away from one of the shorter walls, in the center and
2 ft directly behind a 6-ft-wide × 5-ft-high rectangular barrier. The barrier itself
has a very high transmission loss rating, and a receiver in the form of a SPL meter
is located also in the center 2 ft above the floor and 6 ft away from the source.
Determine the insertion loss of the barrier for the 1000-Hz octave band.

Solution
The path differences as given by Equation (12.59) assume the following values:

d1 = (r1 + r2) − (r3 + r4) = (4.03 + 4.98) − 6 = 3.01 ft

d2 = (r5 + r6) − (r3 + r4) = (3.61 + 4.98) − 6 = 2.59 ft

d3 = (r7 + r8) − (r3 + r4) = (3.61 + 4.98) − 6 = 2.59 ft.

The wavelength λ at 1000 Hz is found from

λ = c

f
= 1128 ft/s ÷ 1000 Hz = 1.128 ft
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Equation (12.67) becomes

D = λ

(
1

3λ+ 20d1
+ 1

3λ+ 20d2
+ 1

3λ+ 20d3

)

= 1.128

[
1

3(1.128)+20(3.01)
+ 1

3(1.128)+20(2.59)
+ 1

3(1.128)+20(2.59)

]
= 0.059

The insertion loss is then calculated:

IL = 10 log(1/D) = 10 log(1/0.059) = 12 dB

12.18 Approximations for Barrier Insertion Loss

Consider the barrier of Figure 12.17. The Fresnel number N , given by Equation
(12.57) can be restated as

N = 2(A + B − C)

λ
= 2(A + B − C) f

c

A number of researchers in the field developed and verified analytic models,
with a view to apply the results to highway barriers. For a point source located
behind an infinitely long solid wall or berm, the attenuation A′ provided by a
barrier are given by the following equations, where the arguments of tan and tanh
are given in radians:

A′ = 0 for N < −0.1916 − 0.0635b′

A′ = 5(1 + 0.6b′) + 20 log

( √−2πN

tan
√−2πN

)
for − 0.1916 − 0.0635b′ ≤ N ≤ 0

A′ = 5(1 + 0.6b′) + 20 log

( √
2πN

tanh
√

2πN

)
for 0 < N < 5.03

Figure 12.17. The geometry of a barrier used in the calculation of the Fresnel number.
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where b′ = 0 for a wall and b′ = 1 for a berm. The correction factor b′ allows
for the experimentally determined fact that berms tend to produce 3 dB more
attenuation than walls of the same height. The above set of equations apply only
to barriers that are perpendicular to a line between the source and the receiver. A
detailed discussion of attenuation through scattering and diffraction is given by
Pierce (1981).
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Problems for Chapter 12

1. A room is subdivided in its middle by a concrete wall with a transmission loss
of 52 dB. The room is 4 m high, and the division occurs across the entire width
of 12.5 m. In the middle of the dividing wall there is a door 2.5 m high × 1.0 m
wide. The door’s rated transmission loss is 28 dB. There is a crack underneath
the door that extends across the door’s width and it is 2.5 cm high.
(a) Determine the effective transmission loss of this structure.
(b) If you could reduce the crack to 0.30 cm (by lengthening the door) what

will be the change in the overall transmission loss?
2. A 5.8 ft2 sample of a building material is being tested by being placed in a

window between a receiving room and a source room. There is no appreciable
sound transmission except that through the sample. Average sound levels in
the 1-kHz octave band are 93 dB in the source room and 68 dB in the receiving
room. The equivalent absorption area of the receiving rooms is 18 ft2. Estimate
the transmission loss (TL) and the transmission coefficient (TC) for the sample
at 1 kHz.
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3. A 0.75 m2 sample of building material is placed in a window between a
receiving room and a source room. Sound transmission occurs only through the
sample. The sound level in the source room is 89 dB and that for the receiving
room, with 3.0 m2 equivalent absorption, is 69 dB. Find the transmission loss
and the transmission coefficient for this material sample.

4. A wall consists of the following: a 22-dB (transmission loss at 500 Hz) wood
door which takes up 25% of the exposed area, 2.2% airspace, and the remainder
of the exposed wall area is a solid wall with 52 dB TL. Determine the TL of
the composite wall at 500 Hz.

5. Repeat the above problem but with the airspace reduced to 0.2%.
6. Repeat Problem 4, using a 36-dB TL door. Also determine the benefit of

reducing the airspace from 2.2% to 0.2%.
7. A room is subdivided in its middle by a concrete wall with a transmission

loss of 62 dB. The room is 4.5 m high, and the division occurs across the
entire width of 11.8 m. In the middle of the dividing wall there is a door 2.5 m
high × 1.0 m wide. The door’s rated transmission loss is 29 dB. There is a
crack underneath the door that extends across the door’s width and it is 2.6 cm
high.
(a) Determine the effective transmission loss of this structure.
(b) If you could reduce the crack to 0.30 cm (by lengthening the door) what

willbe the change in the overall transmission loss?
8. Develop an equation for transmission loss versus frequency for 4-mm glass in

the mass-controlled region. Glass may be assumed to have a specific gravity
of 2.6.

9. It is desired to increase the transmission loss of a panel in the mass-controlled
region by 5 dB Find the necessary change in thickness.

10. Find the transmission loss and transmission coefficient for 8-mm glass at the
critical frequency. Assume a loss factor of 0.06.

11. Redo Problem 9 for 14-mm glass with a loss factor of 0.1.
12. Consider a double wall panel with airspace h (given in mm). One panel has

70% the surface mass of the other, and the sum of the surface masses is mt (in
kg/m2). Plot the resonant frequency versus the product of mt and h.

13. Determine the resonant frequency of a double-paneled partition constructed
of 4 lb/ft2and 6 lb/ft2 panels with 5.2-in. airspace.

14. A wall was measured for its transmission loss in one-third octaves beginning
at 125 Hz. The values were: 25, 24, 30, 32, 39, 41, 41, 46. 47, 49, 47, 46, 48,
49, 45, and 46. Find the sound transmission class (STC).

15. Redo Problem 14 with the TL values in the four highest third-octaves being
39, 40, 38, and 39.

16. Find the SIR for the wall of Problem 14.
17. A 6 m × 2.5 m wall with a transmission loss of 35 dB separates two rooms.

A noise source in one room yields a reverberant field with a sound pres-
sure level of 120 dB near the wall. The other room has a room constant
R = 130 m2. Predict the sound level pressure near the wall in the latter
room.
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18. Predict the insertion loss of a hood that has an average absorption coefficient
of 0.4 and a transmission coefficient of 0.003.

19. Determine the insertion loss at 1000 Hz of an outdoor noise barrier with a
noise source 1.2 ft above the ground, 12 ft away from the wall that is 8 ft tall
and 20 ft wide. The SPL meter is located 3 ft above ground and is 6 ft away
from the wall. Both source and receiver are equally far from the ends of the
wall.



13
Criteria and Regulations for
Noise Control

13.1 Introduction

Loss of hearing constitutes only one of the effects of sustained exposure to exces-
sive noise levels. Noise can interfere with speech and sleep, and cause annoyance
and other nonauditory effects. Annoyance is quite subjective in nature, rendering it
difficult to quantify. Loud steady noise can be quite unpleasant but impulse noise
can be even more so. Moreover, impulse noise involves a greater risk of hearing
damage. Community response, which can range anywhere from simple telephone
calls to municipal authorities to massive public demonstrations of outrage, can be
used as a measure of annoyance to citizens.

In this chapter we discuss these effects and describe the criteria and regulations
that have been implemented over nearly three decades for the purpose of control-
ling environmental noise. In a broader sense, the term environmental noise pertains
to noise in the workplace and in the community. This pertains to noise sources aris-
ing from operation and use of industrial machinery, construction activities, surface
and air transportation. We must also consider recreational noise which arise from
the use of snowmobiles, drag strip racers, highly amplified stereo systems in the
home and in motor vehicles, and so on. A considerable number of regulations exist
in a number of nations, for the purpose of protecting hearing from overexposure
to loud noise, providing salutary working conditions, shielding communities from
excessive environmental noise arising from the presence of manufacturing plants
or construction activities and nearby surface and air transportation. The enact-
ment and enforcement of these regulations motivates the control of noise levels
in the workplace and in the community, not only for the purpose of promoting a
proper auditory environment but also to avoid penalties that can be levied for un-
corrected violations. The principal U.S. laws germane to the issue of noise control
are:

� National Environmental Policy Act of 1969
� Noise Pollution and Abatement Act of 1970
� Occupational Safety and Health Act of 1970
� Noise Control Act of 1972.

319



320 13. Criteria and Regulations for Noise Control

As the corollary to these acts, the Environmental Protection Agency (EPA)
(1973), the Department of Labor (DOL), and the Department of Transportation
(DOT) have been designated as the principal federal agencies to issue and enforce
noise control regulations.

Under the National Environmental Policy Act of 1969, any federally funded
construction project requires the preparation and submission of an Environmen-
tal Impact Statement (EIS), which assesses the public impact of the noise that
will be generated by the erection and operation of the completed project. The
creation of the Office of Noise Abatement and Control (ONAC) as a branch of
EPA was sanctioned by the Noise Pollution and Abatement Act of 1970. This
office carries total responsibility for investigating the effect of noise on public
health and welfare. The Occupational Safety and Health Act of 1970 set up the
mechanics of enforcing safe working conditions, of which noise exposure crite-
ria constitute a part. The Noise Control Act of 1972 probably contains the most
important piece of federal legislation in regard to noisy environments. While EPA
is given the primary responsibility for monitoring sound levels in the community,
this legislation provides for a division of powers among the federal, state, and local
governments.

13.2 Noise Control Act of 1972

With the passage of the Noise Control Act of 1972, the U.S. Congress estab-
lished the national policy of promoting an environment that is free of excessive
noise that would be deleterious to health, safety, and welfare. EPA was charged
with the responsibility of coordinating federal efforts in noise control research,
identification of noise sources and the promulgation of noise criteria and control
technology, the establishment of noise emission standards for commercial prod-
ucts, and the development of low-noise emission products. This agency also bears
the responsibility of evaluating the adequacy of Federal Aviation Administration
(FAA) flight and operational noise controls and the adequacy of noise standards on
new and existing aircraft (including recommendations on retrofitting and phaseout
of existing aircraft). However, under the provisions of Section 611 of the Federal
Aviation Act of 1958, FAA retained the right to prescribe and amend standards
for the measurement of aircraft noise and sonic boom, but EPA can raise objec-
tions to FAA standards that, in the opinion of EPA, do not protect public health
and welfare. Irreconcilable differences may be resolved by filing of a petition for
review of action of the Administrator of EPA or FAA only by filing in the United
States Court of Appeals for the District of Columbia Circuit. EPA may subpoena
witnesses and serve relevant papers to obtain information necessary to carry out
the act.

Section 17 of the Noise Control Act also assigns the task of developing noise
emission regulations for surface carriers engaged in interstate commerce by rail-
roads, in consultation with the Secretary of Transportation. States and local
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governments are enjoined from adopting different standards except when ren-
dered necessary by special local conditions and then only with the permission of
EPA and the Secretary of Transportation. The provisions of Section 18 are nearly
identical to those of Section 17 except they apply to motor carriers engaged in
interstate commerce.

13.3 The Occupational Safety and Health Act of 1970

Under the directive of the Walsh–Healey Public Contract Act which was passed by
Congress in 1969, the U.S. Department of Labor developed the first occupational
noise exposure standard. In 1970, the Occupational Safety and Health Act was
passed to apply the requirements of the standard to cover all workers engaged in
interstate commerce. The Occupational Safety and Health Administration (OSHA)
exists as an arm of the Department of Labor. The assigned task of this agency is to
establish safety regulations (including those pertaining to noise levels) and enforce
them.

According to OSHA regulations, the daily noise dose D in percent is given in
terms of slow-response time-average A-weighted sound levels by

D = 100
n∑

i=1

Ci

Ti
(13.1)

where Ci is the duration of exposure to a specific sound pressure level (SPL) and Ti

is the allowable daily duration for exposure to noise at that value of SPL. Table 13.1
lists the A-weighted slow-response noise levels and their corresponding maximum
daily exposure times Ti . Under OSHA regulations noise dosage exceeding 100%
is not permitted. It will be noted in Table 13.1 that each 5 dB(A) increase in sound
level cuts in half the allowable exposure time. For a time-average A-weighted
average of 90 dB(A), the permitted exposure time is 8 h. Elevation of this noise

Table 13.1. OSHA Noise Exposure
Limits (OSHA, 1978).

SPL, dB(A) Permissible Exposure,
(slow response) h/day

90 8
92 6
95 4
97 3

100 2
102 1.5
105 1
110 0.5
115 0.25 or less
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level by 5 dB(A) cuts the allowable exposure time to 4 h. Exposure to noise levels
above 115 dB(A) is not permitted. Moreover, for exposure to noise having a slow-
response time-average A-weighted sound level of any value, the instantaneous
peak sound pressure level may not exceed 140 dB. It should also be noted that
the dosage levels are considered to be attributable to noise that actually reach a
worker’s station at the ear level. If a worker moves from place to place in the
course of his or her occupational assignment, the dosage must be based on the
noise exposure and the time spent at each station during the work period.

Example Problem 1
Monitoring of a factory noise environment at a worker’s station yielded the fol-
lowing time samplings over the course of a normal 8 h: Compute the dosage and
comment on the result.

Exposure Level, dB(A) Exposure Period, h

85 1.5
90 3.0
92 2.5
95 0.5
97 0.3

100 0.2

Solution
Applying Equation (13.1) and using Table 13.1, we obtain

D = 100 ×
(

3

8
+ 2.5

6
+ 0.5

4
+ 0.3

3
+ 0.2

2

)
= 112%

This dosage of 112% violates OSHA regulations. However, if this 8-h workday
is cut down by 100/117 to 6.8 h or less (assuming the noise level distribution is
fairly consistent throughout the day), the daily dosage will not exceed 100%. It can
also be arranged to move the worker to a region, where the noise level averages
86 dB(A) or less (i.e., below the OSHA noise level range), for 1.16 h in order to
round out 8 h daily on the job.

Annual audiology tests of all workers exposed to this environment are mandated
if the noise level equals or exceeds 85 dB(A) over the course of a work day.
Corrective measures must be taken when the dosage D exceeds unity. Aside from
shortening time exposures to the offending noise, noise control measures described
in the next chapter must be taken to decrease the sound level pressure of noise
sources. Hearing protection devices such as earplugs, earmuffs, and special helmets
are considered to be temporary stopgaps, and these do not necessarily remove the
obligation of the work facility management to cut down on noise levels. OSHA
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inspectors have the discretion to levy fines for violations that are not removed after
an initial visit to the facility.

13.4 Perception of Noise

Loudness is not the only characteristic of noise that determines the degree of
annoyance. There are other factors, acoustical as well as nonacoustical, that are
important. In a classic series of laboratory studies conducted by Kryter and his
associates (1959, 1963), human subjects rated sounds of equal duration according
to their noisiness, annoyance, or unacceptability. Through the use of octave bands
of noise Kryter with others established equal noisiness contours, which resemble
those for equal loudness, but less acoustic energy is required at higher frequencies
to produce equal noisiness and more is needed at low frequencies.

The unit of noisiness index is the noy N (this term apparently derives from the
second syllable of the word annoy). Figure 13.1 displays the equal loudness index
curves. In order to determine the logarithmic measure of the perceived noise level
(PNL), the following standardized procedural steps need to be taken:

1. Obtain and tabulate the octave band (or 1/3 octave band) sound pressure levels
produced by the noise.

2. Use Figure 13.1 to calculate the noisiness index for each octave (or 1/3 octave)
band. Then determine the total noisiness index from either one of the following
two expressions:

N t = Nmax + 0.3

(∑
i

Ni − Nmax

)
(13.2a)

N t = Nmax + 0.15

(∑
i

Ni − Nmax

)
(13.2b)

Equation (13.2a) applies to one-octave bands and (13.2b) to one-third octave
bands. For each octave (or 1/3 octave) band, Nmax represents the maximum
value of Ni found within that band.

3. The total perceived noisiness index Nt , which is summed over all frequency
bands, is converted to the perceived noise level PNL (or LPN) through the
relationship

LPN = 40 + (33.22) log N t (13.3)

There have been some questions raised regarding the validity of this procedure
because the listeners in the laboratory trials do not always seem to distinguish
the difference between loudness and noisiness and annoyance. But this proce-
dure is now being used to evaluate single-event aircraft noise. The U.S. Fed-
eral Aviation Administration (FAA) adopted the PNL method to certify new
aircraft.
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Figure 13.1. Equal loudness index curves.

13.5 Effective Perceived Noise Level

Noise of longer duration is obviously more annoying than noise of short duration.
Moreover, if pure tones are present in the broadband noise system, the noise is
judged to be even noisier than noise without such tones. In order to take into
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account the factors of duration and the presence of pure tones, the effective noise
perception level (EPNL) has been defined as

LEPN = LPN + C + D. (13.4)

Here C is the correction factor for pure tones and D is the duration correction. The
tone correction varies from 0 dB up to a maximum of 6.7 dB. The estimation of C
entails a complex procedure (Edge and Cawthorn, 1977) that involves examination
of the band spectra to detect any band whose level exceeds the level of the bands to
either side. The duration correction D, expressed in decibels, which accounts for
duration of the noise, may be either positive or negative but it is usually negative.
It is calculated from

D = 10 log10

(
d/0.5∑
k=0

antilog
LPNT(k)

10

)
− 13 − LPNTmax (13.5)

Here d represents the total length of the time elapsed when the noise begins to
exceed the background level to the moment when it falls back to the level of
imperceptibility. The number 0.5 represents the increment index, i.e., if the total
duration d of the detectable sound is 5 s, then ten intervals are being considered
in the summation of Equation (13.5). LPNT is the tone-corrected value of LPN (i.e.
LPNT = LPN + C).

13.6 Indoor Noise Criteria

In order to render communication possible in both indoor and outdoor areas at work,
it is necessary to minimize the speech interference arising from the background.
The A-weighted sound level can be utilized to determine the acceptability of indoor
noise, but it cannot give an indication as to which part of the frequency spectrum
is responsible for interference. A number of noise evaluation curves are available
for rating the acceptability of noise in indoor situations. The most frequently
used families of curves are the noise criterion (NC) curves, noise rating (NR)
curves, room criterion (RC) curves, and balanced noise criterion (NCB) curves.
These curves were developed in order to provide criteria to either determine the
acceptable noise levels in buildings or to specify the acceptable noise in buildings.

Noise Criterion Curves
The NC curves of Figure 13.2 were the result of an exhaustive series of interviews
with people in offices, industrial spaces, and public areas. It was found that the
principle concern is the interference of noise with speech communication and
listening to radio, television, and music. In order to find the NC rating of a particular
area, the octave-band sound pressure levels of the noise are measured and plotted
on the family of the NC curves of Figure 13.2. The highest curve penetrated by
any octave band and pressure level of the measured noise defines the NC value for
the spectrum.
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Figure 13.2. Noise criterion (NC) curves.

Example Problem 2
A noise generator in a room was found to yield 50 dB straight across the octave
band from center frequencies 63–8000 Hz. What is the RC rating for that room?

Solution
Draw a horizontal line at the 50 dB level. The highest NC curve penetrated is 50.
The NC value is therefore NC 50.

Noise Rating Curves
The noise rating (NR) curves of Figure 13.3 are very similar to the NC curves.
Their original purpose was to determine whether noise heard from industrial plants
is acceptable at nearby apartments and houses. As with the NC curves, the noise
spectrum is also measured at the affected locations and plotted in Figure 13.3. The
NR curves differ in that they include corrections for time of day, fraction of the
time the noise is heard, and the type of neighborhood. In the range between 20 and
50 for NR or NC, there is little difference between results obtained from the two
sets of calculated procedures.
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Figure 13.3. Noise rating (NR) curves.

Room Criterion Curves
The difficulty with NC curves is that they are not defined in the low frequency
range—i.e, the 160 and 31.5 Hz octave bands—and complaints have been regis-
tered that they allow too much noise above the 2 kHz range. Accordingly, Blazier
developed a set of room criterion curves on the basis of an extensive study con-
ducted for ASHRAE of generally acceptable background spectra in 68 unoccupied
offices. Most of the A-weighted sound pressure levels lie in the range of 40–50 dB.
Blazier determined that the curve he derived from the measure data had a slope of
approximately –5 dB/octave, and he developed a family of straight lines with this
slope (cf. Figure 13.4). It was also established that intense low-frequency noise
75 dB or more in region A of Figure 13.5 is apt to cause mechanical vibrations
and rattles in lightweight structures. Noise in region B has a low probability to
generate such vibration. The RC value of a measured spectrum is defined as the
arithmetic average of the sound levels at 500, 1000, and 2000 Hz. These curves are
based on measurements made with air conditioning noise only, so they are mainly
used in rating the noise of HVAC systems.

Balanced Criterion Curve
Beranek (1989a,b) modified the NC curves by adding the 16- and 31.5-Hz octave
bands and modifying the slope of the curves so that it became –3.33 dB/octave
between 500 and 8000 Hz. He also incorporated regions A and B of the RC curves
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Figure 13.4. Room criterion (RC) curves.

of Figure 13.4. The rating number of the resulting balanced noise criterion (NCB)
curve, shown in Figure 13.5, represents the arithmetic average of the octave-band
levels with center frequencies of 500, 1000, 2000, and 4000 Hz. Figure 13.5 is
useful for rating air-conditioning noise in buildings. Table 13.2 (Beranek and
Ver, 1992) lists the recommended categories of NCB curves for different uses of
building interior space.

Example Problem 3
In Figure 13.5, the background noise spectrum from air conditioning is plotted as a
dashed line. Find the NCB rating and comment on the noisiness of the equipment.

Solution
We note that this plot is tangent to the NCB-40 curve and no octave-band level
exceeds this curve. This is a spectrum that might be acceptable for a business office
but is barely acceptable in a bedroom or a residential living room. According to
Table 13.2, the NCB-40 rating is not at all acceptable in a concert hall, theater, or
a house of worship.
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Figure 13.5. Balance noise criterion (NCB) curves.

13.7 Equivalent Sound Level, Day–Night Equivalent Sound
Level, and Equivalent Day–Evening–Night Sound Level

From Chapter 3, we repeat here the definition of Equation (3.29) for the equivalent
sound pressure level Leq, which is the A-weighted sound pressure level averaged
over a measurement period T .

Leq = 10 log

(
1

T

∫ T

0
10L/10 dt

)
= 10 log

(
1

N

N∑
n=1

10Ln/10

)
(13.6)
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Table 13.2. Recommended NCB Curve Categories on the Basis of Interior Use and
Suggested Noise Criteria Range for Steady Background Noise.

Approximate
Type of Space (and Acoustical Requirements) NCB Curvea L A , dB

Broadcast and recording studios (distant microphone pickup
used)

10 18

Concert halls, opera houses, and recital halls (for listening to
faint musical sounds)

10–15 18–23

Large auditoriums, large drama theaters, and large churches
(for very good listening conditions)

Not to exceed 20 28

Broadcast, television, and recording studios
(close microphone pickup used only)

Not to exceed 25 33

Small auditoriums, small theaters, small churches, music
rehearsal rooms, large meeting and conference rooms
(for very good listening), or executive offices and
conference rooms for 50 people (no amplification)

Not to exceed 30 38

Bedrooms, sleeping quarters, hospitals, residences,
apartments, hotels, motels, etc. (for sleeping, resting,
relaxing)

25–40 38–48

Private or semiprivate offices, small conference rooms,
classrooms, libraries, etc. (for good listening conditions)

30–40 38–48

Living rooms and drawing rooms in dwellings (for conversing
or listening to radio and television)

30–40 38–48

Large offices, reception areas, retail shops and stores,
cafeterias, restaurants, etc. (for moderately good listening
conditions)

35–45 43–53

Lobbies, laboratory work spaces, drafting and engineering
rooms, general secretarial areas (for fair listening
conditions)

40–50 48–58

Light maintenance shops, industrial plant control rooms, office
and computer equipment rooms, kitchens and laundries
(for moderately fair listening conditions)

45–55 53–63

Shops, garages, etc. (for just acceptable speech and telephone
communication). Levels above NC or NCB 60 are not
recommended for any office or communication situation.

50–60 58–68

For work spaces where speech or telephone communication is
not required, but where there must be no risk of hearing
damage.

55–70 63–78

aSee Figure 13.5.

This averaging time T can be chosen to be anywhere from a few seconds to
hours. Leq can be readily measured through the use of an integrating sound level
meter. Because it takes into account both magnitude and duration, the equivalent
sound level has proven to be a viable parameter for evaluating environmental noise
from industry, railroads, and traffic. Leq is found to correlate very well with the
psychological effects of noise.

In order to account for different response of people to noise at night, the U.S.
Environmental Agency developed the day–night equivalent level (DNL), as defined
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by Equation (3.30), which we repeat here in modified form:

Ldn = 10 log
15

(
10Ld/10

) + 9
(
10(Ln+10)/10

)
24

(13.7)

where Ld represents the 15-h daytime A-weighted equivalent sound level (from
7:00 a.m. to 10:00 p.m.) and Ln is the 9-h nighttime equivalent A-weighted sound
level (from 10 p.m. to 7:00 a.m.). The nighttime value carries a penalty of 10 dB
because noise at night is deemed to be much more disturbing than noise generated
during the day. The use of the day–night equivalent level as a parameter is increas-
ing in the United States and some nations for evaluating community noise and
some cases of airport noise. The U. S. Federal Interagency Committee on Urban
Noise (FICON) adopted DNL as the descriptor of environmental noise that affects
residences.

In 2002, the European Union Parliament and Council issued Directive
2002/49/EC in an effort to establish common assessment methods for rating en-
vironmental noise in terms of harmonized indicators for the determination of
noise levels. The concrete figures of any limit values are to be determined by
the Member States of the European Union. The common noise indicators adopted
are day–evening–night equivalent level Lden to assess annoyance and the night
equivalent level Lnight to assess sleep disturbance. Lden and Lnight are defined as
follows:

Lden = 10 log
1

24

(
12 × 10

Lday
10 + 4 × 10

Levening+5

10 + 8 × 10
Lnight+10

10

)

where

Lday = A-weighted average sound level determined over 12-h day periods
of the year

Levening = A-weighted average sound level determined over 4-h evening periods
of the year

Lnight = A-weighted average sound level determined over 8-h night periods
of the year.

We note that +5 dB(A) and +10 dB(A) penalties have been imposed to reflect the
need for quieter periods of evenings and nights, respectively. While the day spans
12 h, the evening 4 h, and night, 8 h, the Member States may shorten the evening
period by 1 or 2 h and lengthen the day and/or the night period, correspondingly,
provided the measurements are consistent for all sources and the reporting States
provide the European Commision with information on any systematic difference
from the default option. The default values of (local) time are 0700–1900 h for
day, 1900–2300 h for evening, and 2300–0700 h for night. Use of Lden will likely
increase in the future for airport noise and other environmental assessments in
European Union.



332 13. Criteria and Regulations for Noise Control

Figure 13.6. Example of a cumulative distribution and its percentile sound levels.

13.8 Percentile Sound Levels

Much of environmental noise tends to have a great deal of fluctuations in sound
levels. There have been indications that unsteady noise, which occurs from noise
sources such as passing aircraft or ground vehicles, is more disturbing than steady
noise. In order to consider fluctuations in noise levels and the intermittent char-
acteristics of some noises, percentile sound levels are used internationally as
descriptors of traffic and community noise. The level Ln represents the sound
level exceeded n% of the time. For example, L20 represents the sound level ex-
ceeded 20% of the time. In Figure 13.6 a cumulative distribution is given with
examples of L10, L50, and L90 levels. In this example, L10 = 85 dB(A) de-
notes that 85 dB(A) is the level exceeded 10% of the time. L50 = 75 dB(A),
and this is termed the median noise level, because half the time the fluctuating
noise level is greater than this value and the other half of the time the noise is
less.

In Japan the median noise level is used to describe road traffic noise. Levels
such as L1 or L10 are used to describe the more intense short-duration noises. In
Australia and in the United Kingdom, L10 is applied (over an 18-h period, from
0600 to 2400 h) as target values for new roads and for insulation regulations for
new roads. High percentage levels such as L90 or L99 are usually used to denote
the minimum noise level or residual or background noise level.

13.9 Rating of Aircraft Noise

Aircraft noise is a cause of increasing concern in many nations. A considerable
amount of effort has gone into developing the means for predicting and evaluating
the annoyance caused by aircraft noise in communities. A 1995 survey (Gottlob,
1995) of rating measures revealed that 11 measures are in use in 16 countries
surveyed. We discuss a few of these measures below.
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Composite Noise Rating
The composite noise rating CNR traces its history as far back as the early 1950s.
The CNR, originally used as a basic parameter, measures the level rank on the
basis of a seta set of curves placed about 5 dB apart in the mid-frequency range,
in nearly the same fashion as the NC and NR curves. The level rank was obtained
by superposing the noise spectrum on the curves and determining the highest zone
into which the spectrum protruded. The rank thus found was then modified to
include algebraic corrections to reflect the spectrum characteristics, peak factor,
repetitive nature, background noise level, time of day, adjustment to exposure,
and even public relations factors. The realized value of CNR was associated with a
range of community annoyance categories established by case histories, which can
range from no annoyance through mild annoyance, varying degrees of complaints,
threats of legal action, to downright vigorous community response.

The CNR had to be modified to meet the advent of jet aircraft (first military
and then commercial) in the late 1950s. Instead of being assigned a level rank, the
military aircraft noise was converted into an equivalent sound pressure level (SPL)
in the 300–600 Hz range on the basis of a set of curves similar to the level-rank
curves. The time-varying SPL was averaged and modified by corrections similar
to those described in the preceding paragraph. When commercial jetcraft arrived
on the scene, the CNR was modified to use the perceived noise level (PNL) instead
of SPL. The final version of CNR is of the form:

CNR = PNLmax + N + K

where PNLmax denotes the average maximum perceived noise level for individual
aircraft flyover events (either landing or take-off) for a 24-h period, N is a correction
factor for the number of aircraft flyovers, and K is an arbitrary constant. The CNR
methodology has proven to be useful for predicting community response to aircraft
noise, ranging on a scale from no reaction to vigorous community response. Each
ground point can be represented by

CNRi j = PNLi j + 10 log(Nd,i j + 16.7Nn,i j ) − 12 (13.8)

where Nd,i j and Nn,i j represent the number of daytime and nighttime events for
each aircraft class iand flight path j . A penalty of 10 dB is imposed on the nighttime
flights, and the factor of 16.7 takes into account that there are fewer nighttime hours
than daytime. The following expression gives the total CNR for the ground point:

CNR = 10 log
∑

i

∑
j

antilog
CNRi j

10
(13.9)

But Equation (13.9), the final version of CNR, does not correct for background
noise, prior history, public relations, or other factors such as the occurrence of
pure tones. We discussed CNR here even though it is no longer used, because this
parameter serves as the precursor of currently used noise measures and descriptors
such as NEF and NNI, which are described below.
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Noise Exposure Forecast
The noise exposure forecast (NEF) resembles CNR, but it uses the effective per-
ceived noise level EPNL instead of PNL, thus automatically incorporating the
annoying effects of pure tones and the duration of flight events. NEF can be ex-
pressed as

NEF = EPNL + N + K

where EPNL designates the average effective perceived noise level for individual
aircraft flyovers over a 24-h period, N provides the correction for the number of
flyover events, and K is an arbitrary constant. As was done for CNR in Equation
(13.8). NEF can be calculated for NEFi j for a certain ground point:

NEFi j = EPNLi j + 10 log(Nd,i j + 16.7 Nn,i j ) − 88 (13.10)

Here EPNLi j denotes the EPNL for aircraft class i and flight path j ; and Nd,i j

and Nn,i j are the number of daytime and nighttime events, respectively, for each
aircraft of class i and flight path j . In order to distinguish NEF values from CNR
values, the constant 88 was selected for Equation (3.10). Then

NEF = 10 log
∑

i

∑
j

antilog
NEFij

10
(13.11)

However, the use of NEF has been replaced by the day–night level Ldn in the United
States. NEF is still being used in Canada and in a modified form in Australia.

Noise and Number Index
The noise and number index (NNI) is a rather subjective method for rating aircraft
noise annoyance, developed and used in the United Kingdom. A survey conducted
in 1961 of noise in the residential areas within a 10-mile radius of the London
Heathrow Airport resulted in the creation of NNI, which is defined by

NNI = (PNL)N + 15 log10 N − 80 (13.12)

where (PNL)N comprises the average peak noise level of all aircraft operating
during a day and is given by

(PNL)N = 10 log

(
1

N

N∑
n=1

antilog
PNL

10

)
(13.13)

PNL denotes the peak perceived noise level generated by a single aircraft during the
day and N is the number of aircraft events over a 24-h period. Since no annoyance
apparently occurs at levels less than 80 PNdB a constant of 80 was introduced into
Equation (13.12) so that a zero value of NNI corresponds to no annoyance.

Another survey conducted in 1967 revealed that for the same noise exposure
the reported annoyance was less than in 1961. This may be attributable to the
fact that noise-sensitive people may have left the affected area, noise-insensitive
people moving into the area, or the residents got used to their environment or
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became apathetic to the noise, or the background noise arising from surface traffic,
construction or operation of industrial facilities had increased sufficiently to mask
more of the aircraft noise.

The use of NNI was superseded in the United Kingdom in 1988 in favor of
measurements based on the A-weighted Leq (cf., Equation (13.6)). This parameter
is averaged over the period from 0700 to 2300 h (7 a.m. to 11 p.m.). The measure
Ldn of Equation (13.7) is not applied because nighttime flights are severely limited
in the United Kingdom. Both Switzerland and Ireland still make use of NNI.

Equivalent Sound Level
While some nations continue to use NEF or NNI as descriptors, it has been estab-
lished that Leq and Ldn are much simpler to measure and to evaluate since they
seem to correlate well with subjective response. In addition to the United Kingdom
which uses only Leq over an 18-h period (since nighttime flights are restricted),
both Germany and Luxembourg have adopted the Ldn method with (0600–2200 h)
day and (2200–0600 h) night classifications. In the United States, as the result of
the publication of EPA Report 550/9-74-004 in 1974 and similar documents, the
use of CNR and NEF has been well superseded by the day–night equivalent level
DNL for rating of potential impacts of noise and for planning purposes and land
usage near military and civilian airports. In fact, a directive (Part 256 of Title 32
of the Code of Federal Regulations) was issued in 1977 by the U.S. Office of the
Secretary of Defense that the day–night average sound level DNL must be used
as the basis for evaluating the impact of noise by air installations and that neither
CNR nor NEF may be utilized.

In 2002, the European Parliament and Council issued Directive 2002/30/EC
on the establishment of rules and procedures with regard to the introduction of
noise-related operating restrictions at airports. The objectives of this Directive are
(a) to lay down rules for the Community to facilitate the introduction of operating
restrictions in a consistent manner at airport administrative level so as to limit or
reduce the number of people significantly affected by the harmful effects of noise,
(b) to provide a framework which safeguards internal market requirements, (c) to
promote development of airport capacity in harmony with the environment, (d)
to facilitate the achievement of specific noise abatement objectives at the level
of individual airports, and (e) to enable measures to be chosen with the aim of
achieving maximum environmental benefit in the most cost-effective manner.

13.10 Evaluation of Traffic Noise

Highway traffic noise probably impacts more people than any other source of
outdoor noise. Consequently, many national, state, and local governments set re-
quirements to assess the existing or potential noise impact of highways. In the
United States, federal agencies are required by law to provide environmental im-
pact statements (EIS) for proposed new roads and for any reconstruction of existing
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roads, where environmental impacts are likely to occur and federal funding is used
to finance all or part of the project. The Federal Highway Administration (FHWA;
not to be confused with FHA, the Federal Housing Administration) delegates the
responsibility for preparation of environmental impact statements to the individual
departments of transportation of the affected states. Moreover, the U.S. Department
of Housing and Urban Development (HUD) also requires that when a developer
plans residential property with the aid of construction funds or a guarantee of such
funds from HUD, the developer must assess the potential impact of transportation
noise upon that development.

Assessments of traffic noise are usually made in terms of the overall A-weighted
sound levels. Octave-band and one-third octave-band levels are generally used only
for the purpose of developing vehicle noise abatement measures such as acoustic
barriers. Traffic noise tends to vary greatly over time, so methods are required to
deal with this variation and its resultant impact on people.

Time Period
The time period used as a basis by FHWA is the 1-h period when the traffic
is at its heaviest. This period is called the worst noise hour. The Department
of Housing and Urban Development and certain states, California for example,
require assessment over a 24-h period. Two types of descriptors are in general use:
statistical descriptors and time-averaging descriptors.

Statistical Descriptors. The 10-percentile-exceeded level L10 encompasses the
acoustic magnitude of individual traffic noise events, such as passages of heavy
trucks, and also the number of such events. Originally the FHWA noise abatement
criteria specified only in terms of a 1-h L10. This descriptor is clearly inadequate
for situations where (1) the hourly traffic rates are low, (2) vehicles are not evenly
spaced along a road, and (3) the values of L10 could not be combined mathemati-
cally on the basis of calculations for separate events.

Time-Average Descriptors. Time-average descriptors are now widely used for
assessing traffic. The most common such descriptor is the 1-h average sound level
(abbreviated 1HL), which is essentially the A-weighted equivalent continuous
sound level Leq taken over a 1-h period. This carries the advantage of (1) easy
computation through the use of integrating meters, (2) assumptions regarding
vehicle spacing are rendered unnecessary, and (3) the average levels for separate
categories of sources may readily be combined. The principal disadvantage is that
it can be extremely sensitive to isolated events having a high sound level, but which
do not necessarily provoke a correspondingly high human response.

FHWA Assessment Procedures
The Federal Highway Administration (FHWA, 1976) requires that expected traf-
fic impacts be determined and analyzed. Highway projects are classified by
FHWA into two categories: Type I, which is a proposed federal or federal-aided
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project to construct a new highway or to make major physical alterations to an
existing road, and Type II, which is a project for noise abatement procedures that
are added to an existing highway with no major alterations of the highway itself.
All Type I projects are subject to FHWA regulations. Development and implemen-
tation of Type II projects is not mandatory, but a traffic noise analysis is mandated
for eligibility of noise abatement measures for federal funding.

In the procedure for traffic noise analysis, the following steps are specified in
FHWA regulations:

1. Identify activities and land uses that may be affected by the traffic noise. This
can involve the use of aerial photographs, land-use maps, and highway plans, in
addition to the results of field reconnaissance. Also determine regions of human
activity and identify major sources of noise.

2. Predict future traffic noise levels through a method consistent with the FHWA
Traffic Noise Prediction Model, employing noise emission levels that are either
published in the FHWA regulations or determined by the agency using specified
procedures.

3. Determine existing noise levels by actual measurements at sites that will be
affected by the proposed highway. These ambient levels provide the basis for
assessing impact and evaluating abatement feasibility.

4. Determine existing traffic noise impact. The predicted levels must be compared
with the existing levels and with criteria based on land use. Table 13.3 lists the
noise levels for different categories of land use. FHWA regulations describe two
types of impacts on the land. The first type occurs when the predicted future
levels “substantially exceed” the existing levels (but “substantially exceed” is
not defined by FHWA, so different state transportation departments interpret the
term differently, with minimum increases in A-weighted sound level ranging
from 5 to 15 dB(A), with 10 dB(A) being a typical value). The second type of
impact occurs when the predicted future levels “approach or exceed” the noise
abatement criteria of Table 13.3. The criteria of Table 13.3 are listed according
to the land-use activity and are in terms of 1-h average sound levels (L1h) or
1-h 10-percentile-exceeded levels.

5. Evaluate abatement measures. In situations where severe impacts are identified,
a state transportation agency need to examine means of reducing substantially
or eliminating the impact. FHWA regulations specify that primary consideration
should be given to exterior impacts where frequent human use occurs and where
a decreased level would be of benefit. The state agencies must also (a) consider
the opinions of affected residents, (b) identify in the environmental reports the
abatement measures likely to be incorporated into the project and impacts where
no solutions are apparent, and (c) include the abatement measure in the project
plans and specifications to be approved. Some abatement measures include
traffic management (e.g., prohibition of certain vehicle types, time restrictions
for certain vehicle type, speed limits, traffic control devices, etc.) and acquisition
of property to serve as buffer zones to preempt development that would be
adversely affected by traffic noise.
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Table 13.3. Yearly Day–Night Average Sound Levels for Land-Use Compatability
(Source: Federal Aviation Administration, 1985)∗

Yearly day–night average sound level (Ldn), dB

Land Use Below 65 65–70 70–75 75–80 80–85 Over 85

Residential:
Residential other than mobile homes Y N(1) N(1) N N N

and transient lodgings
Mobile home parks Y N N N N N
Transient lodgings Y N(1) N(1) N(1) N N

Public use:
Schools Y N(1) N(1) N N N
Hospital and nursing homes Y 25 30 N N N
Churches, auditoriums, and concert halls Y 25 30 N N N
Governmental services Y Y 25 30 N N
Transportation Y Y Y(2) Y(3) Y(4) Y(4)
Parking Y Y Y(2) Y(3) Y(4) N

Commercial use:
Offices, business, and professional Y Y 25 30 N N
Wholesale and retail—building materials, Y Y Y(2) Y(3) Y(4) N

hardware, and farm equipment
Retail trade—general Y Y 25 30 N N
Utilities Y Y Y(2) Y(3) Y(4) N
Communication Y Y 25 30 N N

Manufacturing and production:
Manufacturing, general Y Y Y(2) Y(3) Y(4) N
Photographic and optical Y Y 25 30 N N
Agriculture (except livestock) and forestry Y Y(6) Y(7) Y(8) Y(8) Y(8)
Livestock farming and breeding Y Y(6) Y(7) N N N
Mining and fishing, resource production Y Y Y Y Y Y

and extraction

Recreational:
Outdoor sports arenas and spectator sports Y Y(5) Y(5) N N N
Outdoor music shells, amphitheaters Y N N N N N
Nature exhibits and zoos Y Y N N N N
Amusements, parks, resorts, and camps Y Y Y N N N
Golf courses, riding stables, and water Y Y 25 30 N N

recreation

Numbers in parentheses refer to notes.
∗ The designations contained in this table do not constitute a federal determination that any use
of land covered by a program is acceptable or unacceptable under federal, state, or local law. The
responsibility for determining the acceptable and permissible land uses and the relationship between
specific noise contours rests with the local authorities. FAA determinations under Part 150 are not
intended to substitute federally determined land uses for those determined to be appropriate by local
authorities in response to locally determined needs and values in achieving noise-compatible land uses.
Key: Y(yes): Land use and related structures compatible without restrictions. N(no): Land use and
related structures are not compatible and should be prohibited. NRL noise level reduction (outdoor to
indoor) to be achieved through incorporation of noise attenuation into the design and construction of
the structure. Land use and related structures are generally compatible; measures to achieve an NLR
of 25, 30, or 35 dB must be incorporated into the design and construction of the structure.
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Highway Construction Noise
No specific quantitative rules or guidelines for limiting highway construction noise
are provided by the FHWA, but some state agencies use the criteria of Table 13.3
as guidelines for assessing the impact of construction. However, a computer model
(HICNOM) is available from FHWA to be used to predict construction noise and
asses abatement measures.

Vehicle Noise
Major contributors to vehicle noise include the engine exhaust and air intake, en-
gine radiation, fans and auxiliary equipment, and tires. To a lesser degree other
noise sources are the transmission, driving axles, and aerodynamic noise due to
the passage of the vehicle through air. The relative importance of each component
depends on the vehicle type and condition, vehicle load (passenger and cargo),
speed, acceleration, and highway grade, and road surface condition. In order to
aid in prediction of highway noise, FHWA conducted an exhaustive series of mea-
surements of noise emission from, automobiles, trucks, buses, and motorcycles.
The procedure for determining the noise emission levels entails the following
steps:

1. A level open space free of large reflecting surfaces within 30 m (100 ft) of the
vehicle path or microphone is identified. A 150◦ clear line-of-sight arc from the
microphone position is required.

2. The surface of the ground should be free of snow and may be hard or soft.
The roadway should be relatively level, smooth, dry concrete or asphalt. There
should be no gravel.

3. The background level from all sources except the vehicle in question should be
at least 10 dB(A) lower than the level of the vehicle in question.

4. The microphone is situated 15 m (50 ft) from the centerline of the lane of travel.
5. The microphone is mounted 1.5 m (5 ft) above the roadway surface and not

less than 1 m (3.5 ft) above the surface upon which the microphone stands. It
should be oriented according to the manufacturer’s specifications.

6. The vehicle in question should be traveling at steady speed without acceleration
or deceleration.

Vehicles are grouped by FHWA into three classes:

1. Automobiles (A): All vehicles with two axles and four wheels, including au-
tomobiles designed for transportation of nine passengers or fewer, and light
trucks and SUVs. Generally, the gross vehicle weight (GVW) is less than 4500
kg (10,000 lb).

2. Medium Trucks (MT): All vehicles having two axles and six wheels, generally
in the weight class 4500 kg (10,000 lb) GVW 12,000 kg (26,000 lb).
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Table 13.4. Typical Octave Band Sound Pressure Levels of Automobiles and Heavy
Trucks, Measured at 1.2 m Above the Ground at a Distance of 15.2 m.

Octave-band center frequency, Hz
A-weighted sound

125 250 500 1000 2000 4000 level, dB(A)

Automobile speed
56 km/h (35 mph) 65 61 62 61 57 53 65
88 km/h (55 mph) 71 68 66 68 66 60 72

Heavy truck speed
56 km/h (35 mph) 87 84.5 81.5 78 74.5 70.5 83.5
88 km/h (55 mph) 87.5 85 87.5 82.5 77 73.5 87.5

3. Heavy Trucks (HT): All vehicles having three or more axles, including three-
axle buses and three-axle tractors with and without trailers. Generally GVW>

12,000 kg (26,000 lb).

Table 13.4 shows the octave-band sound pressure levels typical of automobiles
and trucks at two different speeds.

Measurements are made by vehicle type for each selected speed ±5 km/h. For
a given category of vehicles at a given speed, the reference energy emission level
is given by

L0 = L0mean + 0.115L2
0SD

where L0mean is the arithmetic average emission level for the specific category
and speed and L0SD is the standard deviation of that emission level.

Vehicle Noise Prediction According to the FHWA Model
On the basis of many measurements, FHWA developed a model for predicting
highway noise (Barry and Reagan, 1978). We first compute the reference mean
level [(L0)E]i for each vehicle type i . This level represents a speed-dependent value
of the average (energywise) of the maximum passby levels measured at a reference
distance of 15.2 m (50 ft) for a given vehicle type. The U.S. Federal reference mean
emission levels are computed from:

Automobile: (L0)E = 38.1 log(S) − 2.4 dB(A) (13.14a)

Medium trucks: (L0)E = 33.9 log(S) + 16.4 dB(A) (13.14b)

Heavy trucks: (L0)E = 24.6 log(S) + 38.5 dB(A) (13.14c)

where S is the average operating speed in km/h.

Adjustments for Traffic Conditions
A number of adjustments have to be made to the reference mean emission levels
computed through the use of Equations (13.14). These adjustments are for (a) the
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traffic density, (b) distances to areas of human activity, (c) finiteness of roadway
segments, (d) presence of road gradients, (e) shielding by buildings, (f) shielding
by rows of trees, and (g) barrier attenuation.

The traffic flow adjustment (traffic)i is rendered to account for the hourly flow
of vehicle type i and to average the level over a 1-h time period as follows:

(traffic)i = 10 log (Ni d0/Si ) − 25 dB(A) (13.15)

where

Ni = hourly flow rate of vehicles of type i , vehicles/h
d0 = the reference distance of 15.2 m
Si = speed of the i th vehicle type, km/h

Distance adjustment takes into consideration the type of ground cover (e.g.,
sound will attenuate more readily over a soft surface than over a hard parking lot
pavement). Field data gathered by FHWA have shown an average rate of attenuation
to be approximately 4.5 dB(A) per doubling of distance over a grassy surface and
an attenuation of 3.0 dB(A) per doubling of distance over a paved surface. These
two rates are used by FHWA to establish a ground cover parameter called an
alpha factor (α). For hard sites, the alpha factor has a value of zero; for soft sites, it
assumes the value 0.5. The distance adjustmentdistance can be generally expressed
as

distance = 10(1 + α) log(d0/d)

where d is the perpendicular distance from the receiver to the center of the
travel lane. Table 13.5 provides guidance on when to use propagation rates of 3.0
or 4.5.

The methodology described above assumes an infinitely long road. In analytical
practice, highways are subdivided into a series of straight segments of finite length.

Table 13.5. Guidelines for Choosing Sound Propagation Rates.

Propagation rate,
Situation dB(A)

1. All situations in which the source or the receiver are located 3 m
above the ground or whenever the line of sighta averages more
than 3 m above the ground

3 (α = 0)

2. All situations involving propagation over the top of a barrier
3 m or more in height

3 (α = 0)

3. Where the height of the line of sight is less than 3 m and
a. there is a clear (unobstructed) view of the highway, the

ground is hard, and there are no intervening structures, or
3 (α = 0)

b. the view of the roadway is interrupted by isolated buildings,
clumps of bushes, or scattered trees, or the intervening
ground is soft or covered with vegetation

4.5 (α = 1/2)

a The line of sight (L/S) is a direct line between the noise source and the observer.
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Figure 13.7. Subdivision of a road for noise analysis purposes with segment ends A
and B defining the angles with respect to the normal from the observer to the road. In
(a) an angle clockwise to the observer is positive and an angle counterclockwise is neg-
ative. In (b) the angles are measured from the normal line to the extension of the road
segment.

The 1-h average sound levels are computed separately for each segment, and then
they are combined in the end. Such subdivision of the roadway for analytical
purposes should be executed (a) where the traffic volumes or speeds change (e.g.,
at an exit or entry ramp or a road fork), (b) where the ground cover changes
significantly, (c) where a curved road is being analyzed as a series of straight
segments, and (d) where the vertical gradient of the road changes. With reference
to Figure 13.7, the finite roadway segment adjustment (which depends on the
ground cover) is defined as

segment = 10 log

φ2∫
φ1

1

π
(cos φ)a dφ (13.16)

where φ1 and φ2 are angles in radians at the receiver, as shown in Figure 13.6;
φ1 is the angle to the left end of the segment and the angle φ2 to the right end of
the segment. If an angle is measured counterclockwise from the normal line, it is
assigned a negative value; if measured clockwise, a positive value. For a hard site
Equation (3.16) reduces to

segment = 10 log
φ2 − φ1

π
(13.17)

In the case of a soft site, Equation (13.16) needs to be evaluated by numerical inte-
gration. For the general case of a “soft” site and an infinitely long roadway (where
φ1 = −π/2 radians and φ2 = +π/2 radians), the adjustment is −1.2 dB(A).
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It is commonly observed that large trucks become noisier as they travel uphill in
lower gears. The FHWA recommends that the 1-h average levels for heavy trucks
be increased as a function of roadway gradient1 in the following manner:

1. 0–2%: grade = 0 dB(A)
2. 3–4%: grade = +2 dB(A)
3. 5–6%: grade = +3 dB(A)
4. Over 7%: grade = +5 dB(A).

If there are one or more rows of buildings present between an observation point
and a road, an adjustment for the shielding, shielding, by these buildings must be
estimated. A rule of thumb can be used in the following manner: if 40–65% of
the length of the first row of buildings is occupied by the building themselves,
then subtract 3 dB(A) from the average sound level. If 65–90% of the length of
the row is occupied by the buildings, subtract another 3 dB(A) from the average
sound level; and if the percentage exceeds 90%, the buildings may be treated as
noise barriers. Each successive row of buildings adds an additional 1.5 dB(A) to
this adjustment, up to a maximum reduction of 10 dB(A). Any excess ground
attenuation stops at the first row.

A second type of shielding, also referred to as shielding, can occur from the
presence of trees between the road and the receiver. The tress may be dense enough
to virtually disallow a direct view of the road. For a 30-m (100 ft) belt width, FHWA
suggests an adjustment of –5 dB(A). For an additional 30-m belt width there is an
additional –5 dB(A) adjustment for a total of –10 dB(A). When this adjustment is
used, both distance adjustment and a segment adjustment should be used on the
basis of the propagation rate of 3 dB(A) per doubling of distance from the line
source.

Barrier attenuation adjustmentbarrier can be computed using the path-difference
procedure described in the last chapter. According to the FHWA model, this should
be computed by using an incoherent line source model separately for each vehicle
type. The attenuation is computed for a series of paths, defined by the angles
with the perpendicular to the source-to-receiver line, and the results are combined
via numerical integration. This calculation is usually achieved with the use of a
computer program such as the FWHA STAMINA program.

The total 1-h average sound levels for each vehicle type can be obtained by
summing up the various adjustments:

(Leq)i = [(L0)E ]i + (traffic)i + (distance)i

+ (grade)i + (shielding)i + (barrier)i (13.18)

The 1-h average levels for automobiles, medium trucks, and heavy trucks may now
be combined to yield the total 1-h average level.

1 When a road changes its elevation n meters (or feet) for every 100 meters (or feet) horizontal travel,
the road is said to have an n percent gradient.
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Computer Programs
The FHWA noise prediction methodology has been incorporated into the following
computer programs:

1. SNAP 1.1, intended for relatively simple geometries, can handle up to twelve
roadways and one simple barrier. This program provides a detailed output and
can provide separate results according to vehicle type.

2. STAMINA 2.0 and its derivative programs are used by most states, along with
a noise barrier program called OPTIMA. Complex highway sites with many
roadways, barriers, and receivers can be analyzed with this program. Additional
vehicle types can be specified in addition to the three classes of automobiles,
medium trucks, and heavy trucks. The output of the program can include the 1-h
average sound level and 10-percentile-exceeded level for each receiver for the
initial barrier segment elevations, the average sound levels for each individual
road segment, and matrices of sound energy contributions from each barrier
segment at each elevation for each receiver.

3. OPTIMA is used to design noise barriers on the basis of input information such
as the type of material being used for each barrier. This program can be used to
optimize the design on a cost effective basis.

13.11 Evaluation of Community Noise

Transportation noise, both surface and air, constitutes the dominant source of noise
exposure in residential neighborhoods. Other sources can include noise emanating
from industrial and commercial enterprises, rowdiness of individuals carousing
in the streets, passing “boom cars,” operation of lawnmowers or snowblowers,
chain saws or other gear, and local construction. Concern about noise pollution
began to intensify when commercial jet began to appear in the sky in the late
1950s. There was little in the way of standardization of community response sur-
vey methods, questionnaire items, and even noise measurements and analytical
techniques throughout the 1960s and 1970s. But research was carried on during
these years on annoyance, speech, and sleep interfering properties of noise. Re-
searchers have come up with a number of ways to assess community response. In
addition to frequency-weighting schemes, some of the properties of noise thought
to have relevance include tonality, impulsiveness, rise time, onset time, periodicity,
time of day, and temporal variability. Dozens of physical measure of sound have
been considered as predictors of annoyance caused by noise exposure (Pearsons
and Bennett, 1974; Schultz, 1982). Even today there is no single purely physical
metric that can function as a definite predictor of annoyance with noise exposure,
and it may not even be possible to develop such a predictor.

Social Surveys
Perhaps the least ambiguous procedure to evaluate the prevalence of noise-
induced annoyance in a community is through the means of a social survey.
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Survey techniques, however, can range widely in the degree of their respective
sophistication.

Empirical Dosage Response Relationship. Schultz (1978) documented quan-
titative dosage-response relationships through meta-analysis, which constituted a
major step toward the setting up of a standard method for predication of transporta-
tion noise effects. Schultz executed a “best-fit” third order polynomial to a data
set relating the day–night average sound level (DNL) to the degree of annoyance
in communities. A simple quadratic-fit equation provides a purely empirical basis
for predicting the prevalence of annoyance in communities:

% highly annoyed = 0.036L2
dn − 3.27Ldn + 79.14 (13.19)

However, Equation (13.19) produces meaningless predictions when evaluated out-
side the range 45 dB < Ldn < 85 dB. The U.S. Federal Interagency Committee
on Noise prefers a different logistic fit to a subset of data reported by Fidell et al.
(1991), which resulted from disregarding the results of certain studies in which
relatively low levels of noise were associated with a high degree of reported an-
noyance:

% highly annoyed = 100

1 + e11.13−0.141Ldn
(13.20)

Equation (13.20) predicts somewhat lower levels of annoyance at lower noise
exposure levels than the quadratic fit of Equation (13.19). For example, at Ldn =
65 dB. Equation (13.20) yields a prevalence rate of 12.3% in contrast to 18.8%
obtained through the use of (13.19).

Equal Energy Hypothesis. DNL has been adopted by many federal agencies as
a convenient descriptor of long-term environmental noise descriptor, which soon
enough became a predictor of annoyance. The DNL index is a time-weighted
average (in effect, the average acoustic energy per second with arbitrary nighttime
weighting), which is sensitive to the duration and magnitude of individual noise
events and directly proportional on an energy (10 log N ) basis to number of events.

Reliance on such an integrated energy metric is based on the “equal energy”
hypothesis, which states the notion that the number, level, and duration of noise
events are fully interchangeable determinants of annoyance as long as their product
(energy summation) remains equal. This quantification of noise exposure in terms
of DNL for the purpose of predicting annoyance carries the implication that a
person would be annoyed to the same degree by small numbers of very high
level noise events as by large numbers of lower level noise and/or longer duration
noise events. The equal energy hypothesis has provided an adequate account for
data on the prevalence of annoyance to sporadic (e.g., urban) noise in the range
55 < Ldn < 75 dB, but the validity of the hypothesis falls off in extreme cases. For
example, no community is likely to tolerate even infrequent operation of a noise
source powerful enough to damage hearing or a very occasional shock wave from
passing supersonic jet plane from a nearby military base.
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13.12 Guidelines and Regulations in the United States,
Canada, Europe, and Japan

The most well-established of noise effect guidelines in the United States are those
promulgated by the Federal Interagency Committee on Noise (FICON). FICON
is composed of a number of federal agencies with interest in environmental noise
[e.g., FAA and Department of Defense (DoD)]. The guidelines and recommen-
dations of FICON for “land-use compatibility” are couched in ranges of DNL.
FICON considers noise exposure levels lower than Ldn = 65 dB to “be compatible
with most residential land uses.” However, FICON does confess its realization that
this limitation may be somewhat too high in highly rural areas where it would be
more appropriate to characterize the effects of noise pollution not in acoustic terms
but rather in terms of annoyance.

On the international scene, a major degree of consensus has evolved over the
years as to what constitutes unacceptable levels of noise exposure. In the mid
1980s the Organization for Economic Cooperation and Development (OECD)2

suggested a standard guideline value for average outdoor noise levels of 55 dB(A),
which pertains to normal daytime in order to prevent significant interference with
normal activities of local communities. According to OECD:

1. At 55–60 dB(A) noise creates annoyance.
2. At 60–65 dB(A) annoyance increases considerably.
3. Above 65 dB(A) constrained behavior patterns occur, symptomatic of serious

damage by noise.

The World Health Organization (WHO) listed additional guidelines in 1996
for noise exposure in dwellings, schools, hospitals, concert halls, and so on. The
exposure levels are given in terms of the time average A-weight sound level Leq.
For example, a private bedroom should sustain a sound level no higher than Leq =
30 dB(A) at night in order to promote undisturbed sleep; and the background noise
level in a classroom should be no greater than Leq = 35 dB(A) to facilitate the
teaching processes.

Workplace Noise Exposure
In the United States the passage of the Noise Control Act of 1970 gave rise to
OSHA regulations, which are described in Section 13.3. In Europe, the Council of
European Communities issued a Council Directive 86/188/EEC on May 12, 1986,
which sets the guidelines on the protection of workers from the risks related to
exposure to noise at work. This directive does not prejudice the right of members of
EU to introduce or apply even stricter provisions that reduce the permissible levels
of noise. For an 8-h day, under the provisions of 86/188/EEC, a worker should

2 While its name indicates its mission, the Organization for Economic Cooperation and Development
also concerns itself with environmental matters. Its membership includes industrial nations from
North America, Europe, and Asia.
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not be exposed to more than A-weighted Leq = 85 dB per 8-h day. This value is
determined from measurements made at the position occupied by a worker’s ears
during work, preferably in that person’s absence, using a technique that minimizes
the effect on the sound field. If the microphone has to be located close to the
worker’s body, appropriate adjustments should be made to determine an equivalent
undisturbed field pressure. The daily personal noise exposure does not take into
account the effect of any personal ear protectors used. Should the allowable daily
exposure be exceeded, the affected workers are to be notified, and procedures
must be enacted to lower the exposure, which may include periodic checks of
the work environment, provision of ear protectors, and audiology tests. If the
daily personal noise exposure exceeds 90 dB(A) or the maximum value of the
unweighted instantaneous sound pressure is greater than 200 Pa, the employer
must exert every effort to cut down this exposure.

Vehicle Noise Regulations
Exterior noise tests for road vehicles have been used in Japan since 1971. The
current version of the tests is quite thorough and consists of three parts: (a) a fixed
passby test at 7 m, 60% rated engine speed or 65 km/h, (b) an acceleration passby
test at 7.5 m, and (c) a stationary test behind the exhaust outlet at 20 m.

In these tests the microphone is placed 1.2 m above ground level. The noise
limits for new highway vehicles are given in Table 13.6 which went into effect in
1998. Another 2 dB reduction in these noise limits has been in effect since 2002.

Table 13.7 lists the mandatory exterior limits for new highway vehicles sold in
the European Union. The EU vehicle noise test procedure is prescribed in Coun-
cil Directives 92/97 EEC and 81/334/EEC, presented in the Official Journal of
the European Communities. Amendments were added for automatic transmission-
equipped and for high-powered vehicles. The test is based on ISO 362, which is
substantially equivalent to SAEJ140 (cf., Handbook of the Society of Automotive
Engineers). A 1-dB(A) tolerance is permitted in this test. The test and its derivatives

Table 13.6. Japanese Noise Limits for New Highway Vehicles.

Vehicle
Description GVWR (metric tons) Power (kW) Limit [dB (A)]

Passenger car — — 76
Light truck <3.5 — 79
Medium truck, bus <3.5 <150 81
Heavy bus >3.5 >150 81
Heavy truck >3.5 >150 81
Moped <50 cc 70
Motorcycle
>50 cc < 125 cc 70
>125 cc < 250 cc 73
>250 cc 76
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Table 13.7. European Union Highway Vehicle Noise Limits.

Unloaded Weight Noise Limit,
Vehicle Description (metric tons) Power (kW) dB(A)

Passenger car — — 74
Mini bus <9 seats <2 — 76

>2 < 3.5 — 77
Bus >9 seats >3.5 <150 78
Light truck/van <2 — 76

<3.5 — 77
Medium truck/van >3.5 <75 78

>3.5 >75 < 150 78
Heavy trucks >12 >150 80
Motorcycles

≤80 cc 75
>80 ≤ 175 cc 77
>175 cc 80

are widely used throughout the world, including Japan (which does not have
1-dB(A) tolerance). The test site configuration is used for all classes of vehicles,
including motorcycles, with the measurement distance set at 7.5 m.

Boom cars, sometimes referred to as “boomers,” are vehicles that have audio
equipment installed specifically to generate excruciatingly loud sound levels. Be-
cause the market is so lucrative, particularly among automobile owners under
30 years of age, manufacturers aggressively engage in the promotion of ultra-
high power amplifiers and rather hefty loudspeaker systems. Boomer systems are
usually operated at levels that generate a high degree of annoyance in residential
neighborhoods, which constitute a problem of increasing proportions (Raichel,
2000). Loudness competitions are held, and levels as high as 175 dB (two and a
half times louder than the Boeing 747 jumbo jet) have been reported. Much of
the equipment advertising emphasizes loudness; and it is apparent that fidelity of
sound reproduction rarely figures in the setup of a boom system.

The problem of boom cars is not confined to the United States. It is also becoming
a problem in Latin America (Raichel and Miyara, 2001). The phenomenon of boom
cars compares to tobacco addition—a danger to vehicle occupants and a nuisance
to “secondary listeners.” Countermeasures against such public nuisances include:
(a) enactment and diligent enforcement of municipal laws specifying limitations
on sound levels, (b) education in school systems on the dangers of excessive noise
levels, and (c) public criticism of manufacturers’ promotional efforts that stress
extremely high-level sound outputs. In Chicago boomer cars that can be heard from
22 m (75 ft) are subject to seizure and their owners may be fined $615. Buffalo,
Cleveland, and Pittsburgh police are cracking down on boom cars. In Papillion,
Nebraska, owners of car stereos that can be heard from 15 m (50 ft) away can
be sentenced to 3 months in jail. The police in Lorain, Ohio have been regularly
enforcing the law approved in 2002 that prohibits car steros from being audible at
15 m or more from the car. A first offense brings a $300 fine. A second offense
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costs $400 and the offender’s audio equipment gets confiscated as contraband.
That equipment is then destroyed by the police (Lorain Morning Journal, 2003).

Motorcycles and other recreational vehicles also can be troublesome to com-
munities around the world. In an informal survey of 33 motorcycles, audiological
researchers at the University of Florida found that nearly half of them produced
sounds about 100 dB when throttled up—equivalent in intensity to a loud rock con-
cert or a chainsaw. At the Institute for Sound and Vibration Research (ISVR) at the
University of Southampton, UK, it was found the noise levels under motorcycle
helmets can be quite high. Above 65 km/h (40 mph) the wind noise generated by
airflow over a motorcycle and rider exceeds the noise level from the motorcycle
itself. In Montana, Section 61-9-418 (2003) of the state code requires that all mo-
torcycles or quadricycles operating on the streets and highways must be equipped
at all times with noise suppression devices, including an exhaust muffler, in good
working order at all times. In addition, all motorcycles and quadricycles must meet
the following noise level limitations, on the basis of measurement of 50 ft from
the closest point of the motorcycle or vehicle:

(a) any cycle manufactured prior to 1970: 92 dB(A)
(b) any cycle manufactured after 1969 but prior to 1973: 88 dB(A)
(c) any cycle manufactured after 1972 but prior to 1975: 86 dB(A)
(d) any cycle manufactured after 1974 but prior to 1978: 80 dB(A)
(e) any cycle manufactured after 1977 but prior to 1988: 75 dB(A)
(f) any cycle manufactured after 1987: 70 dB(A).

In New Hampshire, a House Bill 326 was introduced in the legislature in 2005 to
ban modification of a motorcycle to amplify or increase the noise level beyond
that emitted by the original equipment installed by the manufacturer. No straight
pipe exhaust system is allowed; and no motorcycle shall be operated, which has a
noise level of more than 100 dB(A) when measured 10 ft (3 m) or further from the
exhaust pipe or muffler. Noise measurement is to constitute a part of the mandatory
regular vehicular inspection.

Railroad Noise Regulations
In the United States, regulations for railroad noise are published in Section 40,
Part 201, and Section 49, Part 210, of the Code of Federal Regulations. Test
measurements are conducted within a cleared level area 30 m from the track center
line. Locomotives are tested either in motion or stationary status using remote load
cells. Noise limits have been specified for locomotives manufactured after 1979:

Stationary, idle throttle setting: 70 dB(A)
Stationary. All other throttle settings: 87 dB(A)
In motion: 90 dB(A).

For rail cars, the limits are:

Moving at speeds 83 km/h (50 mph) or less: 88 dB(A)
Moving at speeds greater than 83 km/h: 93 dB(A).
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The test is to be conducted during dry weather without the presence of dust or
powdery snow.

The EU has no exterior noise standards for railroad equipment because of in-
termingling with equipment from outside the EU and differences in rail gauges.
Railroads have used, on their own, a number of noise standards such as the Inter-
national Union of Railways ORE E82/RP4 and the ISO 3095: 1975.

Highway Construction Noise
An interesting development in EU is the use of sound power as a noise mea-
sure, rather than sound pressure at a single point in space, for earth-moving and
other construction equipment. Sound power measures the total noise emanating in
all directions from a source. The fundamentals of sound power measurement are
given in Chapter 9, Sections 9.17 et seq.; and details are given in the EU direc-
tives 95/27/EU, 89/514/EEC, 86/662/EEC, 84/533-536b/EEC, and 79/113/EEC.
The distribution of measurement positions specified by 79/113/EE is given in a
hypothetical hemisphere enclosing a stationary piece of earth-moving equipment.
Sound pressure is measured at the prescribed measurement points, which is con-
verted into sound intensity, applying the far-field approximation and integrated
to yield sound power. The sound power measurement would be more accurate if
sound intensity measurements were used instead of sound pressure. In its current
form the test uses only half of the measurement points specified in 79/113EEC. A
similar sound power test was developed for lawn mowers in 84/538/EEC.amended
by 88/181/EEC.

New noise limits came into effect at the end of 1996 for earth-moving machinery
of net installed power less than 500 kW. Machines with power exceeding 500 kW
operate in quarries and mines and so are considered to have a negligible effect on
community noise. For the period between 1996 and 2001, the permissible sound
power levels LWA, in A-weighted decibels relative to 1 pW, are given by

1. Tracked vehicles (except excavators):

LWA = 87 + 11 log P for LWA ≥ 107 (13.21)

2. Wheeled bulldozers, loaders, excavators loaders:

LWA = 85 + 11 log P for LWA ≥ 104 (13.22)

3. Excavators:

LWA = 83 + 11 log P for LWA ≥ 96 (13.23)

where P is the net installed power of the construction vehicle in kilowatts. Be-
low the lower limit given above, the machine automatically passes the test. After
2001, the numerical A-weighted decibel values in Equations (13.21–13.23), in-
cluding the lower limits, are reduced by 3 dB(A). The coefficient 11 remains
unchanged.
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Over the past few years, the European Commission of the EU has been labor-
ing on a new directive regarding machinery used outdoors. Directive 200/14/EC
relating to the noise emission in the environment by equipment used outdoors was
adopted by the European Parliament and the Council and first published in May
2000. This directive became effective January 3, 2003. Directive 2000/14/EC cov-
ers 57 types of equipment for outdoor use, ranging from construction machinery
to lawnmowers. It is intended to supersede similar directives that exist separately
in the EU’s member nations. Directive 200/14/EC demands declarations from
manufacturers on the “guaranteed” sound power levels of their products before
they can be marketed in the EU. Such products must bear a CE mark and an
indication of their guaranteed sound output level and be accompanied by an ED
declaration of conformity before they can be placed on the market. The guaranteed
sound power level is that defined by ISO 3744-1995 with the addition of uncer-
tainties (owing to production variations and measurement procedures), which the
manufacturer confirms will not be exceeded. Therefore, in order to obtain esti-
mates of these uncertainties, a sampling procedure on the production line may be
appropriate.

The directive places sound power limits on 22 of the 57 types of machinery
for use outdoors. Of these 22, one half were already subject to noise limits laid
down in seven earlier directives (including Directive 98/0029 described in the
first edition of this text). The remaining half of this group are subject to noise
limits for the first time. All manufacturers of products subject to noise limits must
follow conformity assessment procedures under the supervision of organizations
appointed by the EU member states. Failure to comply with these regulations may
result in nonconforming products being barred on the EU market.

Over the past quarter century or so, a greater awareness of the impact of con-
struction noise on the part of government agencies led to a series of codes and
regulations for the control and mitigation of noise from construction sites. These
acts generally cover (a) the erection, construction, alteration, repair, or mainte-
nance of buildings, structures, or roads; (b) the breaking up, opening, or boring
under any road or adjacent land in connection with the construction, inspection,
maintenance, or removal of public or private works; (c) piling, demolition, or
dredging works; or (d) any other work entailing engineering construction.

A major cornerstone in the development of effective construction noise control
programs may very well be the Construction Noise Control Specification 721.560
developed by the Massachusetts Turnpike Authority for the Central Artery Tunnel
(CA/T) Project, also known as “the Big Dig.” In the Boston area, at the close of
the 20th century, this 12-year plus undertaking ranks to date as the largest infras-
tructure construction project in the United States. With this project’s completion
the notorious Boston traffic bottleneck on U.S. Interstate Highway I-93 to/from
Logan International Airport should be alleviated, thus freeing up the City of Boston
and the entire New England corridor to normal traffic flow. Apart from doubling
Boston’s highway capacity, this project should lead to modernization of Boston’s
underground utilities and enable the city to achieve positive growth in the 21st
century.
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Construction over the 11-km-long project occurred 24 h a day in various lo-
cations within the city. Construction equipment operated in close proximity to
thousands of residential and commercial properties, in some cases as close as
3 m away. Hundreds of construction machinery were operating at any one time
throughout the project. The range of equipment types used is wide, including
cranes, slurry trenching machines, hydromills, hoe rams, pile drivers, jackham-
mers, dump trucks, bulldozers, concrete and chain saws, and gas and pneumatically
powered hand tools. Upon the completion of this project, more than 10 million
cubic meters of excavated materials will have been removed and nearly 3 million
cubic meters of concrete poured.

In order to contain the acoustical impact of the project, while supporting and
maintaining the progress of construction, the CA/T Project people developed a
policy summary to establish an overall noise control program that includes (a) a
commitment statement to minimize noise impact on neighboring residences while
sustaining construction progress; (b) a summary of the Project Noise Control
Specification criteria and components; (c) an expression of willingness to develop
area-specific noise mitigation strategies tailored to particular community needs and
sensitivities; (d) an approach and criteria for judging the worthiness of mitigation
measures; and (e) a commitment to provide qualified noise experts to oversee con-
tractor compliance in the field. Construction Noise Control Specification, 721.560
adopted and enforced by the CA/T Project, ranks as the most comprehensive and
stringent noise code of any pubic works project in the United States.

In addition to the CA/T project, other outstanding sets of codes or regulations
pertaining to construction noise (Raichel and Dallal, 1999a,b) include those by the
Hong Kong and Singapore governments as well as those developed for the I-15
project in Utah. Germany’s “Blue Angel” seal program certifies noise-generating
equipment that operate below specified noise levels.
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Problems for Chapter 13

1. An outdoor survey of a neighborhood indicated averaged sound pressure levels
at 40 dB(A) from 7 a.m. to 9 a.m.; 55 dB(A) from 9 a.m. to 3 p.m.; 59.5 dB(A)
from 3 p.m. to 10 p.m.; and 39.8 dB(A) from 10 p.m. to 7 a.m. What is the
day–night sound level? Is the value obtained acceptable for a residential area?

2. A factory environment was found to have an average of 88 dB for 2.5 h, 90 dB
for 1.6 h, 92 dB for 1.4 h, and 95 for 2.5 h. Is the 8-h exposure acceptable
by OSHA standards? If not, what would be the maximum total daily working
time, given the same histographic distribution?

3. A lathe in a machine shop was found to yield the following octave-band
analytical results:

Center Frequency (Hz) Octave Band Loudness (dB)

63 60
125 70
250 68
500 75

1000 72
2000 75
4000 74
8000 58

What is the RC rating for this machine shop?
4. Redo problem 2 but find Leq on the basis of the information given. If the 8-h

day is excessive exposure by the European Union standards, how much must
that workday be cut down in order to meet the daily exposure guidelines?

5. Examine the U.S. OSHA noise exposure regulations for workers and compare
them with the counterpart European regulations. Which set of regulations is
better for the worker? State the reasons for your choice.

6. Predict the mean emission levels for (a) an automobile going 135 km/h,
(b) a medium truck moving at 120 km/h, and (c) a heavy truck traveling
at 100 km/h.

7. Find the traffic flow adjustment for 3600 cars per hour moving at an average
of 100 km/h for an observation point 15.2 m from the road.

8. A number of noise sources are located at different distances from a measure-
ment point on a property line. The data consisting of the measured sound levels
of each individual sources are given below:

Number of Sources 1 2 3 1 2 4

L at 25 ft 80 75 82 90 84 87
Distance, ft 58 78 74 68 120 92

(a) Determine the noise contribution of each source or group of sources.
(b) Find the combined noise level at the measurement point on the property

line.
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9. Use the data of Problem 8 to compute Leq24 and Ldn if these sources run
continuously at the same noise output levels from noon to 3 p.m.

10. Find the permissible sound power levels of the following highway construction
vehicles under the European Union rules:
(a) a nonexcavating tracking vehicle rated at 120 kW
(b) a 200-kW bulldozer
(c) a 100-kW excavator
What will be these corresponding values after the year 2001?

11. Outline a noise code suitable for a suburban residential neighborhood. It should
include the appropriate noise level limits, specification of how and where
measurements are to be taken.

12. Develop a noise code for a rural jurisdiction.
13. What are the problems that are applicable to urban areas? What are the special

needs and goals with respect to noise levels in large cities?



14
Machinery Noise Control

14.1 Introduction

Workplace noise at high levels is detrimental to the welfare of workers. Not only
high sound levels can affect hearing and hinder oral communication, but also
they detract the employee from performing at peak capacity. In spite of possible
economic drawbacks such as the cost of increased maintenance, the employer
does have the moral obligation to provide a safe environment for both office and
plant workers. Often when noise-attenuation measures are taken, some payback
may accrue from the use of quieter machinery. For instance, when a diesel engine
undergoes excessive vibration it becomes subject to severe stresses that can cause
it to fail. Retuning of the engine so that it operates more smoothly lessens the
stresses on its crankshaft or accessory parts and cuts down on its fuel consumption
as well as the noise output. In many highly industrialized nations, such as the
United States, Germany, France, the Scandinavian nations, and Japan, there are
regulations that limit the noise exposure levels. Some of these regulations were
discussed in Chapter 13.

This chapter deals with industrial noise sources, predictions of their respective
acoustic output, and means of attenuating noise in the workplace. Specific types of
noise sources are considered, followed by descriptions of general methodologies
of noise control, which may or may not be machine specific.

14.2 Noise Sources in the Workplace

A considerable number of industrial machines and processes generate high levels
noise that can cause physical and psychological stresses as well as considerable
hearing loss. High-noise output machinery include blowers, air nozzles, riveters,
pneumatic chisels and hammers, diesel generators, chipping hammers, rock crush-
ers, die casting machines, drop hammers, metal presses, power saws, grinders, ball
mills, stamping machines, and so on. In addition, building accouterments, such as
furnaces, air conditioning and ventilation (HVAC) systems and plumbing, as well
as office equipment can roil the office environment and add to the cacophony of
an industrial plant.

357
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In setting up noise control measures, the first step is to identify the noise sources
and to measure the sound power output. Ideally, it would be desirable to take
a source into a well-defined environment such as a reverberation chamber and
measure its sound power output, but many stationary sources cannot be moved.
But the sound power output for immovable sources can still be estimated from
sound pressure measurements made on a hemispherical or rectangular enveloping
surface (cf. Chapter 9). The sound pressure level will be increased by the presence
of background noise and room reverberation, so a correction factor for either/both
background noise and reverberation must be applied in such cases. For reasons
which we shall see in the sections following, a spectrum analysis of noise from
specific machines will often prove useful in tracing malfunctioning machinery
parts so that they can be realigned or replaced.

Many noise problems in the workplace can be avoided by heeding the old adage
that an ounce of prevention is worth a pound of cure. Prior to any purchase of
machinery, sound power output of each unit should be obtained beforehand, either
directly from the vendor or by conducting actual measurements on an existing
installation. Wise planning of the plant layout includes not only promoting pro-
duction efficacy and personnel safety; it should always involve prediction of noise
output of all equipment in normal operation. Adjustments can then be made at
this stage in the choice of quieter equipment and/or incorporating noise-reducing
devices so that the planned facility will operate within the sound exposure limits
mandated for workers.

14.3 Estimation of Noise Source Sound Power

A nondirectional point source in a free field will radiate sound uniformly and
radially in all directions. Such a source LW represents the true octave-band sound
power level, with units of decibels based on the reference power 1 pW (10–12 W).
Most pieces of machinery, however, are not point sources, nor do they radiate sound
power uniformly. In planning of facilities, it is generally necessary to estimate the
expected sound power for individual machines that will affect the environment.
For certain machines, a sound power conversion factor Fn can be used to determine
the output on the basis of the total power rating of the machine,

P = Fn × Pm (14.1)

where

P = sound power of the machine, W

Pm = machine rated power, W

The relationship of Equation (14.1) applies to both mechanical and electrical ma-
chinery. Estimated conversion factors for a number of common machinery are
listed in Table 14.1. It should be noted that the ranges are quite large for each type
of machine.
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Table 14.1. Power Conversion Factors for Some Common Noise Sources.

Conversion Factor (Fn)

Noise Source Low Mid-Range High

Compressors, air (1–100 hp) 3 × 10−7 5.3 × 10−7 1 × 10−6

Gear trains 1.5 × 10−8 5 × 10−7 1.4 × 10−6

Engines, diesels 2 × 10−7 5 × 10−7 2.5 × 10−6

Motors, electric (1200 rpm) 1 × 10−8 1 × 10−7 3 × 10−7

Pumps, >1600 rpm 3.5 × 10−6 1.4 × 10−5 5 × 10−5

Pumps, <1600 rpm 1.1 × 10−6 4.4 × 10−6 1.6 × 10−5

Turbines, gas 2 × 10−6 5 × 10−6 5 × 10−5

Example Problem 1
Estimate the sound power of a “quiet” 100-hp electric motor operating at
1200 rpm.

Solution
From Table 14.1, Fn = 1 × 10−8. Applying Equation (14.1) and because 1 hp =
746 W,

P = Fn × Pm = (1 × 10−8) (100 hp × 746 W/hp) = 7.46 × 10−4 W

Then

LW = 10 log

(
P

10−12

)
= 10 log

(
7.46 × 10−4

10−12

)
= 89 dB

14.4 Fan or Blower Noise

Fans (or blowers) are devices that use power-driven rotating impellers to move
air. A fan has at least one inlet and at least one outlet. The rotating impeller
imparts mechanical energy from the fan shaft to the airstream; the energy in the
air exists as kinetic energy and the potential energy of air pressure. Different
fan applications require fans with appropriate operating characteristics, including
those of noise output. These characteristics are determined principally by the design
of the rotating impeller.

Two principal types of fans—centrifugal fans and axial-flow fans—are nor-
mally used for central air-conditioning systems, industrial ventilation systems,
and industrial processing applications. Although many manufacturers make no
distinction between fans and blowers, the latter term is more often used to de-
scribe high-pressure devices used to convey material, for example a dust or a
leaf blower. Centrifugal fans are low-pressure high-flow volume devices, whereas
axial fans generally operate at higher pressures and tend to be noisier than
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Figure 14.1. Exploded view of a centrifugal fan. (Harris, 1991, p. 41.2.).

centrifugal fans. The selection of the fan type, size, and speed depends first
on the performance necessary to move a given amount of air against a speci-
fied pressure, and the noise characteristics are then established on a secondary
basis. Figures 14.1 and 14.2 show the general construction of a centrifugal

Figure 14.2. Components of an axial flow fan. (Harris, 1991, p. 41.2.).
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Figure 14.3. Three types of centrifugal fans. (Harris, 1991, p. 41.3.).

fan and an axial-flow fan, respectively, along with listing of commonly used
nomenclature.

Centrifugal fans come in with a variety of blades. Three types are shown in
Figure 14.3. Axial-flow fans divide into three main categories (vaneaxial, tubeaxial,
and propeller), illustrated in Figure 14.4. In addition to flow and pressure require-
ments, fans are selected to meet environmental conditions, withstand corrosion,
allow ease of maintenance, budget limits, and so on. The noise characteristics of
various types of fans are fairly predictable, as they are not significantly altered by
minor changes in the fan geometry.

Fan Noise Characteristics
Table 14.2 lists the broadband noise characteristics of typical fan designs. The
average specific sound power levels in eight octave bands are given for well-
designed fans installed in well-designed systems. This data can be utilized to
estimate fan noise at the design stage. In the selection process during the design
stage, actual noise data should be obtained from the manufacturer. Octave-band
noise levels should be used in calculations. Single-number ratings for fan noise
should be avoided.

When a blade passes over a given point, the air receives an impulse. The repeti-
tion rate of this impulse, termed the blade frequency, determines the fundamental
tone that is produced by the blade. It can be predicted from

fB = nN

60
(14.2)

where

fB = blade frequency, Hz

n = fan speed, number of revolutions per minute (rpm)

N = number of blades in the fan rotor

According to Equation (11.23), the sound pressure level L p from a specific source
in a room depends on room conditions as well as on the sound power level LW

of that source. In order to predict the contribution of the fan noise to the room
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Figure 14.4. Three types of axial flow fans. (Harris, 1991, p. 41.3.)

sound level, the data on sound power levels of the fan models under consideration
should be provided by the manufacturer. However, the manufacturer has no control
over the system design for the room, nor that of the acoustical nature of the room
and so cannot be responsible for the resultant noise level. If lower sound pressure
levels are required than that generated by even properly designed fans, then it may
be necessary to provide acoustic attenuators installed as an integral part of the
fan assembly. Figure 14.5 shows a centrifugal fan with sound attenuators on both
the inlet and the outlet, which is used in the supply system of a central station
ventilating system. A sound attenuator is fitted at the outlet to lessen the flow of
acoustic energy from the discharge of the air to the supply air ductwork.

Specific Sound Power Level
Specific sound power level is defined as the sound power level generated by a
particular fan operating at an air flow rate of 1 m3/s (2120 cfm) and at a pressure of
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Table 14.2. Relative Sound Power Generated by Different Types of Fans.

Octave-Band Center Frequency, Hz

Fan Type Wheel Size 63 125 250 500 1000 2000 4000 8000 BFIa

Centrifugal fans
Airfoil or backward-curved Over 0.75 m 85 85 84 79 75 68 64 62 3

or backward-inclined Under 0.75 m 90 90 88 84 79 73 69 64 3
Radial fans:

Low pressure (4–10 in. Over 1 m 101 92 88 84 82 77 74 71 7
static pressure) Under 1 m 112 104 98 88 87 84 79 76 7

Mediam pressure (10–20 in. Over 1 m 103 99 90 87 83 78 74 71 8
static pressure) Under 1 m 113 108 96 93 91 86 82 79 8

Highpressure (20–60 in. Over 1 m 106 103 98 93 91 89 86 83 8
static pressure) Under 1 m 116 112 104 99 99 97 94 91 8

Forward-curved All 98 98 88 81 81 76 71 66 2

Axial fans
Vaneaxial

Hub ratio 0.3–0.4 All 94 88 88 93 92 90 83 79 6
Hub ratio 0.4–0.6 All 94 88 91 88 86 81 75 73 6
Hub ratio 0.6–0.8 All 98 97 96 96 94 92 88 85 6

Tubeaxial Over 1 m 96 91 92 94 92 91 84 82 7
Under 1 m 93 92 94 98 97 96 88 85 7

Propeller All 93 96 103 101 100 97 91 87 5

a BFI = blade frequency increment.
Note: The data listed here are given in terms of specific sound power in dB re 1 (10)−12 W based on a
volume flow of 1 m3/s and a total pressure of 1 kPa. Equation (14.3) must be used to adjust for actual
pressures and volume flow rates. To convert these values into English units, subtract 45 dB in all bands.
The base for the English units is a total presure of 1 in. water gauge and a volume flow rate of 1 ft3/min.
These values are those for total sound power radiated from the fan. To obtain the power levels at either
the inlet or the outlet, subtract 3 dB from all bands. No change in BFI is to be made. In performing
the calculations for the sound power levels from this table, do not use a total pressure less than 0.125
kPa. From applications where the total pressure is lower than 0.125 kPa, simply use the value of
0.125 kPa.

Figure 14.5. Centrifugal fan with sound attenuators at inlet and outlet. (Harris, 1991.
P. 41.13).
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1 kPa (4.0 in. water gauge). Table 14.2 lists the relative sound power for a variety
of fan types. In reducing all fan noise data to this common base, the concept of
specific sound power level allows direct comparison to be made between the octave
band levels of different types of fans. A blade frequency increment (BFI) is also
listed in Table 14.2; this represents the number of decibels that must be added to
the level of the octave band, which includes the blade frequency in order to account
for the presence of such a tone. Also, a means is provided for estimating the noise
level of fans under actual operating conditions by a procedure that consists of the
following steps:

1. Select the fan type and obtain the specific power levels in octave bands from
Table 14.2. These sound power levels are expressed in decibels re 1 pW.

2. Adjust the octave-band levels for the volume flow rate and the operating pressure
by adding to each octave band one of the following values:

10 log Q + 20 log pt dB (for metric units) (14.3a)

or

10 log Q + 20 log pt − 45 dB (for English units) (14.3b)

where

Q = volume flow rate, m3/s or cfm

pt = total pressure, kPa or inches water gauge

3. Account for the blade frequency component of the fan by adding the BFI for
the fan type chosen to the octave-band level of that band which includes the
blade frequency. The blade frequency is found from the use of Equation (14.2).

4. The sum of the above equals the total sound power level of the radiation from
the inlet and the outlet. Subtract 3 dB from each octave band to yield the sound
power level of radiation from the inlet or the outlet.

Example Problem 2
Consider a radial forward-curved fan with 24 blades, having a rotor diameter of
0.8 m, and operating at 750 rpm with a volume flow rate of 18 m3/s and with a
total pressure of 1.5 kPa.

Find the total sound output power at the inlet.

Solution
We use Table 14.2 and list the calculations at each step for each octave band level
in Table 14.3. For step 2, using Equation (14.3a)

10 log Q + 20 log pt = 10 log 18 + 20 log 1.5 = 16
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Table 14.3. Calculation Results for Sound Power Level.

Octave-Band Center Frequencies, Hz

Procedural Step 63 125 250 500 1000 2000 4000 8000

1 98 98 88 81 81 76 71 66
2 16 16 16 16 16 16 16 16
3 0 0 2 0 0 0 0 0
4 −3 −3 −3 −3 −3 −3 −3 −3
Radiation form inlet 111 111 103 94 94 89 84 79

The blade frequency is from Equation (14.2)

fB = nN

60
= 750 × 24

60
= 300 Hz

which lies in the octave band with the center frequency of 250 Hz. The BFI is 2 dB.
Step 3 is now completed. Step 4 consists of subtracting 3 dB from each octave
band to obtain the noise from the inlet alone.

Fan Laws
Fan laws can predict fan performance quite well over a wide range of size and
speed. These laws are as follows:

Qa = Qb

(
da

db

)3 (na

nb

)
(14.4)

pta = ptb

(
da

db

)2 (na

nb

)2

(14.5)

Pa = Pb

(
da

db

)5 (na

nb

)3

(14.6)

Lwa = LW b + 70 log

(
da

db

)
+ 50 log

(
na

nb

)
(14.7)

where

Q = volume flow rate, m3/s

pt = total pressure, kPa

P = fan power, kW

LW = sound power level, dB re 1 pW

d = rotor diameter, m

n = rotor speed, rpm

Subscript a denotes the parameters for the base curve performance conditions, and
subscript b denotes the parameters for the desired performance conditions.
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Equation (14.7) is less accurate than Equations (14.4)–(14.6) for predicting
performance characteristics but it is sufficiently accurate for estimating purposes.
These fan laws state mathematically that when two fans have similar design config-
urations, their performance curves are similar, and at the equivalent point of rating
on each performance curve, the efficiencies should be equal. In order to apply the
fan laws, it is necessary to have the test data for one fan in the same design series.
The applicability of the fan laws is restricted to cases where all linear dimension
of the larger or smaller fan are proportional to the fan for which there are test data.

14.5 Electric Motors and Transformers

Electric motors convert electrical power into mechanical power. Some of the fun-
damental noises occurring in electric motors are caused by rotational unbalance,
rotor/stator interaction, and slot harmonics. The electromagnetic force between
the armature and the field magnet, or rotor and stator, gives rise to vibration. Noise
is also generated by the excitation of natural frequencies of the motor structure,
air resonance chambers, and the movement of air itself. The intensity of the noise
is typically a function of rotational speed and motor type.

As a means of estimating the noise output of a motor, the following expression
can be used to obtain the total sound power level in the bands 500, 1000, 2000,
and 4000 Hz:

Lw = 20 log hp + 15 log n + Km dB (14.8)

where

hp = rated horsepower (1–300 hp)

n = rated speed of motor, rpm

Km = motor constant = 13 dB

Other more involved techniques have been developed, which entailed different
motor constants for each of the octave bands of interest (Magrab, 1975; Webb,
1976).

Transformers exist for the purpose of stepping up or stepping down voltages.
Their changing magnetic field causes deformation of the transformer coil, occur-
ring at the alternating current (AC) frequency and higher harmonics, especially at
the twice the AC frequency. This results in the characteristic frequency of 120 Hz
in the United States and 100 Hz wherever 50-Hz AC current is used.

14.6 Pumps and Plumbing Systems

Pump noise arises from both hydraulic and mechanical sources, namely, cavitation,
pressure fluctuations in the fluid, impact of mechanical parts, imbalance, resonance,
misalignment, and so on. The hydraulic causes are, however, the predominant noise
generators. Pumps will generate even more noise if they are not operated at rated
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speed and discharge pressure, when the rate of compression is high or the inlet
pressure is below atmospheric, or if the temperature runs too high. An unfortunate
situation is created when the noise from the pump easily transmits through the
fluid or piping to other system components.

Pumps generate two types of noise: discrete tones and broadband noise. The
pump’s fundamental frequency f p is found from

f p = n × Nc

60
(14.9)

where

n = pump rotational speed, rpm

Nc = number of pump chamber pressure cycles per revolution

In large pumps the noise emission is the loudest at this fundamental frequency.
As the pump size decreases, the frequency at which the maximum noise emission
occurs increases, often to a frequency that constitutes a third or fourth harmonic of
the fundamental. Above 3 kHz, the noise becomes more broadband, approaching
an essentially flat spectrum. This is due to phenomena such as high-velocity flow
and cavitation.

The total sound power level of pumps in the four octave bands of center fre-
quencies 400, 1000, 2000, and 4000 kHz can be estimated from the following:

Lw = 10 log hp + K p dB (14.10)

where K p = pump constant which has the following values: 95 dB for the cen-
trifugal type, 100 dB for the screw type, and 105 dB for reciprocating type. For
rated speeds below 1600 rpm, 5 dB is to be subtracted for reciprocal pumps. The
sound power in each of the four bands may be considered to be 6 dB less than the
total sound power Lw computed from Equation (14.10).

Controlling Noise in Plumbing Systems
Table 14.4 lists the sources of noise in a building’s plumbing system and their
likelihood of being annoying. Flow can be either laminar flow, i.e., smoothly
flowing, or turbulent flow, in which occurs an irregular, random motion of the fluid
particles. The influencing factor that determines whether a flow will be turbulent
or laminar is the Reynolds number Re, a dimensionless parameter defined by

Re = ρ dv

μ

where ρ is the density of the fluid, d is the internal pipe diameter, v is the flow
velocity, and μ is the absolute viscosity of the fluid. For Re < 2000, the flow is
laminar. For transition region 2000 < Re < 4000, the flow may be either laminar
or turbulent. For Re> 4000, the flow will be turbulent. Noise generated by laminar
flow tends to be quite low in intensity and is usually of no concern.

In most real plumbing systems, the velocities are sufficiently high to result in
turbulent flow, which is a basic mechanism for noise generation within piping runs
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Table 14.4. Different Type of Plumbing Noises. Their Means of Generation, and
Annoyance Potentials (from Harries, 1991, Ch. 44).

Plumbing System
Component/Equipment Generation Mechanism Potential Annoyance

Piping runs
Couplings Turbulence Minimal
Elbows Turbulence Minimal
Tees Turbulence Minimal

Fixtures
Bar sink Cavitation/turbulence/splash/waste flow Minimal
Bath tub Cavitation/turbulence/splash/waste flow Very significant
Bidet Cavitation/turbulence/splash/waste flow Nominal
Flushometer Cavitation/turbulence Significant
Hose pipe valves Cavitation/turbulence Nominal
Laundry tubs Cavitation/turbulence/splash/waste flow Nominal
Pressure regulator Cavitation/turbulence Nominal
Shower Cavitation/turbulence/splash/waste flow Very significant
Sink Cavitation/turbulence/waste flow Significant
Valves Cavitation/turbulence Significant
Water closet, tank stool Cavitation/turbulence/splash/waste flow Very significant
Urinal Cavitation/turbulence/splash/waste flow Nominal

Appliances
Dishwasher Vibration/cavitation/spray/water hammer Very significant
Drinking fountain Cavitation/turbulence Minimal
Washing machine Vibration/cavitation/impact/motor/ Very significant

water hammer
Waste disposal Vibration/waste flow Very significant
Water heater Cavitation/turbulence Minimal

Supply and waste pumps
Booster Rotational flow/cavitation/motor Significant
Recirculation Rotational flow/cavitation/motor Normal
Sewage Rotational flow/cavitation/motor Significant
Sump Rotational flow/cavitation/motor Significant

and fixtures of the plumbing system. A potentially great cause of noise is cavitation,
which is the formation and subsequent collapse of cavities (bubbles) within the
flow of water through and past a restriction in the flow. For cavitation to occur,
a localized restriction or a projection must exist within the piping system, which
ensues in localized high velocities and low pressures. The formation and sudden
collapse of these bubbles result in extreme local pressure fluctuations, which can
be detected as noise. Other water noises occur from splashing (i.e., impact of liquid
striking a surface) and waste water flow (i.e., flow into drainpipes).

Much more serious is the sharp intense noise known as water hammer. It occurs
when a steady flow in a liquid flow system is suddenly interrupted, for example, by
a quick-action valve. When the fluid is in motion throughout a piping system, even
at relatively low velocities, the momentum from this sudden interruption can be
quite large. The sudden interruption of the flow creates an extremely sharp pressure
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rise that propagates as a shock wave upstream from the interrupting valve. The
steep wavefront can be reflected numerous times back and forth throughout the
various parts of the piping system until the energy is finally dissipated.

Noise control factors which must be dealt with in order to effect noise control
include (a) water flow and piping characteristics, (b) radiation of sound to the
building structure, (c) selection and mounting of fixtures, (d) isolation of pump
systems, and (e) water hammer noise control.

Water pressure in a plumbing system influences the flow noise caused by pipe
runs and water supply valves. According to typical building codes, water pressure
should be maintained at least at 100 kPa (15 psi) but not more than 500 kPa (80 psi).
For acceptable system performance, the supply pressure should be somewhere
between 230 and 370 kPa (35 and 55 psi), with a preference toward the lower
range in order to minimize noise. Flow noise radiation from pipes can be lessened
by minimizing the number of pipe transitions (elbows, tees, y-connections, and
the like). This reduces the opportunity for the onset of turbulence and cavitation.
Larger pipes are used in building design when noise control is given a higher
priority. In the U.S. 1/2-inch diameter piping is generally used in domestic plumbing
systems but can be as high as 3/4-inch diameter to cut down on noise by as much
as 3–5 dB.

Noise resulting from water flow in pipes may be transmitted to the rooms through
which they pass, particularly if they are in direct contact with large radiation sur-
faces such as walls, ceilings, and floors. Isolation of these pipes from the building
structure provides significant noise reduction. If the pipes are mounted with foam
isolators, instead of being rigidly attached to the building structure, a considerable
noise reduction of 10–12 dB may be obtained. Whenever piping passes through a
structure (block, stud, joist, or plate) or is in contact with a wall or masonry, re-
silient materials such as neoprene or fiberglass should be used to provide isolation.
It is vital to seal with a resilient caulking around the perimeter of all pipes, faucets,
and spouts that penetrate through floors, walls, and shower stalls.

The impact of water hammer can rupture piping; thus, it will spring leaks, cause
weakening of connections and produce damage to valves. Water-hammer pulsing
associated with the use of washing machines and dishwashers can be partially
damped by connecting these machines to the water supply with extra-long flexible
hose. Figure 14.6 shows a schematic of a capped pipe that incorporates an air
chamber for water-hammer suppression. The length of the pipe ranges from 30 to
60 cm and may be of the same or larger diameter than the line it serves. The volume
of the air chamber, which serves as an air cushion, depends on the nominal pipe
diameter, the branch line length, and the supply pressure. But if the air chamber
becomes filled with water, it becomes ineffective. A petcock is provided along
with a shut-off valve, so that the chamber may be drained of water and vented,
thereby reactivating the unit.

There are commercial devices, called water-hammer arresters, which are not
subject to the limitation of capped pipes, because a metal diaphragm separates
the water from the air. These devices are best placed near quick-acting valves and
should also be installed at the termini of long pipe runs.
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Figure 14.6. A capped pipe which serves to arrest water hammer.

14.7 Air Compressors

Air compressors are widely used in industry, and they are identified as a major
source of noise. Usually driven by a motor or a turbine, these devices are used to
elevate the pressure of air or another gas. The noise emission characteristics are a
function of the type of unit. In portable air compressors the driving engine is the
major source of noise rather than the compressor itself.

The second largest source is the cooling fan. Compressors are either rotary
or reciprocating. A reciprocating compressor typically generates a strong low-
frequency pulsating noise, the characteristics of which are dependent upon the
rotational speed and the number of cylinders. In centrifugal compressors the noise
generated is a function of a number of parameters such as the interaction of the ro-
tating and stationary vanes, the radial distance between impeller blades and diffuser
vanes, the rotational speed, the number of stages, the inlet design, the horsepower
input, turbulence, the molecular weight of the gas undergoing compression, and
the mass flow.

As in the case of fans, the blade passage frequency constitutes an importance
frequency component in certain types of compressors. In the diffuser-type ma-
chines, the blade-rate component, arising from the movement of one set of blades
past another, is of primary importance. The frequency of this component is found
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from

fBRC = Nr × Ns

60 KBRC
× n Hz (14.11)

where

fBRC = blade-rate component frequency, Hz

Nr = number of rotating blades

Ns = number of stationary blades

KRBC = greatest common factor of Nr and Ns

n = rotational speed, rpm

Example Problem 3
Find the frequency of the blade rate component of a diffuser-type compressor with
Nr = 16 and Ns = 24 and operating at a speed of 6000 rpm.

Solution
Using Equation (14.11) we find that

fBRC = Nr × Ns

60 KBRC
× n = 16 × 24

60 × 8
× 6000 = 4800 Hz

If the blade-rate component frequency falls within the audio range, we should
expect an increase of several decibels in the octave-band sound power level in
which it occurs.

The total sound power level in the four octave bands with center frequencies of
500, 1000, 2000, and 4000 can be roughly estimated for both reciprocating and
centrifugal compressors from the expression

Lw = 10 log hp + Kc dB (14.12)

where Kc = air compressor constant = 86 dB for the 1–100 hp range. Equation
(14.12) is very similar to Equation (14.10) for pumps, and either expression will
yield a straight line in a semi-log plot. Also, it is not unreasonable to estimate that
the sound power is equally divided among the four octave bands. Thus, each band
level is 6 dB below the total estimated from Equation (4.12).

14.8 Gears

Internal combustion engines and electric motors generally operate at speeds of one
to several thousand revolutions per minute. These high speeds help maximize the
power-to-weight and power-to-initial cost ratios. Gearing and other speed reduc-
ers are applied when the driven machinery requires high torque and low speeds.



372 14. Machinery Noise Control

Mechanical power, shaft speed, and torque are related as follows:

PkW = 10−6 Tω (14.13)

where
PkW = transmitted power, kW

T = torque, N mm

ω = πn/30—angular velocity, rad/s

n = shaft speed, rpm

In English units, Equation (14.13) becomes

Php = T n

63,025
(14.14)

where

Php = transmitted power, hp

T = torque, lb-in

n = shaft speed, rpm

It was observed by Hand (1982) that gear noise increases with speed at the rate of
6–8 dB per doubling of speed. It was also observed that an increase of 2.5–4 dB in
gear noise occurs for each doubling of load. Thus, according to Equation (14.13)
or (14.14) a reduction in speed results in an increase in torque, if the transmitted
power is to be sustained, and so the noise effect of speed reduction is somewhat
offset by the increase in the torque.

Meshing Frequencies
The profile of most gear teeth is that of an involute curve. Force transmits through
the driving gear to the driven gear along the line-of-action, which is fixed in space
(excepting planetary gear trains). If the gears are ideal, perfectly fabricated, rigid,
and transmitting constant torque, the power should be transmitted smoothly and
without vibration or noise. Real gears, however, have tooth errors in spacing and
tooth profile, and in some cases, an appreciable shaft eccentricity. Gear teeth do
act elastically and flex slightly under load. Consequently, the driving gear teeth
that are not in contact deflect ahead of their theoretical rigid-body positions, while
the driven teeth that are not in contact lag behind their theoretical positions. This
results in a rather abrupt transfer of force when each pair of teeth comes into
contact, instantaneously accelerating the driven gear and decelerating the driving
gear. The fundamental frequency of the noise and vibration is given by

f = nN

60
(14.15)

where

f = the fundamental tooth meshing frequency, Hz

n = rotational speed of the gear in question

N = the number of teeth in the gear in question
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Figure 14.7. Gear noise spectrum.

Harmonics—the noise and vibration at integer multiples of the tooth meshing
frequency—are usually present. The most significant contributions are usually
made by the first two or three harmonics, f2 = 2 f1, f3 = 3 f1, and so on. A typical
gear noise spectrum is displayed in Figure 14.7.

Tooth Error
If a single tooth is imperfectly cut, chipped, or damaged, then it will generate a
noise impulse once every shaft revolution. The fundamental frequency of the noise
or vibration due to tooth error is given by

f1E = n

60
(14.16)

where

f1E = fundamental frequency due to tooth error, Hz

n = shaft speed

Harmonics of tooth-error frequency may also occur. Moreover, if the shaft center-
line is not straight or if a gear or bearing is not concentric with the shaft centerline,
noise and vibration at the tooth-error frequency may result. These can cause in
sideband frequencies fS that accompany the tooth meshing frequencies. These
frequencies are found as follows

fS = f1 ± f1E (14.17)
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Gear Trains
Consider a pair of nonplanetary gears aand b in mesh. The tangential velocity Vt

at the mesh is the same for both teeth. But the Vt of each tooth of gear i of radius
ri rotating at angular velocity ωi is given by

Vt = ri × ω (14.18)

The number of teeth Ni on a gear i is directly proportional to the radius ri of
the gear, and ωi= 2πni /60. Since ra × ωa = rb × ωb for gears a and b at their
mesh point, we obtain

na

nb
= Nb

Na
(14.19)

Thus, the ratio of rotational speeds is inversely proportional to the ratio of numbers
of teeth: If both gears are external spur gears, the speed ratio is negative, i.e., one
gear will turn clockwise and the other counterclockwise. If one gear is an internal
gear (i.e., a ring gear) the speed ratio is positive, meaning that both gears will
rotate in the same angular direction. For a gear train comprised of several gears,
the output to input speed ratio is given by

noutput

ninput
=

∏
i

(
Ndriving

Ndriven

)
i

(14.20)

An idler gear serves as both a driving gear and a driven gear. Idler gears must be
included in determining the direction of rotation of shafts in a gear train.

Example Problem 4
In Figure 14.8 showing a gear train, gear 1 on the input shaft has 40 teeth and rotates
at 3600 rpm. Gears 2, 3, and 4 have 90, 44, and 86 teeth, respectively. Narrow band
spectrum analysis of noise and vibration shows discrete tones and vibration energy
peaks of 14, 27, 1227, 2400, 2455, and 4800. Establish the possible contributions
to the noise and vibration at these frequencies.

Solution
Gear speeds are determined from

n2

n1
= N1

N2

from which we obtain

n2 = n3 = 3600 × 40

90
= 1600 rpm
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Figure 14.8. Gear train for example problem 4.

From Equation (14.20) we have

noutput

ninput
= 40 × 44

90 × 86
= 0.227

and

noutput = 3600(0.227) = 818.7 rpm

Fundamental tooth-error frequencies are given by

f1E = n

60

= 3600

60
= 60 Hz for gear 1

= 1600

60
= 26.7 Hz for gears 2 and 3

= 818.7

60
= 13.6 Hz for gear 4
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Fundamental tooth meshing frequencies are obtained from

f = nN

60

= 3600 ×
(

40

60

)
= 2400 Hz for gear 1

= 1066 ×
(

46

60

)
= 1226.7 for gears 3 and 4

If we compare the calculated results with the spectrum analysis, it seems that
the 14- and 27-Hz discrete tones and vibration energy peaks correspond to the
fundamental and the first harmonic of the tooth-error frequency for gear 4. This
would indicate that the shaft straightness and the teeth of gear 4 should be inves-
tigated. The discrete tones of 1227 and 2455 Hz correspond to the fundamental
and the first harmonic of the meshing frequencies of gears 3 and 4. Discrete tones
at 2400 and 4800 Hz correspond to the fundamental and the first harmonic of the
tooth meshing frequency of gears 1 and 2.

Contact Ratio (CR)
The contact ratio CR for a pair of gears is defined as the average number of pairs of
teeth in contact. At least one pair must obviously be in contact at all times. Taking
into fact that tooth error, wear, shaft deflection, and machining tolerances affect
the way gears work, a contact ratio of 1.2 is selected as the practicable minimum.
When the contact ratio is near minimum value, contact commences at the tips of
the driven teeth, and impact loads due to teeth meshing are high. A contact ratio
of 2 or more usually results in better tooth load distribution and quieter operation,
since two or more teeth will be in contact at all times.

In order to deal with contact ratio, we need to briefly review spur gear terminol-
ogy: diametral pitch is defined by Pd = N/d and d is the pitch (nominal) diameter
of the gear, r is the pitch radius = d/2, φ is the pressure angle, and a is the adden-
dum or extent of the tooth beyond the pitch radius, ra = r + a is the radius of the
addendum circle, and c = r1 + r2 (center distance for gears in mesh). It follows
from Equation (14.19) for spur gears that

r1

r2
= n2

n1

The pressure angle φ represents the angle of force transmission between gear teeth.
Standard gears have pressure angles of 14.5◦ (a rather antiquated standard), 20◦,
and 25◦. The contact ratio between a pair of spur gears is given by

CR =
√

r2
a1 − r2

1 cos2 φ +
√

r2
a2 − r2

2 cos2 φ − c sinφ

π cosφ

Pd

(14.21)
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The subscripts 1 and 2 refer to the driver and driven gears, respectively. For full
depth gears with standard pressure angles, the standard addendum is a = m =
1/Pd . For 20◦ pressure angle stub teeth, the standard addendum is a = 0.8m =
0.8/Pd .

Gears are selected to meet specified power and speed ratio requirements. These
requirements affect the selection of gear material, tooth width, module or diametral
pitch, number of teeth, and so on. If the number of teeth is increased for each gear
in a train, the contact ratio will usually increase, with the result the tooth meshing
frequency and the accompanying noise level will decrease.

Helical Gears
When a pair of spur gear teeth begins to mesh, the contact occurs at once across the
entire face width. In the case of a helical gear in which teeth entwine about an axial
surface rather than cut straight across (Figure 14.9), the contact occurs gradually,
with the contact beginning at a point and then extending across the tooth face. This
results in reduced vibration and lower impact loads that produce tooth meshing
frequency noise. Hence, helical gears on parallel shafts may be substituted for
spur gear trains to reduce noise; and the actual number of teeth in contact will
also be substantially increased. In order to ensure smooth and quiet operation, it
is recommended that the thickness of the helical gear be 1.2 to 2 times the axial
pitch (the distance between corresponding points on two adjacent teeth). Thrust
(axial) loads must be taken into consideration when specifying helical gears in the
design of shafts and bearings. Well-made helical gears cost more than spur gears,
but the payback in terms of smoother and quieter operation can more than offset
the greater expense.

Figure 14.9. Helical gears. (Courtesy of Designatronics, Inc., New Hyde Park, NY.).
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Other Aspects of Gear Noise Control
Gear production methods involve die casting, milling, drawing, extruding, stamp-
ing, and production from sintered metal. These methods tend to produce gears
with significant tooth error to a more or lesser degree. Most gears produced by
milling cutters also tend to have their tooth forms only approximate the correct
configuration. In order to produce a precise tooth form, each milling cutter should
be dedicated to only one diametral pitch or module and for a specific tooth num-
ber. In practice, a different milling cutter is used for each diametral pitch, but each
cutter is used for a range of tooth numbers. Inaccuracies in cast, drawn or extruded
gears result from shrinkage and other dimensional changes.

Precision methods of generating gear teeth usually result in cutting down noise
due to tooth error. These include computer-controlled generating rack cutter, the
generating gear shaper cutter, and the generating hob. Precision gears are usually
finished by grinding and shaving, and other finishing methods include burnishing,
honing, and lapping.

Large gears benefit by damping to absorb vibration energy. Constrained layer
damping, which sandwiches a layer of damping material between the gear web and
a rigid steel plate, can reduce gear noise. If loads are low and the temperatures are
not excessive for the material, fiber, plastic, fiberglass reinforced, and composite
gears are used in such applications. These materials have a low modulus of elasticity
and high internal damping compared with steel. Shock loads from tooth meshing
and tooth error are absorbed, thereby reducing noise.

Gear enclosures or housing can and should be designed to control noise. The
enclosure should be isolated so as not to transmit vibration to adjacent structures;
and provisions for adequate lubrication of the gears should be included. Resonances
of the enclosure should not correspond to the tooth meshing or any other excitation
frequency; otherwise the housing will radiate a large amount of noise energy. This
can be avoided by stiffening the enclosure structure to “tune out” its resonance to
a higher frequency. The stiffeners themselves should be designed so that they have
a low-radiation efficiency. Advantage should be taken of the directivity patterns of
noisy gear trains in the orientation of machinery, so that personnel noise exposure
is minimized.

14.9 Journal Bearings

A journal bearing is the simplest type of bearing. It consists of a portion of a shaft
rotating inside a circular cylinder with a layer of lubrication separating the shaft
and bearing surfaces. Hydrodynamic rotation depends on shaft rotation to pump a
film of lubricant between the shaft and the bearing. If the lubricant viscosity and
shaft rotational speed are adequate for the load on the project bearing area, then
thick-film hydrodynamic lubrication will prevail. This ensures stable operation
without metal-to-metal contact, as well as quiet operation. Starting, stopping, and
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load direction changing may result in temporary cessation of the lubricant film and
in metal-to-metal contact. This calls for hydrostatic lubrication that introduces fluid
(e.g., oil or air) to the bearing surface at a pressure sufficient to support the shaft,
even when the bearing is stationary. A large increase in the noise level produced
by a journal bearing is apt to indicate a failure of the lubrication system.

14.10 Ball and Roller Bearings

An incipient failure of ball or roller bearing can be detected by noise and vibration
measurements. For the most part, bearing life can be predicted but premature failure
can and does occur. The occurrence of discrete tones in the noise spectrum for an
operating bearing may indicate manufacturing defects, and narrowband vibration
spectra can be utilized to detect wear and defects.

A ball or roller bearing consists of the following elements: a set of balls or
rollers are enclosed in a cage or separator sandwiched between an inner race
(that is usually attached to the shaft) and the outer race (usually attached to the
supporting stationary structure). When the shaft turns, the balls (or rollers) roll
along the surface of the inner raceway, which allows for the rotational freedom
of the shaft. The cage or separator follows the motion of the balls. The speed
relationships are as follows

nO − nC

nI − nC
= − DI

DO
(14.22a)

and

nB − nC

nI − nC
= − DI

DB
(14.22b)

where

n = rotational speed, rpm

D = diameter, mm or in.

and the subscripts denote the variables as follows:

I = inner race

O = outer race

B = ball or roller

C = ball cage or separator

The race diameters are measured at the point of contact with the balls or rollers.
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Ball or Roller Bearings with Stationary Outer Races
In most bearing applications the outer race is stationary. Equation (14.22a)
becomes

0 − nC

nI − nC
= − DI

DO
(14.23)

which yields the separator speed

nC = nI DI

DO + DI
(14.24)

and the speed of the balls relative to the separator is given by

nR
B = nB − nC = − (nI − nC )DI

DB
= −nR

I DI

DB
(14.25)

Here nR
I is the speed of the inner race relative to separator speed. Equation (14.25)

is obtained by eliminating nB through the use of relation (14.22b).
Vibration and noise frequencies are related to the absolute speeds n, relative

speeds nR , and the number of balls or rollers νB . For bearings with stationary
outer races, the following fundamental frequencies are likely to arise:

1. Shaft imbalance:

f = nI

60
(14.26)

2. Outer race defect:

fO = nR
OνB

60
= nCνB

60
(14.27)

3. Inner race defect:

f I = nR
I νB

60
= (nI − nC )νB

60
(14.28)

4. Defect or damage to one ball or roller:

fB = 2nR
B

60
= nB − nC

30
(14.29)

5. Imbalance or damage in the separator or cage:

fC = nC

60
(14.30)

With the appearance of the fundamentals as calculated above, harmonics 2 f ,
3 f , . . . are apt to occur.

Example Problem 5
Consider a ball bearing that uses twelve 8-mm-diameter balls. The inner and
the outer diameters are DI = 28 and DO = 44 mm, measured at the ball
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contact points. The outer race is stationary and the inner race rotates at speed
nI = 4500 rpm clockwise. Determine (a) the rotational speeds and (b) the noise
and vibration frequencies which will occur if there are defects and imbalance
present.

Solution
It should be obvious that DI + 2DB = DO.

(a) Use Equation (14.24) to find the separator speed

nC = nI DI

DO + DI
= 4500 × 28

28 + 44
= 1750 rpm

and, from Equation (14.25), the speed of the balls relative to the separator
is

nR
B = nB − nC = − (nI − nC )DI

DB
= −(4500 − 1750) × 28

8
= −9625 rpm (counterclockwise)

(b) We find the fundamental frequencies as follows:

1. Shaft imbalance:

f = nI

60
= 4500

60
= 75 Hz

2. Outer race defect:

fO = nR
OνB

60
= nCνB

60
= 1750 × 12

60
= 350 Hz

3. Inner race defect:

f I = (nI − nC )νB

0
= (4500 − 1750) × 12

60
= 550 Hz

4. Defect or damage to one ball:

fB = 2nR
B

60
= nB − nC

30
= −9625

30
= 320.8 Hz

Notice that the negative sign is ignored in this answer.
5. Imbalance or damage in the separator or cage:

fC = nC

60
= 1750

60
= 29.2 Hz

Harmonics of all of the above frequencies are likely to occur.

Ball or Roller Bearings with Nonstationary Outer Races
For some applications, the shaft attached to the inner race of a bearing remains
stationary while the outer race rotates. In this case, nI = 0 and we obtain the
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following speed relationships:

nO − nC

0 − nC
= − DI

DO

with carrier speed

nC = nO DO

DO + DI

and speed of the balls with respect to the carrier

nR
B = nB − nC = − (nO − nC )DO

DB
= −nR

O DO

DB

The frequencies that may occur when the outer race is nonstationary are as follows:

1. Shaft imbalance:

f = nO

60
2. Outer race defect:

fO = nR
OνB

60
= (nO − nC )νB

60
3. Inner race defect:

f I = nR
I νB

60
= nCνB

60
4. Defect or damage to one ball or roller:

fB = 2nR
B

60
= nB − nC

30
5. Imbalance or damage in the separator or cage:

fC = nC

60
Harmonics will also constitute additional components of the spectrum.

For any bearing fault, the noise and vibration spectra will be essentially tonal,
i.e., characteristic peaks will exist. A great deal of the noise energy will be concen-
trated in the bands that include the fundamental frequency and its first and second
harmonics.

14.11 Other Mechanical Drive Elements

Chain Drives
Figure 14.10 shows a roller chain meshing with toothed sprockets. The roller chain
is constructed of side plates and pin and bushing joints designed to mesh with
sprockets. The flexibility of the chain aids in limiting shock and vibratory forces,
but the initial contact between the chain and sprockets can be noisy at high speeds.
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Figure 14.10. Roller chain.

For transmission of high loads at high speeds, inverted-tooth (or “silent”) chains
are often applied. Because the inverted-tooth chain engages with the sprockets
with less impact force, it generally operates more quietly than roller chain.

The links are of finite length in either roller chain or inverted-tooth chain. While
the chain links engage a sprocket, the pitch line (i.e., the centerline of the link pins)
bobbles up and down due to the chordal action. In Figure 14.10, the center of a
link pin is located at Rmax from the center of the sprocket over which it moves.
Rmax is the maximum center of the pitch line from the sprocket center. As the link
engages further, the pitch line moves nearer to the sprocket center and both pins
of the link coincide with the pitch line. The new position is given by

Rmin = Rmax cos

(
180◦

NS

)
(14.31)

where NS indicates the number of sprocket teeth. Roller chains usually have a
minimum of 8 teeth and inverted-tooth chains, 17 teeth.

Consider a drive sprocket rotating at constant speed ns . The pitch line velocity
of the chain will change in direct proportion to its distance from the center of the
sprocket, i.e., V = R × (2πns). The fractional velocity change V /V is given by

V

V
= Rmax − Rmean

Rmax
=

1 − 1 + cos(180◦/NS)

2
1 + cos(180◦/NS)

2

= 1 − cos(180◦/Ns)

1 + cos(180◦/Ns)

(14.32)

The angular velocity (2πns) is canceled itself out in the ratio of Equation (14.32),
but the speed ratio of a chain drive is given by

n2

n1
= N1

N2
(14.33)

where n refers to the rotational speed (rpm) of the sprocket and N the number
of sprocket teeth. Subscripts 1 and 2 denote the driver sprocket and the driven
sprocket, respectively. Fundamental frequencies of noise and vibration can be due
to the following:
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1. Imbalance in the driver shaft or the driven shaft or damage to one sprocket
tooth:

f1 = n1

60
Hz and/or f2 = n2

60
Hz (14.34)

2. Damage to one chain link: In this case for a chain with NL links, a defective
link will strike each sprocket n1 N1/NL times per minutes. Hence

fC L = n1 N1

30NL
(14.35)

3. Tooth engagement and chordal action:

fT E/C A = n1 N1

30
(14.36)

When the above fundamentals are present, harmonics are likely to occur. Noise
levels and vibratory amplitudes due to tooth meshing and chordal action are func-
tions of the sprocket configuration and also speeds and masses of the sprockets
and chains. Also, if there are idler sprockets in the system, the values given in
Equations (14.34)–(14.36) will undergo a change.

Example Problem 6
Given a 12-tooth drive sprocket rotating at 2400 rpm, a driven sprocket with
24 teeth and a chain with 60 links, determine the velocity variation with respect to
the mean velocity and the possible vibration and noise frequencies due to this chain
drive.

Solution
We apply Equation (14.32) to the smaller sprocket, i.e., the driver, because the
ratio is larger:

V

V
= 1 − cos(180◦/Ns)

1 + cos(180◦/Ns)
= 1 − cos(180/12)

1 + cos(180/12)
= 0.0173

Here the velocity varies by nearly ±2% from the average. Equation (14.33) is used
to find the speed of the driven sprocket’s speed:

n2 = n1
N1

N2
= 2400 × 12

24
= 1200 rpm

Equations (14.34)–(14.36) give us the following possible fundamental frequencies:

f1 = n1

60
= 2400

60
= 40 Hz

f2 = n2

60
= 1200

60
= 20 Hz
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fCL = n1 N1

30NL
= 2400 × 12

30 × 40
= 24 Hz

fTE/CA = n1 N1

30
= 2400 × 12

30
= 960 Hz

Belt Drives
Belt drives are often used instead of gears or chains in order to save on costs and
provide some degree of noise control. The elasticity of the belt prevents shock loads
at a driven machine from being transmitted back to the driver. Solid-borne noise and
attendant vibration are reduced. Flat belts and V-belts mounted on smooth pulleys
depend on friction to transmit power, so there must be adequate belt tension to
prevent slipping as well as to oppose centrifugal effects. When suddenly loaded,
these belts can slip, causing a squealing noise. This sometimes can be fixed by
increasing the tension; but excessive tension can shorten the life of a belt and induce
excessive bending moments in connected shafts. When precise speed ratios must
be sustained, such as the camshaft of an automotive engine, toothed belts mounted
on toothed pulleys can be utilized. Toothed belts can maintain timing and phase
relationships just as well as meshing gears, but these belts isolate vibration and
shock forces rather than transmitting them between the driving and driven elements.

Universal Joints
Universal joints are used when the relative position of a driving element changes
with respect to a driven element, such as with an automobile transmission that
is connected through a drive shaft to a rear axle. Flexible couplings and flexible
shafts can also be used, but the former can accommodate only relatively slight
misalignments, and the latter can handle large misalignments but cannot handle
large amounts of torque. In general, for a given rotational speed n, the frequency
associated with noise and vibration is given by

f = n

30
Hz

14.12 Gas-Jet Noise

A most common and also worrisome noise source is the gas jet. This is also
referred to as aerodynamic noise, and examples include blowdown nozzles, gas or
oil burners, steam valves, pneumatic control discharge vents, aviation jet engines,
and so on. An acoustically unmitigated steam valve of a large cooker in a major food
processing plant can measure as much as 120 dB. Research on aerodynamically
generated noise began in earnest in the early 1950s as the result of the appearance
of the commercial jet engine, when it became obvious that its mechanism of sound
generation had to be understood better in order to effect noise control (Lighthill,
1952, 1978; Hubbard, 1995).
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Prior to Lighthill’s pioneering work, there have been even earlier studies made
on aerodynamic noise in conjunction with efforts to reduce noise in axial fans. We
can go back even further to find that the effect of jet streaming was mentioned in the
earliest recorded references to sound. When the wind blew past the pillars of the
ancient Greek temples, eerie discrete tones were produced. The Greeks adjudged
these tones to be the voice of Aeolus, the god of the wind, and hence these tones
are called Aeolian tones.

The mechanism of the Aeolian sound can be explained by visualizing the flow
of air over a cylinder. At a given velocity, the downsteam flow behind the cylinder
exhibits an oscillatory pattern, as vortices are shed alternatively on one side of the
cylinder and then the other. The ensuing trail of eddies form what is referred to as a
von Kàrmàn vortex street, which contains strong periodic components, resulting in
a sound of nearly pure tonal quality. On the basis of empirical data, the frequency
of the Aeolian tone can be predicted from

fAeolian = α v

d

where

v = velocity of air, m/s

d = diameter of cylinder, m

α = Strouhal number, approximately 0.2

Figure 14.11 displays the simplest example of a gas jet, in which the high
velocity airflow is emanating from a reservoir through a nozzle. The gas accelerates
from virtually zero velocity in the reservoir to a peak velocity in the core at the
exit of the nozzle. The peak velocity of the jet depends greatly on the pressure
difference between the reservoir pressure pr and external (ambient) pressure pa .
As the pressure ratio increases, the velocity of the gas at the discharge increases
up to a point when the pressure ratio of 1.89 (for the case of the gas being air) is
reached. Once the flow velocity reaches the velocity of sound, any further increase
of the reservoir pressure will not result in an increase of the velocity at the end of
the straight duct. When the critical pressure ratio of 1.89 is reached, the nozzle is

Figure 14.11. A simple gas jet.
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said to be choked. In order to increase the velocity further, the nozzle must increase
in its cross-sectional area beyond the duct station where choking occurs.

In the frictionless, isentropic flow of an ideal gas from one point to another, the
applicable energy equation describing this flow is

e + p

ρ
+ u2

2
= constant (W/kg) (14.37)

where e is the internal energy of the gas, and u is the gas flow velocity. For the
reservoir, u = 0 and p = pr . Also, from thermodynamics theory for an ideal gas,

e + p

ρ
= enthalpy = cpT

where cp is the specific heat of the gas at constant pressure and T is the absolute
temperature. Mach number M is defined by

M = u

c
(nondimensional characteristic)

But propagation speed of sound c in an ideal gas is given by

c2 = γ RT = γ
p

ρ

Equation (14.37) becomes

e + p

ρ
+ u2

2
= cpT + γ M2 RT

2
= cpT

(
1 + γ M2 R

2cp

)

= cp
p

Rρ

(
1 + γ M2(γ − 1)

2γ

)
= constant (14.38)

We apply the fact that R = cp – cv in an ideal gas, and the ratio of the specific
heats cp/cv = γ . Selecting two flow stations, one at a point r inside the reservoir
and the other at the point in the duct where choking occurs (Mach number M =
1.0), we obtain from Equation (14.37)

pr

ρr
= pch

ρch

(
1 + γ − 1

2

)
or

pr

pcr
= ρch

ρch

(
1 + γ − 1

2

)
(14.39)

In an isentropic flow, according to thermodynamic theory:

pρ−γ = constant

Then Equation (14.37) becomes

pr

pch
=

(
1 + γ − 1

2

) γ

γ−1

(14.40)

The ratio γ of specific heats is equal to 1.4 for air, so Equation (14.40) yields the
critical pressure ratio for a shock to appear:

pr

pch
=

(
1 + 1.4 − 1

2

) 1.4
1.4−1

= (1.2)3.5 = 1.89
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Noise is generated from gas jets through the creation of fluctuating pressures from
the turbulence and shearing stresses, as the high-velocity gas impacts with the
ambient gas. In establishing the theory of aeroacoustics, the nonlinear effects of
the momentum flux ρui u j (i.e., the rate of transport of any momentum ρui across
a unit area by any velocity component u j ) cannot be neglected as they were for
linear acoustics. The momentum flux acts as a stress, since the rate of change
of momentum constitutes a force. This momentum flux ρui u j generates sound
as a distribution of time-varying stresses. The forces between the airflow and
its boundary radiate sound as distributed dipoles, and the stresses (which act on
fluid elements with equal and opposite dipole-type forces) radiate as distributed
quadrupoles.

The nature of the noise from jets cannot be accurately predicted, owing to the
complex nature of the jet itself and the uncertainties associated with turbulence,
nozzle configuration, temperature vacillations, and so on. However, first-order
estimates can be derived from empirical data obtained for the most part from
experimentation in the aviation industry. The earliest measurements of jet noise
demonstrated that intensity and noise power varied very closely with the eighth
power of the jet exit velocity (Lighthill’s eighth power law), and it is now generally
agreed that the overall sound power P can be expressed as

P = Kρ0U 8 D2

c5
0

(14.41)

where K is a constant, with a value 3–4; D is the jet diameter (in meters); U is
the jet flow velocity (m/s); ρ0 is the density of ambient air (kg/m3); and c0 is the
ambient speed of sound (m/s). The factor ρ0U 8 D2c−5

0 is often called Lighthill’s
parameter. Because the kinetic power of a jet is proportional to 1

2ρ0U 2 · U D2, the
fraction of the power converted into noise is the noise-generating efficiency η,

η ∝ M5 (14.42)

where M = U/c0, the Mach number of the flow referenced to the ambient speed
of sound.

Aerodynamic noise can be modeled as monopoles, dipoles, and quadrupoles.
A jet pulse through a nozzle or discharge from HVAC ducts can be modeled as a
monopole. In fans and compressors, the turbulent flow generally encounters rotor
or stator blades, grids, and baffles; this type of flow can be modeled as a dipole.
Quadrupole modeling applies to noise occurring from turbulent mixing in jets
where there is no interaction with confining surfaces.

The velocity term U in Equation (14.41) is the fluctuating velocity which varies
throughout the jet stream. Consequently, U is not easily measured nor amenable
to analytical treatment. But we can consider the average velocity V and assume
that the size of the energy-bearing eddies are of the same order of magnitude as the
jet diameter, and the total radiated acoustic power P is proportional to the kinetic
energy of the jet flow. The total radiated power is simply a fraction of the total
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power discharged from the nozzle, i.e.,

P = ε M5ρ0 V 3 A

2
in watts (14.43)

where

V = average flow velocity through the nozzle, m/s

M = Mach number of the flow = V/c, dimensionless

ρ0 = density of ambient air

A = nozzle area

ε = constant of proportionality, in the order of 10−4

Equation (14.43) constitutes a first-order approximation that is applicable to
many industrial situations where the average velocity of the jetstream lies in the
range of 0.15c < V ≤ c. The efficiency factor εM5 is plotted from empirical data
in Figure 14.12 over a range of Mach numbers. As a reflection of the uncertainty
associated with turbulence, temperature, and so forth, the efficiency factor is given
as a range.

Figure 14.12. Efficiency factor εM5 versus Mach number.
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Example Problem 7
An air jet, operating through a choked 1-cm diameter nozzle, exhausts into the
atmosphere. Determine the overall acoustical power and the sound power level
LW at 20◦C.

Solution
Because the nozzle is choked, the average velocity of the air jet must be equal
to the speed of sound at 344 m/s. The density of air at atmospheric pressure is
1.204 kg/m3 is found from the ideal gas relation,

ρ = pa

RT
= 1.01325 × 105

287 × (20 + 273.2)
= 1.204 kg/m3

and the area of the nozzle is πD2/4 = π (10–2)2/4 = 7.85 (10)–5 m2. From
Figure 14.12, the radiation efficiency factor εM5 is found to be approximately
3 × 10–5. Inserting these values into Equation (14.43) we find

P = ε M5ρ0 V 3 A

2
= 3.0 × 10−5 × 1.204 × 3443 × 7.85 × (10)−5

2
= 0.0577 W

thus giving us the sound power level,

LW = 10 log

(
0.0577

10−12

)
= 107.6 dB (14.44)

From this last example, the acoustical power can be calculated to the first order
on the basis of the nozzle diameters and exit velocities. However, the acoustical
power of the air jet may have an accuracy of ±5 dB or thereabouts. But what if the
gas jet is hot and extremely turbulent, as in the case of a gas burner? This situation
can be resolved by applying a first-order correction for the temperature:

Correction due to temperature = T = 20 log

(
T

Ta

)

where T and Ta are the absolute temperatures of the gas jet and the ambient air,
respectively.

Example Problem 8
Consider the nozzle described in Problem Example 7 above. What would be the
total radiated acoustical power level LW if the temperature of the jet is to be raised
from 20◦C to 260◦C?
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Solution
Using Equation (14.44),

T = 20 log

(
T

Ta

)
= 20 log

(
(260 + 273.2)◦K

(20 + 273.2)◦K

)
= 5.2 dB

The temperature-corrected sound power level becomes

LW = 107.6 + 5.2 = 112.8 dB

When the overall power of a jet is determined, the overall sound pressure at any
location in region surrounding the jet can be estimated through the use of the
relationship between L p and LW :

L p = LW + 10 log

(
Q(θ, φ)

4π r2

)
= LW + 10 log [Q(θ, φ)] − 20 log r − 11

(14.45)

where Q(θ ,φ) is the directivity in three-dimensional space, and r is the distance
from the source of LW to the location where the value of L p is desired. The
directivity index DI is given by

DI = 10 log

(
Q(θ, φ)

4π r2

)
In many cases of interest, the jet can be generally regarded as a point source with
typical directionality as shown in Figure 14.13. The parameterφ can be disregarded
in axisymmetric flows.

Figure 14.13. A fairly typical configuration for directivity DIQ in a small subsonic jet.
Note that the peak levels occur approximately in the angular range of 15◦ to 45◦ from the
central axis of the jet.
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Figure 14.13 illustrates that peak levels occur in the range of 15◦–45◦ from the
axis of the jet. The ordinate of Figure 14.13 giving the relative sound pressure level
constitutes a directivity index DIθ .

Example Problem 9
Find the radiated overall sound pressure level at a radial distance of 15 m from the
nozzle of Problem Example 7 at angular positions of 0◦, 45◦, 90◦, and 180◦.

Solution
We make use of Equation (14.45) and the results of Problem Example 7. The sound
pressure level at r = 15 m is

L p = LW + 10 log [Q(θ, φ)] − 20 log r − 11

= 107.6 − 20 log(15) − 11 + DI θ = 73.1 + DI θ dB

From Figure 14.13, the DIθ = 0 at θ = 0◦, and L p= 73.1 + 0 = 73.1 dB. At 45◦,
DI45◦ is approximately +3 dB, and L p(45◦) = 73.1 + 3 = 74.1 dB. Similarly for
the other angles, we have

DB90◦ = −5 dB, L p(90)◦ = 73.1 − 5 = 68.1 dB

DI180◦ = −10 dB, L P (180◦) = 73.1 − 10 = 63.1 dB

It becomes apparent from the above example that the jet has a strong directional
character that must be accounted for in determining the sound level pressures.

Gas jets also manifest a strong frequency dependence. A first-order estimate
for the peak frequency can be obtained for a given power level from the empirical
relation

fpeak = St × V

D
(14.46)

where

St = Stouhal number, a constant = 0.15 for a wide variety of nozzle

diameters and operating conditions

V = average exit velocity of the nozzle, m/s

D = nozzle diameter, m

Example Problem 10
Given a 5-cm diameter nozzle with an exit velocity of 344 m/s, determine the peak
frequency of the air blowdown.
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Solution
Applying Equation (14.46)

fpeak = 0.15 × 344 m/s

0.05 m
= 1032 Hz

Thus, the peak frequency should be expected to occur in the 1 kHz octave
band.

On either side of the peak frequency, the octave band distribution of the acous-
tical power falls off. Experimental data indicated that the spectrum falls off at the
average rate of –6 dB per octave above the peak frequency and −7 dB per oc-
tave below the peak frequency. The upshot is that the magnitude and the spectral
character of gas jet noise can be only estimated roughly.

14.13 Gas Jet Noise Control

The major challenge in dealing with jet engine noise is to reduce the high noise
levels with minimal impact on the thrust. The greatest progress came about by
reducing the jet velocity while keeping the thrust constant because the sound
power is proportion to (thrust) × U 6/c0

5, according to the Lighthill equation
(14.41). Early efforts were centered on modifying the nozzle shape to variations
of the “cookie-cutter” forms or using multiple smaller nozzles. Some of these
designs produced up to 10 dB noise reductions with a rather small loss of thrust.
Newer by-pass and fan-jet engine designs entail much lower jet velocities, large
streamlined enter bodies, and annular jets that may be subdivided in any one of
several ways.

In the case of simple high-velocity air jets in industrial environments, such as
those used to power air tools, provide cooling or venting, parts ejection, and so on,
a number of straightforward noise reduction measures can be applied. The basic
steps include the following:

1. Reduction of the required air velocity by moving the nozzle closer to a part
being ejected, while maintaining the same value of thrust.

2. Adding additional nozzles, reducing the required velocity but again sustaining
the same thrust magnitude.

3. Installation of newer models of quieter diffusers and air shroud nozzles.
4. Interruption of airflow in sequence with ejection or blow-off timing.

Methods 1 and 2 above result in noise reduction from cutting down on the jet
velocity. Reduction of the airstream velocity should be the first consideration of
any noise reduction program. Usually, the only constraint is the preservation of
the air-jet thrust. The thrust Tj of a jet is given by

Tj = �

m V (N) (14.47)

where
�

m = mass flow rate, kg/s
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(a)

(b)

Figure 14.14. (a) Multi-jet diffuser and (b) restrictive diffuser nozzle.

V = average jet velocity

Equation (14.47) indicates that thrust can be preserved if the mass flow is increased
while reducing the jet velocity. Increasing the nozzle exit area and moving the noz-
zle closer to the ejection target will also provide considerable velocity reduction.
Adding on two or more nozzles will also permit reduction in air-jet velocity and a
corresponding reduction in noise level.

Multiple-Jet and Restrictive Flow Silencer Nozzle
Figure 14.14(a) shows an example of a multi-jet diffuser. The noise reduction
accrues mainly from the reduction in jet air core size, which also lessens the
turbulence in the mixing regions. Also, the smaller inner jets flow along with the
outer layer of high velocity air, thereby reducing the shearing action with the static
ambient air. In the restrictive flow nozzle of Figure 14.14(b), the high-velocity core
is minimized by the sintered metal restrictor, typically mounted into the nozzle
exit. The flow velocity is reduced somewhat, with a corresponding drop in the
amount of noise radiation. In both of these nozzle types, there will be some loss in
the jet thrust, so additional nozzles may be required to keep up the same amount
of the jet thrust.

Air Shroud Silencer Nozzles
In Figure 14.15, an air shroud silencer nozzle is shown with its airflow pattern.
Here the noise reduction is achieved through bypassing some of the primary airflow
around and over the nozzle. The bypassed air lowers the velocity gradients between
the primary jet and the ambient air, thus cutting down on the shearing action and
the resultant radiation of noise. There is usually little change in the mass flow for
this type of silencer and the jet thrust is generally preserved. A micrometer dial
provides control of amount of bypassed air. The typical noise reduction through
the use of air-shroud silencer nozzles is 10–20 dB in the critical high-frequency
range of 2–8 kHz for small high-velocity jets.
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Figure 14.15. Air shroud silencer. The micrometer shown here adjusts the amount of
air supply bypassing the nozzle instead of going through it. (Courtesy of ITW Vortec,
Cincinnati, Ohio.).

Impingement Noise
Impingement noise occurs when a gas jet is brought close and impinges upon a
solid surface or object. A sharp increase in the noise level occurs, particularly in
the range of higher frequencies. In addition, the impingement of the gas jet on
the surface can bring about unsteady forces in the form of aerodynamic dipoles,
which can be described as a pair of point sources of equal magnitudes separated by
a small distance and oscillating with an angular phase difference of 180◦. This is to
say that these two point sources are out of phase, i.e., when one of the point sources
is positive, the other is negative. These dipoles constitute the basic mathematical
models used to describe the noise and radiation of many common noise sources
including propellers, valves, loudspeakers, air duct diffusers, a number of musical
instruments, and so on. There are also some directivity patterns present when the
noise evolves from dipole sources.

Impingement noise, as with jet noise, is difficult to predict in the way of its
amplitude and spectral characteristics of the noise-generating mechanism. From
both analytical and experimental considerations, the radiated sound power for
impinging subsonic jets depends in the first order on the fifth or sixth power
of the flow velocity. Again, as with the free jet flow, even a slight reduction in
the flow velocity can bring about appreciable reductions in impingement noise.
If a jet flows over a sharp edge or discontinuity, even more noise is likely to
be generated. Whistle-like edge tones will also occur. Cutting down on the flow
turbulence created by jet flows over a cavity or an obstruction can lessen the
periodic components and the impingement noise. In these cases, the impingement
noise can be lessened by avoiding or eliminating the presence of cavities and by
redirecting the jet away from the edge.
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Gaseous Flows in Pipes or Ducts
Velocities in pipes or ducts usually occur in the subsonic range, but where there are
valves or vents present to control the flow, extremely high noise levels can occur.
Noise levels have been measured as high as 140 dB downstream of reduction valves
in large steam pipes. In many cases, pressure drops across a control or regulator
valve are sufficiently large to choke the flow at the discharge, with the result that
the flow of the gas jet is sonic or almost sonic with corresponding generation of
high intensity aerodynamic noise. This noise can propagate through the pipe walls
into the immediate surroundings, and what is even worse, it can propagate almost
unabated downstream with very little attenuation.

Because of the complexity of the noise source mechanism and the degree of
uncertainty in transmission loss of the pipe and ducts, it becomes quite difficult
to predict the magnitude of the aerodynamic noise. But some guidance can be
derived from empirical data, which can be used to establish first-order estimates.
The turbulent mixing areas downstream of the valve constitute the principal region
of noise generation. But if valves are encased in thick housings, the noise levels are
typically 6 to 10 dB lower. The spectral character of the noise resembles that for
high-velocity gas jets, i.e., there are peak levels present in the range of 2–8 kHz. In
short, it can be expected wherever high-pressure steam and gas flows are regulated
or discharged through valves, noise levels exceeding 100 dB will most likely occur.
The valves will have relatively thick walls, so the piping system itself, downstream
of the valve, is the primary source of externally radiated noise.

Three basic approaches can be considered in reducing the noise from the control
valve regions, namely, (a) revising the dynamics of the flow, (b) introducing an
in-line silencer to absorb acoustic energy, and (c) increasing the transmission loss
in the pipe walls.

Of the three approaches just mentioned, altering the dynamics of the flow, which
means actually reducing noise reduction at the source, is probably the most pre-
ferred method. Changing the dynamics entails reducing the flow velocity via mul-
tiple stages of pressure reductions or diffusion of the primary jet. Figure 14.16
shows multiple stages of pressure reduction with the use of expansion plates. The
flow velocity is lessened sequentially in each expansion chamber. These plates also
act as a diffuser, reducing turbulent mixing. As much as 20 dB noise reduction have

Figure 14.16. Multiple stages of pressure reduction in a throttling system with use of
expansion plates.
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Figure 14.17. A cutaway view of an in-line silencer used to reduce aerodynamic noise in
pipes. (Reproduced with permission of Fisher Controls International, Inc.).

been achieved. A disadvantage of this setup that a back pressure may be induced,
which has the effect of impeding flows. The use of diffusers is another approach,
in which the flow is diffused into smaller interacting jets.

In-line silencers, one of which is shown in Figure 14.17, basically consist of
flow through ducts surrounded by absorptive materials separated from the flow by
perforated metal sheets. A diffusive inlet may precede the tubular portion of the
absorptive liner. The absorption materials typically consist of fiberglass or metal
wool.

Finally, in the third approach, that of increasing the transmission loss in pipe
walls, two methods can be used. One is to increase the pipe wall thickness and the
other is to swath the pipe in acoustical absorption materials. However, no simple
procedure exists for estimating the transmission loss through pipe walls. Piping
standards are promulgated by mechanical engineering societies, which specify wall
thicknesses for high-pressure, high-velocity flow installations. These thicknesses
are specified with the principal aim of preventing ruptures and other failures of
the pipes that are subject to high pressures. For larger pipes, the standard wall
thickness is approximately 3/8 inch. A wall thickness greater than that required
to meet stress requirements can be selected so that more sound attenuation can be
achieved from the presence of the thicker walls, in the range of 2–20 dB additional
transmission loss.

However, a resonance-like condition can occur at the ring frequency, at which
value the transmission loss virtually disappears. This is somewhat analogous to
the coincidence frequency effect associated with barriers. This dip in transmission
loss occurs in a pipe when a single wavelength of sound becomes equal to the
nominal circumference of the pipe wall, a situation the ring frequency fr can be
mathematically expressed as

fr = cw
π Dp

where cw is the longitudinal speed of sound in the pipe wall material in m/s; and
Dp the nominal diameter of the pipe (which can be considered the average of the
inside and outside diameters of the pipe) in meters. For example, a 25-cm steel
pipe would have a ring frequency of 6598 Hz (since cw = 5182 m/s for steel). It
would then be expected that the peaks noise levels radiated from this pipe would
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Figure 14.18. Lagging or jacketing of a pipe to minimize flow noise transmission.

occur in the vicinity of 6.6 kHz. Higher order resonance-like conditions will also
occur at 2 fr , 3 fr , etc., but would be of little concern because those frequencies
are extremely high.

Besides increasing wall thicknesses, another method for achieving noise atten-
uation in pipes is that of wrapping or lagging the pipes. A typical lagging setup is
shown in Figure 14.18. A 2.5–8 cm layer of acoustically absorbent material (fiber-
glass, mineral wools, or polyurethane foam) is wrapped around the pipe wall. This
absorbing layer, in turn, is sheathed in sheet metal, dense vinyl, or sheet lead. The
outer dense layer is extremely important in providing a high level of noise reduc-
tion. Applying an even denser outer layer and adding additional composite layers
can result in even more noise reduction. The principal disadvantage of using lag-
ging as the only noise reduction measure is that long lengths of piping would need
treatment, so it would be advisable to give priority to noise source reduction (i.e.,
utilization of multiple pressure reduction stages or diffusers) and to use lagging as
a secondary measure to bring the overall sound levels down to acceptable values.

14.14 Mufflers and Silencers

In the preceding section we have discussed some of the elements of silencing
air-jet flow. In this section we examine further aspects of reducing the noise from
air-jet flow. The term muffler is commonly applied to the exhaust gas silencer for
an internal combustion engine, and silencer usually denotes the noise suppressor
installed in a duct or air intake. We use these terms interchangeably in this section
since the same operational principle applies to both of them. Mufflers and silencers
were developed to reduce noise energy while facilitating gas flow.

Both silencers and mufflers fall into one or the other of two categories: dissipative
units and reactive units. Dissipative mufflers and silencers reduce noise energy by
employing sound-absorption materials that are flow resistive at frequencies in
the audio range. Reactive mufflers and silencers reduce noise through destructive
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Figure 14.19. Expansion chamber of a reactive muffler.

interference. Both reactive and dissipative principles may be combined in a single
muffler or silencers in order to ensure effectiveness over a broad frequency range.

Reactive Mufflers and Silencers
Consider the basic reactive muffler in Figure 14.19. Sound waves transmit from left
to right in the inlet pipe and reflections occur in the expansion chamber, causing
destructive interference under the appropriate conditions. In this analysis (Davis
et al., 1984), the following assumptions are made:

1. Sound pressure is small in comparison with absolute pressure in the expansion
chamber.

2. No reflected waves occur in the tailpipe (i.e., the outlet pipe).
3. The expansion chamber walls do not transmit nor conduct sound.
4. Only plane waves exist.
5. Viscosity effects are negligible.

We denote the following subscripts in the description of incident and reflected
waves: I for incident waves and R for reflected waves. The particle displacements
ξ of the incident and reflected waves are described in complex format as follows:

ξI = AI ei(ωt−kx) (14.48)

and

ξR = ARei(ωt+kx) (14.49)

Here AI and AR are complex amplitudes. Particle velocities are obtained by dif-
ferentiating equations (14.48) and (14.49) with respect to time:

uI = iω AI ei(ωt−kx) (14.50)
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and

u R = iω ARei(ωt+kx) (14.51)

We recall that for a plane wave in the direct field, sound pressure is related to
particle velocity by

p = ρ cu

which is used in Equations (14.50) and (14.51) to obtain

pI = iρ cω AI ei(ωt−kx) (14.52)

pR = iρ cω ARei(ωt+kx) (14.53)

Let x = 0 designate the junction of the inlet pipe and expansion chamber.
Pressure must be continuous at this junction, hence

(pI 1 + pR1)x=0 = (pI 2 + pR2)x=0 (14.54)

Inserting Equations (14.52) and (14.53) into (14.54) gives

AI 1 + AR1 = AI 2 + AR2 (14.55)

Subscript 1 refers to the left of the junction and subscript 2 refers to the right.
Continuity of flow requires that

A (uI 1 − u R2)x=0 = B (uI 2 − u R2)x=0

Setting B/A = m, where A refers to the flow area of the inlet pipe and the outlet
pipe and B the flow area of the expansion chamber, we have from continuity

AI 1 − AR1 = m(AI 2 − AR2) (14.56)

In Figure 14.19, C denotes the length of the expansion chamber. At the junction
of the expansion chamber where x = C , pressure and flow continuity necessitates
that

(pI 2 + pR2)x=C = p3

from which

AI 2e−ikC + AR2eikC = A3 (14.57)

and

B(uI 2 − u R2)x=C = A u3 (14.58)

resulting in

m(AI 2e−ikC + AR2eikC ) = A3 (14.59)

We now have four Equations (14.55)–(14.59) and five unknowns, AI 1, AR1, AI 2,
AR2, and A3. These equations are solved simultaneously to correlate conditions at
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the inlet and outlet of the expansion chamber, resulting in the complex ratio

AI 1

A3
=

(1 + m)

(
1 + 1

m

)
eikC + (m − 1)

(
1

m
− 1

)
e−ikC

4

= cos(kC) + i

2

(
m + 1

m

)
sin(kC) (14.60)

In order to establish the transmission loss, the ratio of sound intensity at the ex-
pansion chamber inlet to transmitted sound intensity is needed:

II 1

I3
= p2

rms(I 1)

p2
rms(3)

=
∣∣∣∣ A2

I 1

A2
3

∣∣∣∣ = cos2(kC) + 1

4

(
m + 1

m

)2

sin2(kC)

= 1 + 1

4

(
m − 1

m

)2

sin2(kC) (14.61)

Because transmission loss is a function of the ratio of power incident on the muffler
to the power transmitted, i.e.,

T L = 10 log

(
Wincident

Wtransmitted

)

and if the inlet and outlet areas are equal, we obtain

T L = 10 log

(
WI 1

W3

)
= 10 log

(
II 1

I3

)
= 10 log

[
1 + 1

4

(
m − 1

m

)2

sin2(kC)

]

(14.62)

where k = 2π/λ is the wave number. Equation (14.62) becomes invalid if any of
the lateral dimensions of the expansion chamber exceeds 0.8λ.

Figure 14.20 displays a plot of the theoretical transmission loss versus C/λ
for various area ratios. Equation (14.62) forecasts a transmission loss of zero
when the argument of the sine function is 0, π , 2π , .2nπ , . . . and a maximum
transmission loss when the argument is π/2, 3π/2, . . . (2n + 1) π/2, . . . , where
n = 0, 1, 2, 3, etc. It then follows that the expansion chamber works best when
length C constitutes an odd number of quarter-wavelengths, i.e., C = λ(2n + 1)/4
for maximal TL. But the expansion chamber becomes ineffective when the chamber
length C measures out to an integer number of half-wavelengths, i.e., C = nλ (i.e.,
λ/2, λ, 3λ/2, etc.). For extremely low frequencies C/λ approaches zero, and the
transmission loss likewise approaches zero.

Example Problem 11
A reactive muffler is to be designed to produce a transmission loss of 20 dB at
150 Hz. The inlet and outlet pipes are 60 mm in diameter and the average gas (air)
temperature is 100◦C. Determine the size of the expansion chamber.
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Figure 14.20. Transmission loss TL versus C/λ.

Solution
At 100◦C, the velocity c = 20.04

√
T + 273.16 = 387.1 m/s. The wavelength of

the 150 Hz sound is given by λ = c/ f = 387.1/150 = 2.58 m. For the short-
est expansion chamber to produce maximum transmission loss, we examine the
argument of the sine function:

kC = 2πC

λ
= π

2
radians

from which we get

C = λ

4
= 2.58

4
= 0.645 m = 645 mm

From Equation (14.62) the transmission loss is given by

T L = 10 log

[
1 + 1

4

(
m − 1

m

)2

sin2(kC)

]

= 10 log

[
1 + 1

4

(
m − 1

m

)2

sin2

(
2π × 0.645

2.58

)]

= 10 log

[
1 + 1

4

(
m − 1

m

)2
]

(14.63)
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Let (
m − 1

m

)2

= "

Then

A

B

[(
B

A

)2

− "B

A
− 1

]
= 0

where from Equation (14.63)

" = 2(10T L/10 − 1)1/2

The solution to the quadratic expression inside the bracket is

B

A
= "+ √

"2 + 4

2
Note the negative root carries no physical significance. For a transmission loss of
20, " = 19.90 and

B

A
= 19.90 + √

19.902 + 4

2
= 19.95

The cross-sectional area A of the inlet pipe and the outlet pipe are eachπ (60)2/4 =
2827 mm2. The expansion chamber cross-sectional area is

B = A × B

A
= 2827 × 19.95 = 56,399 mm2

If the expansion chamber has a cylindrical cross-section, its inside diameter d is
found from

B = π d2

4
Hence

d =
√

4B

π
=

√
4 × 56,399

π
= 268 mm

Area B represents the minimum cross-sectional area of the expansion chamber
that is required to produce the 20-dB transmission loss.

Dissipative Mufflers and Silencers
In the preceding paragraphs, dissipative silencers were discussed. Lining the ducts
of HVAC systems with sound absorptive materials generally provides adequate
noise attenuation. However, many industrial applications require a silencer that
can provide a large amount of noise attenuation or insertion loss in a relatively
small space. If the noise energy covers a narrow frequency range, reactive silencers
constitute the better solution. Reactive silencers are preferred where the gas flows
contain particles or other components that could contaminate sound absorbing
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materials. Dissipative silencers are more effective over a wider range of frequencies
and in silencing fluctuating machinery noises. In a number of situations, in order
to obtain the greatest noise reduction over a wider frequency range, both reactive
and dissipative principles are combined in a single silencer.

14.15 Active Noise Control

Relatively recent advances in digital electronics have made it more economically
feasible to apply active noise control in cutting down on noise in aircraft and
automotive interiors, pumps, compressors, electric motors, transformers, and so
on (Piraux and Nayroles, 1980; Nelson and Elliott, 1992, 1997). Earlier active
noise control techniques were first used in the study of noise in fan ducts. The
advent of inexpensive digital processors enabled the conversion of analog audio
frequency signals into digital form, then processing them through a digital filter
and then converting back into an analog signal with very little time delay. The
basis of active noise control is to duplicate the noise that is the same but 180◦ out
of phase, so that when the offending noise and the duplicated out-of-phase noise
are combined, a cancellation will occur.

Figure 14.21. An example of an active noise control system for a communication headset.
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Figure 14.21 illustrates a simple single-channel active noise control system.
Sound is detected by a microphone and processed though a digital filter imbedded
in a special-purpose microprocessor prior to being fed into a loudspeaker that
radiates the sound that is intended to interfere destructively with the “original”
unwanted sound. The characteristics of the digital filter are designed to minimize
the time-averaged signal at the error microphone on a continuous basis.

The following factors, which may limit the effectiveness of active noise control,
must be considered:

1. Continuous and reliable measurement, signal processing, and sound generation
are required.

2. For maximum effectiveness the anti-noise source must be near the noise source
or near the receiver.

3. When changes occur in the relative position of the noise source and the observer,
the effect could be one of sound reinforcement rather than cancellation. This
consideration can limit many active-noise control systems to low-frequency
sounds. However, the presence of error-detection microphones combined with
digital filters that continuously adapt to changing conditions can mitigate the
possibility of unintentional sound reinforcement.

4. Even under the most ideal real conditions, cancellation of sounds cannot be total,
due to the statistical nature of the molecular motion in the sound propagation
medium.

Active noise control systems have even been incorporated into items as small as
headphones for the purposes of shutting out external noises while allowing desired
sound to reach the ears. Such headphones are useful in aviation cockpits, passenger
compartments of aircraft, and other noisy environments.
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Problems for Chapter 14

1. A 6-blade fan rotates at 1150 rpm. Determine the frequencies of the noise that
will emanate from the fan.

2. Find the sound power of a fairly efficient electric motor rated at 85 hp at
2400 rpm.

3. Determine the frequency of the blade rate component of a diffuser-type com-
pressor with 24 blades in the rotor and 36 blades in the stator. The rotor rotates
at 9000 rpm.

4. A 20-hp hydraulic screw-type pump operates at 1200 rpm with 4 chamber
pressure cycles per revolution. Find its fundamental frequency and the sound
power output.

5. A radial forward-curved fan has 36 blades and a rotor diameter of 120 cm. It
operates at 950 rpm with an airflow rate of 24 m3/s under the effect of a total
pressure of 1.8 kPa. What is the total sound power at the inlet?

6. Estimate the sound power of a “quiet” 100-hp electric motor operating at
1200 rpm.

7. A ball bearing has a stationary outer race. The inner and outer race diameters
are 30 mm and 46 mm, respectively, measured at the point of ball contact. The
inner race rotates at 5200 rpm. There are 12 balls in the bearing. Determine
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the noise and vibration frequencies that can occur as the result of imbalance
and defects.

8. A ball-bearing is constructed as follows: it has twelve 15-mm-diameter balls,
and the inner race diameter is 50 mm at the point of ball contact. The inner
race has a rotational speed of 1800 rpm and the outer race remains stationary.
Find:
(a) rotational speed of separator
(b) speed of the balls relative to the separator
(c) shaft imbalance frequency
(d) outer race defect frequency
(e) inner race defect frequency
(f) frequency arising from damage to one ball
(g) frequency attributable to imbalance in the separator.

9. A roller bearing contains ten 16-mm-diameter rollers. The inner race diameter
is 30 mm. The inner race rotates at 6000 rpm while the outer race remains
stationary. Find:
(a) rotational speed of the separator
(b) speed of the rollers relative to the separator
(c) shaft imbalance frequency
(d) outer race frequency
(e) inner race frequency
(f) frequency caused by a defect in one roller
(g) frequency caused by imbalance of the separator.

10. In a nonplanetary gear transmission, the input shaft gear has 40 teeth and rotates
at 1200 rpm. It meshes with another shaft through a 30-tooth gear. Predict all
of the fundamental frequencies that are likely to arise in this transmission.

11. The gears of a reverted gear train of Figure 14.8 carry the following specifi-
cations: gear 1 (driver), 50 teeth; gear 2, 90 teeth; gear 3, 46 teeth; and output
gear 4, 47 teeth. The input shaft rotates at 2400 rpm.
(a) Determine the rotational speeds of the other shafts.
(b) Compute each of the fundamental tooth-error and shaft frequencies and

the first three harmonics.
(c) Find all of the fundamental tooth meshing frequencies and their first three

harmonics.
(d) Determine the sideband frequencies.

12. It is specified that a pair of spur gears is to be used to reduce shaft speed from
2400 rpm to 1600 rpm. The driver has 18 teeth and a diametral pitch of 4. The
pressure angle is 20◦ in the stub teeth.
(a) Predict the fundamental tooth-error frequencies.
(b) Determine the fundamental tooth meshing frequency.
(c) Find the contact ratio, on the basis of Equation (14.21) and discuss the

results in terms of noise. Assume that a = 0.25.
13. Consider a chain drive system that contains a 15-tooth input sprocket that

rotates at 2500 rpm. The chain has 90 links, and it is specified that the output
sprocket rotates at 1500 rpm. Determine:
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(a) the number of teeth needed for the output sprocket
(b) the range of output speed if input speed remains constant
(c) the probable frequencies of noise and vibration due to damage to one tooth

or imbalance in either shaft
(d) the probable frequencies due to damage to one link
(e) the probable frequencies due to chordal action.

14. The input speed of a chain drive is to be reduced by one-half at the output. The
24-tooth input sprocket rotates at 1200 rpm. The chain contains 160 links.
(a) How many teeth are needed in the output sprocket?
(b) For constant input speed, determine the range of output speed.
(c) Determine the likely frequencies of noise and vibration due to imbalance

of either shaft or damage to one tooth.
(d) Find the possible frequencies due to damage to one link
(e) Determine the possible frequencies due to chordal action.

15. In a Hooke-type universal joint, in which the cross-link plane is normal to the
axis of the driving shaft, the speed ratio is given by n2/n1 = 1/(cos φ), where
φ is the shaft misalignment angle, with the result that the speed range due to
misalignment is given by

cosφ ≤ n2

n1
≤ 1

cosφ

A misalignment of 10◦ occurs in this type of universal joint. The input shaft
rotates with a constant speed of 1200 rpm.
(a) Find the speed range of the output shaft.
(b) Determine the frequency resulting from vibration or noise.

16. A fairly simple 3/8-inch-diameter nozzle functions under an inlet pressure of
100 psi (gauge). Determine the sound level at a distance of 5 ft for an ambient
air temperature of 80◦F.

17. A simple 25 mm nozzle operates at an inlet pressure of 600 kPa. Determine
the sound pressure level at a distance of 1.0 m at an air temperature of 20◦C.

18. Fifty sound level readings are taken at 10-s intervals. Find the percent exceeded
noise levels L10, L50, and L90 for the following distribution:

Level [dB(A) ± 0.05] Number of Readings

87 2
86 8
85 14
84 15
83 5
82 4
81 2



15
Underwater Acoustics

15.1 Sound Propagation in Water

Sound waves are absorbed and scattered in water to a much lesser degree than
electromagnetic waves. Because of this property sound waves have proven to
be particularly useful in detecting distant objects undersea by means of sonar
(acronym for SOund NAvigation and Ranging). Passive sonar is strictly a “listen-
ing” device that detects sound radiation emitted (sometimes unintentionally) by a
target. In active sonar, the process entails sending out a sound pulse and listening
for a returning echo. The loudness of the echo hinges principally on the amount
of energy absorption in the water and the degree of reflection from an intercept-
ing surface. Some of the energy is scattered backward in a random fashion to the
echo-ranging emitter, either by particles or inhomogeneities in the water, or by the
ocean surface or sea bottom. This scattering results in a phenomenon referred to as
reverberation. The sound directly reflected back from an obstacle (target)—such
as a submarine or a whale—constitutes the echo.

Recognizable echoes have been mapped for schools of fish, dolphins, whales,
patches of kelp and seaweed, sunken wrecks and pronounced irregularities in
shallow depths. Certain water conditions give rise to echoes at very short ranges;
and ocean swells also can generate echoes. Ship wakes and other types of bubble
screens make effective targets as wells as icebergs. The most prominent use of
sonar has been in subsurface warfare: submarines, surface vessels, and underwater
mines are obviously the most important targets.

The reflections of the probing signals from submarines to surface vessels are
evaluated in terms of target strengths, a quantitative measure of intensities of the
echoes. Target strengths (TS) depend on a number of factors, viz. target size, shape,
orientation with respect to the probe signal source, distance from the source to the
target, and frequency of the probe signal. The intensity of the reflected sound is
also a function of the intensity of the probe signal striking the target, the distance
from the target to the point of echo measurement (which is usually at virtually
the same location as the probe signal source), and the acoustic absorptivity of
the target. The effects of these variants can be established only if the radii of
curvature of the sound waves striking the target and returning to a receiver are

409
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of much greater magnitudes than those of the target’s dimensions, i.e., the probe
signal waves should ideally be plane. In terms of ray acoustics the incident sound
wave must be substantially parallel in the region of the target that they strike, and
reflected sound rays should also be parallel over the area of the sonar receiver.

In the military use of sonar, the applicable spectrum range covers the ultralow
frequency to the megahertz region. Acoustic mines detect the pressures below 1 Hz,
which are generated by moving ships. These mines detect the acoustic radiation
and explode when the acoustic level reaches a certain level in their bandpass.
Such mines can be destroyed harmlessly through the use of a minesweeper that is
basically a powerful signal source towed behind a minesweeping vessel.

In passive detection, the acoustic radiation of both water-surface and underwater
vessels, are sensed by a hydrophone array mounted on the spy vessel or submerged
at the bottom a long distance away. The receiving array must be directional in order
to be able to locate the target through sensing of somewhat higher frequencies.

Modern echo-ranging (active) sonar consists of an elaborate array of equipment
to send out signals in the form of long, high-power pings in designated directions
vertically and horizontally, and newer signal processing techniques present the
echoed data to the observer. Transducer arrays are often enclosed in separate
housings that are towed underwater behind the surface vessel, so that shallow
thermal gradients1 can be penetrated, and the sonar can probe in the stern (forward)
direction, a procedure that cannot be achieved with a hull-mounted sonar.

Peaceful uses of sonar expanded greatly immediately after World War II. Origi-
nally developed for depth sounding, sonar is now being used to find fish, study fish
migration, map ocean floors, locate underwater objects, transmit communications
and telemetric data, serve as acoustic speedometers, act as position-marking bea-
cons, and monitor well-head flow control devices for undersea oil wells. Passive
sonar provides marine biology researchers a window for tracking sounds made by
cetaceans (whales, dolphins, and porpoises).

15.2 Some Basic Concepts Pertaining to Underwater Sound

In an acoustic plane wave passing through a fluid medium of density ρ, the particle
pressurep relates to the fluid particle velocity u as follows

p = ρcu.

The fluidic parameter ρc is called the specific acoustic resistance. Its value, on
the average, for seawater is 1.5 × 105 g/cm2 s or 1.5 × 106 kg/m2 s. In contrast,
ρc = 42 g/cm2 s for air. From our previous chapters we recognize that this param-
eter can also assume a complex value in its role as the specific acoustic impedance.

1 In the 1920s and 1930s, it was observed that good echoes were obtained with the early versions
of shipboard echo-ranging equipment in the morning and poor or no results were obtained in the
afternoon. This was due to the shifts in the seawater thermal gradients that caused sound to refract
toward the sea bottom and thereby place a target in the “shadow zone.”
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In order to understand the importance of acoustic impedance, consider the fact
that some sort of a piston must drive against a medium in order to generate acoustic
energy. The medium presents a resistance to that drive, and in acoustic terminology,
this resistance is the specific acoustic impedance. The conventional techniques
applied in the design of the usual audio equipment, namely loudspeakers and
microphones, are not applicable to underwater sonar. Air is a very light substance,
so the driving mechanism needs to produce a large displacement with very little
force. In the case of underwater sound, however, it is necessary to provide a very
large force to generate even a small displacement. This means that the sonar must
possess a very large mechanical impedance, i.e., a large ratio of the complex
driving force to the complex velocity. It is also evident that a propagating sound
wave carries mechanical energy that includes the kinetic energy of the particles in
motion and the potential energy of the stresses occurring in the elastic medium. In
the process of a wave propagating, a certain amount of energy per second crosses a
unit area. This power per unit area describes the intensity of the wave. If a unit area
is given an orientation with respect to reference coordinates, the intensity becomes
a vector quantity represented by a Poynting vector normal to the unit area, in the
same manner as in the theory of electromagnetic propagation. In a plane wave,
the instantaneous intensity relates to the instantaneous acoustic pressure in the
following way:

I = p2

ρ c
.

For the cases entailing transient signals, or signal distortions, or target impinge-
ment occurring, it is more useful to use the concept of energy flux density of the
acoustic wave, as defined by

E =
∫ ∞

0
I dt = 1

ρ c

∫ ∞

0
p2dt .

The unit of intensity in underwater sound is the intensity of a plane wave having
a root-mean-square (rms) pressure of 1 micropascal (1 μPa) or 10−5 dyne/cm2.
This amounts to 0.64 × 10−22 W Ag/cm2. This pressure of 1 μPa serves as the
reference level for the definition of the decibel as applied to underwater acoustics,
in contrast to the decibel referred to 20 μPa, that describes the sound level of
acoustic propagation in air.

15.3 Speed of Sound in Seawater

The principal difference between the speed of sound in fresh water and seawater
is that with the latter, salinity constitutes an additional factor besides pressure and
temperature. In fact, the speed of sound in seawater varies with geographic location,
water depth, season, and even the time of the day. Sound velocity in a natural
body of water was first measured in 1827 when the Swiss scientist Jean-Daniel
Colladen (1802–1893) and the French mathematician Charles Sturm (1803–1855)
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Table 15.1. Expressions for Sound Speed (m/s) in Seawater as Functions of
Temperature, Salinity, and Depth.

Expression Limits Reference

c = 1492.9 + 3(T − 10) − 6 × 10−3(T − 10)2 −2 ≤ T ≤ 24.5◦ Leroy
− 4 × 10−2(T − 18)2 + 1.2(S − 35) 30 ≤ S ≤ 42
− 10−2(T − 18)(S − 35) + D/61 0 ≤ D ≤ 1000

c = 1449.2 + 4.6T − 5.5 × 10−2T 2 0 ≤ T ≤ 35◦ Medwin
+ 2.9 × 10−4T 3 + (1.34 − 10−2T )(S − 35) 0 ≤ S ≤ 45
+ 1.6 × 10−2 D 0 ≤ D ≤ 1000

c = 1448.96 + 4.591T − 5.304 × 10−2T 2 0 ≤ T ≤ 30◦ MacKenzie
+ 2.374 × 10−4T 3 + 1.340(S − 35) 30 ≤ S ≤ 40
+ 1.630 × 10−2 D + 1.675 × 10−7 D2 0 ≤ D ≤ 8000
− 1.025 × 10−2T (S − 35) − 7.139 × 10−13T D3

D = depth, in meters; S = salinity, in parts per thousand; T = temperature in degrees Celsius.

collaborated in striking a submerged bell in Lake Geneva and simultaneously
setting off a charge of powder in the air (Colladen and Sturm, 1827; Wood, 1941).
The intervals between the two events were timed across the lake, and they obtained
a value of 1435 m/s at 8.1◦C, which is amazingly close to the modern value.
Subsequent measurements over the past 40 decades entail direct measurement
of speeds under carefully controlled conditions, and the speeds were mapped
as functions of oceanographic parameters (Del Grosso, 1952; Weissler and Del
Grosso, 1951; Wilson, 1960).

Expressions have been derived in terms of three basic quantities: temperature,
salinity, and pressure (hence depth). Save for the presence of contaminants such as
biological organisms and air bubbles, no other physical properties were found to
affect the speed of sound in seawater. The interdependence of these three param-
eters is not a simple one. Del Grosso (1974) developed an expression containing
19 terms each to 12 significant figures in the powers and cross-products of the three
principal variables, and Lovett developed a simpler but still unwieldy expression.
We list in Table 15.1 a number of simpler expressions that suffice for most practical
work. In general, these expressions result in values with errors less than a few parts
in ten thousand or approximately 0.5 m/s.

The speed of sound in the sea increases with temperature, depth, and salinity.
Table 15.2 gives the approximate coefficient for the rate of change in these principal

Table 15.2. Approximate Coefficients of Sound Velocity.

Parameter being varied Coefficient Coefficient

Temperature (near 70◦F) c/c
T = +0.001/◦F c

T = +5 ft / s ◦F

Salinity c/c
S = +0.0008/ppt c

S = +4 ft/s ppt

Depth c/c
D = +3.4 × 10−6/ft c

D = +0.016 s−1

c = speed in ft/s; T = temperature in ◦F; S = salinity in parts per thousand (ppt);
D = depth in feet.
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parameters. In open deep water, salinity is found to have a rather small effect on
the velocity.

15.4 Velocity Profiles in the Sea

The term velocity profile refers to the variation of the sound speed with depth; it
is also called the velocity–depth function. Figure 15.1 shows a typical deep-sea
velocity profile, which, in turn, can be subdivided into several layers. The surface
layer lies just below the sea surface. The speed of sound in that layer is responsive
to daily and local changes of heating, cooling, and action of the winds. The surface
layer may consist of a mixed layer of isothermal water that is caused by action of
the wind as it blows across the surface of the water. Sound becomes trapped in this
mixed layer. On prolonged calm and sunny days, this mixed layer dissipates, to be
replaced by water in which its temperature drops with increasing depth.

Figure 15.1. Deep-sea sound propagation velocity profile subdivided into principal layers.



414 15. Underwater Acoustics

The seasonal thermocline lies below the surface layer. The term thermocline
denotes a layer in which the temperature varies with depth. The seasonal thermo-
cline is usually characterized by a negative thermal or velocity gradient, meaning
that the temperature and the speed of sound decreases with increasing depth, and
it does vary with the seasons. During the summer and fall, when the ocean waters
near the surface are warm, the seasonal thermocline is well defined and it becomes
less so during the winter and spring and in the Arctic when it tends to become
indistinguishable from the surface layer. Below the seasonal thermocline lies the
main thermocline, which hardly varies throughout the seasons. It is this layer in the
deep sea, that the temperature changes the most. Underneath the main thermocline,
reaching down to the sea bottom is the deep isothermal layer having an almost con-
stant temperature (generally about 3◦–4◦C) in which the speed of sound increases
with depth because of the effect of pressure on the sound speed. At the saddle point
between the negative gradient of the main thermocline and the positive gradient of
the deep layer, there occurs a velocity minimum toward which sound traveling at
great depth tends to bend or becomes focused by refraction. In the more northern
regions, the deep isothermal layer extends almost to the water surface. The region
where this minimum occurs is called the deep sound-channel axis.

The existence and the thicknesses of these layers vary according to latitude, sea-
son, time of day, and meteorological conditions. Figure 15.2a displays the diurnal

Figure 15.2. Diurnal and seasonal variation of a surface layer near Bermuda. In (a) tem-
perature profiles at various times of the day show how surface temperature increases over
the temperature at 50 ft depth. The temperature profiles for different parts of the year are
given in (b). Temperatures and temperature differences are given in Fahrenheit degrees.
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Figure 15.3. Effect of latitude on sound-speed profile in deep sea.

behavior of the surface layer near Bermuda. It shows how the temperature pro-
files vary, when the surface waters of the sea warm up during the course of a
sunny day and cool down during the night. These changes in temperatures affect
considerably the transmission of sound from a surface-ship sonar, particularly in
the afternoon when echo ranging tends to be poorest. Figure 15.2b illustrates a
series of bathythermograms taken in the Bermuda area, showing how the season
thermocline evolves during the summer and autumn. The effect of latitude on
sound-speed profile in the deep sea is shown in Figure 15.3 by profiles for two
different locations in the North Atlantic at the same season of the year. At low
latitudes (nearer the equator), the velocity minimum occurs at a depth of approxi-
mately 3000 ft. At high latitudes the velocity minimum exists near the sea surface,
and the main and seasonal thermoclines show a tendency to disappear from the
profile.

In the shallow waters of the coastal regions and also on continental shelves, the
velocity profiles tend to become far less clear-cut and rather unpredictable. The
velocities tend be greatly influenced by surface heating and cooling, changes in
salinity, and the presence of water currents. Nearby sources of fresh water tend to
complicate these effects and contribute to the spatial and temporal instability of
numerous gradient layers.
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15.5 Underwater Transmission Loss

Transmission loss TL quantitatively refers to the weakening of sound between a
point 1 yard from the source and a point someplace in the sea.2 Let I0 indicate the
intensity at the reference point 1 yard from the “center” of the acoustic source (thus
10 log I0 denotes the source level) and I1 is the intensity at the point of interest.
The transmission loss TL between the source and the point of interest is

TL = 10 log
I0

I1
dB

Time averaging is implied in the above definition. For short pulses, a TL equivalent
to that for continuous waves is given by the ratio of the energy flux density at 1 yard
from the source E0 to the energy flux density E1 at the point 1 of interest, i.e.

TL = 10 log
E0

E1
dB

If the metric units of distance are used so that the reference distance is 1 m, TL
will be 0.78 dB less than that for the TL based on the reference distance of 1 yard.

Transmission loss can be subdivided into two types of losses: part of the losses is
due to spreading, a geometric effect, and the remainder is attributable to absorption
losses that represent conversion of acoustic energy into heat.

If a small source of sound is located in a homogeneous, infinite, lossless medium,
the power generated by the source radiates outward uniformly in all directions.
The total power radiating outward remains the same, as its wave front expands as
a spherical surface with an increasing radius (the radius increases at the rate of
c × time t). Since power P is equal to intensity times the area, i.e.,

P = 4πr2
1 = 4πr2

2 = · · · = constant

and setting r1 = 1 yard, the transmission loss TL to surface r2 is

TL = 10 log
I1

I2
= 10 log

r2
2

r2
1

= 20 log r2

which can be readily recognized as the inverse-square law of spreading, also known
as spherical spreading.

When the medium is bound by upper and lower parallel planes, the spreading is
no longer spherical because the sound cannot cross the boundary plates. Beyond a
certain range and as shown in Figure 15.4, the power radiated by the source spreads
outward as a wavefront that constitutes a cylindrical surface represented by an
radius expanding at the rate of c × time t . The power P crossing the cylindrical

2 The U.S. Navy still employs an odd melange of dimensional units in defining, say, source strength
in terms of decibels (based on the metric reference of 1 μPa for sound pressure level or 1 pW for
sound power level) and the distance from the source of 1 yard rather than the 1 meter used elsewhere.
Conversion to the entirely metric system requires the subtraction of 0.78 dB from the U.S. value.
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Figure 15.4. Spreading of acoustical energy: (a) in an infinite medium, (b) in a medium
between two parallel plates, and (c) in a tube.

surfaces at radius r is

P = 2πHr2
1 = 2πHr2 = · · · = constant

where H represents the distance between the two parallel boundary planes. As-
signing r1 = 1 yard, the transmission loss (TL) to r2 is given by

TL = 10 log
I0

I2
= 10 log r2.

In this situation the cylindrical spreading occurs in the inverse first power. This
sort of spreading occurs at moderate and long ranges when sound is entrapped
within a sound channel in the sea.

We can also consider a wave guide, essentially a conducting tube or pipe of
constant cross section. This is a case where no spreading occurs. Beyond a certain
range, the area over which the power is distributed remains constant, and the
pressure intensity and the TL are independent of range.

A fourth type of spreading occurs when the signal from a pulsed source spreads
out in time as the pulse propagates through the medium. The pulse becomes elon-
gated by multipath propagation effects, which causes the pulse to smear out in
time as it travels to a receptor. This type of effect is particularly evident in long-
range propagation in deep-ocean sound channels. If the medium is infinite and
the time stretching is proportional to the range traveled, the intensity falls off as
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the inverse cube of the range. In the case of a sound channel of Figure 15.4b,
time stretching that is proportional to the range causes the intensity to fall off as
the inverse square of the range instead of the inverse first power. In summary the
spreading laws may be listed as follows:

Propagation in Type of spreading Intensity varies as TL (dB)

Tube None r0 0
Between parallel plates Cylindrical r−1 10 log r
Free field Spherical r−2 20 log r
Hypersphere Free field with time stretching r−3 30 log r

It should be noted that the hyperspherical case applies in a hypothetical sense to
sonar theory.

Absorption varies with range in a manner different from the loss due to spread-
ing. It occurs because acoustic energy converts into heat; and this conversion
embodies a true loss of acoustic energy within the propagation medium. Consider
a plane wave passing through an absorbing medium. The fractional rate that the
intensity of the wave decreases along distance x is proportional to the distance
traveled, i.e.

d I

I
= −kdx (15.1)

where k denotes the proportionality constant and the minus sign signifies that dI
drops in the direction of increasing x . Integrating Equation (15.1) between ranges
r1 and r2, the intensity I2 at r2 is found from

I2 = I1e−k(r2−r1). (15.2)

Rewriting (15.2) yields

10 log I2 − 10 log I1 = −10k(r2 − r1) log10 e.

Setting α = 10k log10e, the change of the intensity level in dB is now expressed
as

10 log

(
I2

I1

)
= −ω(r2 − r1)

or

α = 10 log( I1/I2)

r2 − r1
.

The quantity α is the logarithmic absorption coefficient and is usually expressed in
decibels per kiloyard (dB/kyd) in the US or decibels per km (dB/km) in the metric
system.
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15.6 Parametric Variation of Absorption in Seawater

From actual measurements [Wilson and Leonard (1954) among others] it became
evident that the absorption of sound in seawater was unexpectedly higher than
that of pure water and it could not be attributable to scattering, refraction, or other
effects of propagation in the natural environment. For example, the absorption in
seawater in the frequency range 5–50 kHz was found to be approximately 30 times
that in distilled water. Liebermann (1949) suggested that this excess absorption is
attributable to the sort of chemical reaction that evolves under the influence of a
sound wave and one of the dissolved salts in the sea.

The absorption of sound in seawater depends on three effects: one is the presence
of shear viscosity, a classical effect studied by Lord Rayleigh, who derived the
following expression for the absorption coefficient:

α = 16π2μs

3ρc3
f 2 (15.3)

where

α = intensity absorption coefficient (cm−1)

μs = shear viscosity, poises (approximately 0.01 for water)

ρ = density, cg/cm3 (1 for water)

c = sound propagation speed (approximately 15,0000 m/s)

f = frequency (Hz).

According to Equation (15.3) the value of α is 6.7 × 10–11 f 2 dB/kyd, but this
amounts to only about one-third of the absorption actually measured in distilled
water. The additional viscosity in pure water, besides that due to shear viscosity, is
attributed to another type of viscosity called volume or bulk viscosity, which is the
result of a time lag for water molecules to “flow” in an expansive/compressive man-
ner in reacting to acoustic signals. This viscosity effect adds to the shear viscosity,
so the absorption coefficient incorporating both types of viscosity becomes

α = 16π2

3ρc3

(
μs + 3

4
μb

)
f 2 (15.4)

where μb denotes the bulk viscosity. For water μb = 2.81μs .
Below 100 kHz the predominant reason for absorption in seawater is due to

the phenomenon of ionic relaxation of the magnesium sulfate (MgSO4) molecules
present in the seawater. This association–dissociation process involves a relaxation
time, an interval during which the MgSO4 ions in the seawater solution dissociate
under the impetus of the sound wave. Magnesium sulfate accounts for only 4.7%
by weight of the total dissolved salts in seawater, but this particular salt was dis-
covered to be the dominant absorptive factor in seawater, rather than the principal
constituent NaCl (Leonard et al., 1949).

The ionic relaxation mechanism causes a variation of the absorption with fre-
quency, which is different from that in Equation (15.4). On the basis of more than
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30,000 measurements carried out at sea between 2 and 25 kHz out to ranges of
24 kyd. Schulkin and Marsh (1962a,b) modified a frequency–dependency relation
originally developed by Liebermann (1948). Their result was

α = A
S fT f 2

f 2
T + f 2

+ B
f 2

fT
dB/kyd (15.5)

where

S = salinity in parts per thousand (ppt); A and B are constant

A = 0.0186, a constant

B = 0.0268, another constant

f = frequency (kHz)

fT = temperature-dependent relaxation frequency

= 21.9 × 106 − 1.520 (T + 273)

T = temperature in EC.

But at frequencies <5 kHz, the attenuation coefficients measured at much higher
values than those that would be obtained from Equation (15.5), so it is apparent
that there is an additional cause of attenuation other than the ionic relaxation of
magnesium sulfate. A number of possible causes were advanced, but the currently
accepted explanation for this excess attenuation is the boron-borate relaxation pro-
cess discovered in the laboratory by Yeager et al. (1973). The boric acid [B(OH)3]
ionization process is not a simple one, since its mechanism seems to rely in a
complicated way on the presence of other chemicals in the salt water solution,
particularly the pH or acidity factor in seawater.

The effect of depth on the absorption also has been well investigated theoretically
and experimentally. For the range of hydrostatic pressure extant in the sea, the effect
of pressure is to reduce the absorption coefficient by a factor (1 – 6.54 × 10–6 P),
where P is the pressure expressed in terms of atmosphere. One atmosphere is the
pressure equivalent of 33.9 ft (10.3 m) of water at 39◦F (3.9◦C). The absorption
coefficient at depth d in the sea is found from

αd = α0(1 − 1.93 × 10−5d)

where d denotes the depth in feet and α0 is the value of the attenuation coefficient
at the surface of the water (d = 0). At a depth of 15,000 ft (nearly 4600 m), the
absorption coefficient drops to 71% of its value at the surface. However, there has
been a considerably larger depth dependence, by a factor of nearly two, observed
in at-sea measurements (Bezdek, 1973).

Figure 15.5 constitutes a summary of the processes of attenuation and absorption
in the sea. The portion of the curve at the lower left of the plot is due to sound
channel diffraction, caused by the fact that the deep sea is no longer an effective
duct for such long wavelengths. The dashed line at the right displays the effect of
absorption due to viscosity.
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Figure 15.5. Attenuation and absorption processes in the sea.

15.7 Spherical Spreading Combined with Absorption

It has been found in propagation measurements made at sea that spherical spread-
ing together with absorption provides a reasonable fit to the measured data under a
surprisingly wide variety of conditions, even in situations where spherical spread-
ing is not supposed to occur (e.g. trapping conditions in sound channels). When
an approximation of the transmission loss TL is sufficient, the universal spherical
spreading law plus the loss due to absorption will serve as a useful working rule:

TL = 20 log r + αr × 10−3 (15.6)

In Equation (15.6) the first term denotes the spherical spreading and the second
term the absorption effect; with 10−3 inserted to handle the fact that r is given in
yards and α is expressed in dB/kyd.

15.8 Underwater Refraction

Refraction is the major factor in altering simple spherical spreading of sound in
the ocean. As mentioned above, the factors affecting the sound propagation speed
in seawater are temperature, depth, and salinity. Variations of salinity do occur,
particularly at the mouths of large rivers where copious amounts of fresh water
intermingle with seawater, at the edges of large ocean currents such as the Gulf
Stream, and in water near the surface, where rain, evaporation, and ice melting can
impose maximal effects. Variations in speed of sound with depth are quite small
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Figure 15.6. Diagram used for derivation of the relation between gradient G and the radius
of curvature R of a sound ray.

(e.g. 0.1% over a 100 m depth). But variations in speed due to temperature changes
are much greater and can fluctuate wildly, particularly near the surface.

When sound varies with ocean depth, the path of a ray through the medium can
be determined by applying Snell’s law (sin φ/c = constant). Because the rays of
the greatest interest in the study of oceans are nearly horizontal, it is more usual
to restate Snell’s law as follows:

cos θ

c
= 1

c0
(15.7)

where θ is the angle of refractive deflection made with the horizontal at a depth
where the speed of sound is c and c0 is the speed at a depth (real or extrapolated)
where the ray would become horizontal.

A complex profile of the propagation velocity versus depth such as that in
Figure 15.1 can be simplified for analytical purposes by separating the profile into
small enough segments so that the velocity gradient may be considered constant
over its length. Advantage is taken of the fact that the path of a sound ray through
a stratum of water over which the sound speed gradient G is a constant constitutes
an arc of a circle whose center lies at a depth where sound speed extrapolates to
zero.

In Figure 15.6 we consider a portion of the ray path with a radius of curvature
R. It follows that z = R(cos θ1 – cos θ2), and the gradient G is

G = c2 − c1

z
. (15.8)

We can combine the last two Equations with Snell’s law of Equation (15.7) which
now yields

R = −c0

G
= − c

G cos θ
. (15.9)
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When G is constant, and hence R is a constant, the path of the ray is therefore a
circle. The center of curvature of the circle lies at the depth where θ = 90◦ which
corresponds to c = 0. In the case illustrated in Figure 15.6, the speed gradient is
negative, so R is positive. Otherwise, if the speed gradient were to be positive, R
would become negative and the path would refract upward.

Once the radius of curvature of each segment of the path is established, the
actual path can be traced through graphic or computerized means. Let the initial
angle of deflection of the ray be designated θ0, and use be made of the geometry
of Figure 15.6 along with Equation (15.9). The changes in ranger and depthz
are given by

r = 1

G

c0

cos θ0
(sin θ1 − sin θ2) (15.10)

z = 1

G

c1

cos θ1
(sin θ2 − sin θ1) (15.11)

Applying the small angle approximations (cos θ ≈ 1, sin θ ≈ 0, etc.) and elimi-
nating θ from the last two Equations yields a convenient approximate relationship
between the range and depth increments along a ray for ∗θ∗ less than 20◦ and for
r 	 |c1/G|:

z = tan θ0r − G

2c0
(r2). (15.12)

15.9 Mixed Layer

Wave action can cause the water to mix in the surface layer, thus creating what is
called a mixed layer. The positive sound-speed gradient in this layer entraps sound
near the surface. After it is developed, the mixed layer tends to exist until the sun
heats up the upper portion, decreasing the gradient. This heating effect engenders
a negative gradient that leads to a downward refraction and the loss of sound from
the layer. Because this occurs later during daytime, this effect became known as
the afternoon effect. During the night, surface cooling and wave mixing permit
this isothermal layer to reestablish itself.

A computer-produced ray diagram (the discontinuous form of the rays are due
to the manner the velocity profile was subdivided in the computer program) for
a source in a fairly typical mixed layer is shown in Figure 15.7. The conditions
for which the diagram was plotted, the ray leaving a source at 1.76◦ becomes
horizontal at the base of the layer, Rays leaving the source at smaller angles stay
entrapped in the layer; and rays that leave the source at greater angles are sent into
the lower depths of the sea. A shadow zone is created beneath the mixed layer at
a range beyond the direct and near sound field. This zone is isonified by scatter
sound from the sea surface and by diffusion of sound out of the channel, caused
by the nature of the lower boundary.
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Figure 15.7. A computer-produced ray diagram for sound transmission from a 50-ft
(15.24-m) source in a 200-ft (61-m) mixed layer.

15.10 Deep Sound Channel

In Section 15.4 reference was made to a region constituting the deep sound channel
where the sound propagation speed reaches a minimum in the ocean depths. All rays
originating near the axis of this channel and making small angles with the horizontal
will return to the axis without reaching the ocean surface or bottom, thus remaining
entrapped within that channel. Absorption of low frequencies in seawater tends to
be quite small, so the low-frequency components of explosive charges detonated
in this channel can travel tremendous distances, and they have been detected more
than 3000 km away. The reception of these explosive signals by two or more
well-separated hydrophone arrays can permit an accurate determination of the
explosion’s location by triangulation. Passive sonar is currently being used in deep
sound channels to monitor activities in deep ocean.

15.11 Sonar Transducers and Their Properties

Underwater sound equipment are designed to detect and analyze underwater sound.
They generally consist of a hydrophone array that consists of transducers that
convert acoustic energy into electrical energy, and vice versa, and a signal pro-
cessing system to analyze and display the signals aurally or visually. A trans-
ducer that accepts sound and converts it into electricity is called a receiver or
hydrophone. A transducer that converts electrical energy into sound is called a pro-
jector. Some sonar systems use the same transducer to generate and receive sound.
There are two principal types of transducers according to the special properties
of their activation materials. One type of transducer depends on piezoelectricity
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and its variant, electrostriction, and the other type functions on the principle of
magnetostriction. Certain crystalline substances, such as quartz, ammonium di-
hydrogen phosphate (ADP), and Rochelle salt, generate a charge between certain
crystal surfaces when they are subject to pressure. Conversely, when a voltage is
applied to these substances, this causes stresses to occur in them. Such materials
are said to be piezoelectric. Electrostrictive materials are polycrystalline ceramics
that produce the same effect and these have to be properly polarized in a strong
electrostatic field. Barium titanate and lead zirconate titanate are examples of such
materials.

A magnetostrictive material such as nickel exhibits the same effect as piezo-
electricity but it does so under the influence of a magnetic field rather than applied
stresses. It changes its dimensions when subjected to a magnetic field and, con-
versely, changes the magnetic field within and around it when it becomes stressed.
In other words, when a properly designed nickel element is subjected to an oscillat-
ing magnetic field, a mechanical oscillation is produced which generates acoustic
waves in water. Magnetostrictive materials are also polarized in order to avoid
frequency doubling and to achieve a higher efficiency.

Piezoelectric and magnetostrictive types of transducers are more suitable than
other kinds of transducers for use underwater due to better impedance match-
ing with water. Because they are relatively inexpensive and can be readily fash-
ioned into the desired shapes, ceramic materials are finding increasing applications
as underwater devices. Other types of units now include the thin-film trans-
ducers (Hennin and Lewiner, 1978) and fiberoptic hydrophones (Hucaro et al.,
1977).

Arrays
While single piezoelectric or magnetostrictive elements are normally used in hy-
drophones for research or measurement purposes, much of the applications of
hydrophones entail hydrophone arrays that use a number of properly spaced ele-
ments. The following reasons exist for the use of arrays:

1. The array is more sensitive, as a number of elements will generate more voltage,
if connected in series, or more current, if connected in parallel.

2. The array provides directivity that enables it to discriminate between sounds
coming from different directions.

3. An improved signal-to-noise ratio SNR over that of a single hydrophone is
provided, because the array discriminates against isotropic or quasi-isotropic
noise to favor a signal arriving from a direction that the array is pointing
to.

Because of the above advantages, most practical applications of underwater sound
make of arrays. Moreover, the first and second benefits listed above also apply to
projectors as well as to hydrophones.
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Figure 15.8. Cylindrical array and plane array of transducers.

Examples of a cylindrical and a plane array are shown in Figure 15.8. Spherical
arrays have also been constructed for installation on submarines.

Array Gain
The improvement in the signal-to-noise ratio SNR, which results from the use of
arraying of hydrophones is measured by a parameter called array gain, which is
defined by

AG = 10 log

(
(S/N )array

(S/N )single element

)
(15.13)

The numerator of Equation (15.13) denotes the SNR at the array terminals and the
denominator represents the SNR of a single element of the array. It is assumed that
all the elements in the array are identical.

Transducer Response
The effectiveness of a hydrophone in converting sound into an electric signal
is called the response of the hydrophone. It relates the generated voltage to the
acoustic pressure of the sound field. The receiving response of a hydrophone is
defined as the voltage produced across the terminals by a plane wave of unit
acoustic pressure (the value before the introduction of the hydrophone into the
sound field). The receiving response is usually expressed as the open-circuit re-
sponse that is obtained when the hydrophone connects to an infinite impedance.
The customary unit of the receiving response is the number of decibels relative
to 1 volt produced by an acoustic pressure of 1 μPa and it is written as decibels
re 1 V/μPa.
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Example Problem 1
Find the voltage across the hydrophone terminals exposed to an acoustic rms
pressure of 1 μPa if the receiving response is –80 decibels re 1 V.

Solution
We use the relationship

SPL = 20 log(p/1 μPa)

and since SPL = −80 dB,

p/1 μPa = antilog(−80/20),

yielding p = 0.0001 μPa. For the 1 μPa sound field, the voltage is 0.0001 V across
the terminals.

For a projector, the transmitting current response is the acoustic pressure pro-
duced at a point 1 m from the projector in the direction of the axis of its beam
pattern by a unit current into the projector. This means that the transmitting re-
sponse is stated in terms of the number of decibels relative to 1 μPa as measured
at the reference distance, produced by 1 A of current into the electric terminals of
the projector. While the transmitting response are usually referred to a reference
distance of 1 m from the source, a correction of 0.78 dB must be added in order to
convert the transmission response expressed in terms of a reference level of 1 yard
instead of 1 m.

Example Problem 2
Predict the rms pressure at 1 m when the projector is driven with a current of
1 rms ampere, if the response is rated at 100 dB re 1 μPa/A (referred to 1 m).
Express the response in terms of a reference distance of 1 yard instead of 1 m.

Solution
The corresponding rms acoustic pressure for 100 dB is 105 μPa, which is produced
by 1 rms ampere current. The corresponding transmitting response for 1 yard is
100 + 0.78 = 100.78 dB.

15.12 The Sonar Equations

The purpose of the sonar equations, originally formulated during World War II
and derivative of similar considerations in radar, is twofold: (a) prediction of the
capabilities of existing sonar equipment with respect to detection probability or
search rate and (b) design of new equipment to meet preestablished range of
detection or actuation.
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In our mathematical exposition of the sonar principle, we subscribe to the as-
sumption that target strength TS is a function of the source and echo levels, respec-
tively, as well as the transmission loss TL that occurs in the echo-ranging process.
The assigned function of the sonar may be the detection of an underwater target, or
it can be the homing of an acoustic torpedo at the instant when it begins to ascertain
its target. Of a total signal energy received by a sensor, a portion may be desired,
and is considered to be the signal. The balance of the acoustic energy is undesired
and is termed the background. The background consists of noise, the basically
steady state portion that is not attributable to the echo-ranging, and reverberation
which represents the slowly decaying portion of the background caused by the
return of the original acoustic output from scatterers dispersed in the sea. In the
design of a sonar system, it is the objective to find ways of increasing the overall
response of the system to the signal and to decrease the response of the system to
the background, in other words, to increase the signal-to-background ratio.

A sonar system serves a practical purpose such as detection, classification (es-
tablishing the character of the target), torpedo hunting, communication, or fish
finding. In each of these tasks there will be a specific signal-to-background ratio
and a level of performance in successfully detecting targets with a minimum of
“false alarms” that erroneously indicate the presence of a target when no target is
present. If the signal increases sufficiently to equal the level of the background,
the desired purpose will be achieved when the signal level equals the level of the
background, which just masks it, i.e.

Signal level = Background masking level (15.14)

Masking does not mean that all of the background interferes with the signal. Only
the portion that lies in the frequency band of the signal will cause masking, just as
in psychoacoustics, where a broadband noise masks out a pure tone or narrow-band
signal presented to the human ear.

The equality of (15.14) constitutes the one instant of the time when a target
approaches or recedes from a receiver. At short ranges, the signal level from a
target should handily exceed the background masking level, while the reverse will
occur at long ranges. But it is at the instant of (15.14) when the sonar system just
begins to perform its function, which is of greatest interest to the sonar designer.

The source level, SL, which is defined in terms of intensity at 1 m (formerly
1 yard), was derived from physical concepts in order to express separately the
effects on the signal strength of the echo, namely, (i) the size, shape, and orientation
of the target; (ii) the intensity of the source; and (iii) the range of the target. At
long ranges, only the transmission loss TL depends on the range. At shorter ranges,
target strength TS depends on the range as well as the size, shape, and orientation
of the target. If the source is quite close to the target, different parts of the target
are struck by sound of different intensities, or if the receiver is so close that the
spreading of the sound reflected from the target to it is not the same as the spreading
from a point source, the target strength term will depend on the range.
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Active and Passive Equations
The sonar parameters are determined by the equipment, the medium, and the target.
We denote the following parameters, which are stated in terms of dB relative to
the standard reference intensity of a 1-μPa plane wave:

Equipment parameters
SL: projector source level
NL: self-noise level (also called electronic noise)
DI: directivity index
DT: detection threshold

Medium parameters
TL: transmission loss
RL: reverberation level
NL: ambient noise level

Target parameters
TS: target strength
SL: target source level.

Note that two pairs of parameters are given the same symbol because they are
identical. This set of parameters are not necessarily all inclusive, nor is this set
unique, for other parameters such as sound velocity or backscattering cross section
could be considered. The parameters chosen above are conventional ones applied
in underwater technology.

In order to understand the significance of the above listed quantities, consider
Figure 15.9, which illustrates a schematic of an echo-ranging process. A transducer
operating as both sound source and receiver produces a source level of SL decibels
at a unit distance (generally 1 m worldwide and 1 yard in the English system)
on its axis. Let the axis of the sound source be properly aimed toward the target;
the radiated sound will reach the target with a transmission loss, and the level
of the signal reaching the target will be SL − TL. On reflection or scattering
from the target with target strength TS, the reflected or the backscattered level
will be SL − TL + TS (at a distance of 1 m from the acoustic center of the
target in the direction returning to the source). This reflected signal also undergoes
attenuation by the transmission loss TL as a result of its travel to the source. The
level of the echo reaching the source thus becomes SL − 2TL + TS. Now if
we consider the background noise and assume it to be isotropic noise rather than
reverberation, the background level will simply be noise level. But this level will
be lessened by the directivity index (DI) of the transducer serving as a receiver,
so the relative noise power at the transducer interface is NL − DI. Because the
axis of the transducer points in the direction from which the echo is traveling, the
relative echo power is unaffected by the transducer directivity. At the transducer
terminals, the echo-to-noise ratio becomes

SL − 2 TL + TS − (NL − DL)
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Figure 15.9. Schematic of echo ranging process.

Now let the sonar act as a detector, i.e., it is to give an indication on some kind
of display that an echoing target is present. When the input signal-to-noise ratio
exceeds a specific detection threshold DT, thus meeting preset probability criteria,
a relay can be activated to indicate on a display that a target is present. Otherwise,
when the input signal-to-noise ratio falls below the detection threshold DT, the
indication will be that a target is absent. But when the target is just being detected,
the signal-to-noise ratio equals the detection threshold DT, i.e.,

SL − 2 TL + TS − (NL − DI) = DT (15.15)

Equation (15.15) characterizes the active-sonar equation as an equality in terms
of the detection threshold. In recognizing that only a portion of the noise power
lying above the DT masks the echo, we could rearrange (15.15) as follows:

SL − 2TL + TS = NL − DI + DT (15.16)

Equation (15.16) places the echo level effects on the left-hand side and those
pertaining to the noise-masking background level on the other side. Equation
(15.16) constitutes the active-sonar equation for the monostatic case, one in which
the source and the receiving hydrophone are coincident and the echo from the target
travels back to the source. In some sonar applications, a bistatic arrangement is
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used—i.e., the source and the receiver are separate, and the two transmission
losses to and from the target are not generally equal. In some sonars it is virtually
impossible to resolve the receiving directivity index DI and detection threshold
DT, so it becomes legitimate to combine these two terms as DI − DT into a single
parameter describing the increase in signal-to-background ratio produced by the
entire receiving system which includes the transducer, processing electronics, and
the display.

What happens when the background consists of reverberation rather than noise?
Instead of DI, which was defined in terms of an isotropic background and is now
inappropriate, the (NL − DI) term in Equation (15.16) is replaced by an equiv-
alent plane-wave reverberation level RL observed at the hydrophone terminals.
Equation (15.16) then becomes

SL − 2TL + TS = RL + DT (15.17)

The parameter DT will possess a value for reverberation that is different from the
DT for noise.

In the passive or “listening” situation, the target itself produces the signal that
is detected, and one-way transmission rather than two-way transmission is en-
tailed. Target strength TS now becomes irrelevant and the passive sonar equation
becomes

SL − TL = NL − DI + DT (15.18)

Table 15.3 lists the parameters and their definitions in brief, while Table 15.4
provides the terminology of commonly used terms for describing sonar parameters.
A number of the parameters in Table 15.3, namely, SL, TL, TS, and the scattering
strength (which determines RL) use 1 yard as the reference distance. To convert
to 1-m reference, these quantities should be reduced by 0.78 = 20 log [1 m ×
(39.37 in./m) × (1 yard/36 in.)]. The attenuation coefficient commonly expressed
in dB/kiloyard should be multiplied by 1.094 to convert the coefficient to dB/km. In
the United States, it is generally more convenient to find the range first in kiloyards
and then to divide by the factor 1.094 in order to express the range in kilometers.

15.13 Noise, Echo, and Reverberation Levels

The above sonar equations constitute a statement of equality between the signal,
which is the desired portion (the echo or noise from the target) of the acoustic field,
and the undesired portion, i.e., the background of noise and reverberation. This
equality holds true at only one range; at all the other ranges, the equality will no
longer exist. This fact is demonstrated in Figure 15.10 in which the curves of the
echo level, noise-masking level, and the reverberation-masking level are displayed
as functions of range. The echo and reverberation levels drop off with increasing
range, but the noise remains fairly constant. The echo level curve falls off more
rapidly with range than does the reverberation-masking curve, and intersects it at
the reverberation-limited range rr . This curve will also meet the noise-masking
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Table 15.3. Sonar Parameters.

Parametric symbol Reference Definition

Source level: SL 1 yard from source
on its acoustic axis

10 log (intensity of source/1 μPa)

Transmission loss:
TL

1 yard from source
and at target or
receiver

10 log
(

signal intensity at 1 yard
signal intensity at target or receiver

)

Target strength:
TS

1 yard from acoustic
center of target

10 log
(

echo intensity at 1 yard from target
incident intensity

)

Noise level: NL At hydrophone
location

10 log

(
noise intensity

1 μPa

)

Receiving: DI
directivity
index

At hyrdrophone
terminals

10 log

⎛
⎜⎜⎝

noise power generated by an equivalent
isotropic hydrophone

noise power generated by actual
hydrophone

⎞
⎟⎟⎠

Reverberation: RL
level

At hydrophone
terminals

10 log

[
(reveberation power at hydrophone terminals)

1 μPa

]

Direction: DT
Threshold

At hydrophone
terminals

10 log

⎡
⎢⎢⎢⎣

⎛
⎝ signal power to just at perform

a certain function

⎞
⎠

noise power at hydrophone terminals

⎤
⎥⎥⎥⎦

Note that some of the parameters, viz. SL, TL, TS (and the scattering strength) in Table 15.1 use 1 yard
as the reference distance. To obtain their values based on the reference distance of 1 m, 0.78 dB must
be subtracted from the values of these parameters.

level curve at range rn . If the reverberation is high, the echo will be of lesser
value and the range may be considered to be reverberation-limited. But if the
noise-masking level occurs at the level represented by the dashed line in Figure
15.10, the echoes will then fade away into a background of noise rather than
reverberation. The new noise-limited r ′

n will be less than the reverberation-limited

Table 15.4. Sonic Parameters: Terminology of Various Combinations.

Nomenclature Parameter Comments

Echo level SL – 2TL + TS Intensity of the echo measured in the
water at the hydrophone

Noise-masking
level

NL − DI + DT Determines minimum

Reverberation-
masking level

RL + DT Detectable echo level

Echo excess SL − 2TL + TS − (NL − DI + DT) Detection just occurs, when echo excess
just equals zero

Performance
figure

SL − (NL − DI) Difference between the SL and the NL
measured at the hydrophone

Figure of merit SL − (NL − DI + DT) Equals the maximum allowable two-way
TL for TS = 0 for active sonar, or
one-way TL in passive sonars
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Figure 15.10. Effect of range on echo level, noise masking, and reverberation masking.

range rn , and the range will hence be noise-limited. Both ranges can be established
by the use of the appropriate sonar equation.

It is necessary for a sonar designer or sonar operator to know whether a sonar will
be noise-limited or reverberation-limited. In general, the curves for echo and rever-
beration will not occur as straight lines because sound propagation and distribution
of echo-yielding scatterers add to the complexity of the situation. In the design of
a sonar system for specific purposes, these curves should be created from the best
information available for the conditions that are most likely to be encountered.

A convenient graphical method of solving the sonar equations for passive sonars
is the SORAP, the acronym for “sonar overlay range prediction.” Figure 15.11

Figure 15.11. SORAP (Sonar Overlay RAnge Prediction) graphical method for solving
the passive sonar equation.
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consists of two plots that are overlaid on each other. The solid lines constitute an
overlay of a plot of SL versus frequency for a specific passive target or class of
targets. The underlay denoted by dashed lines is a plot of the sum of the parameters
(TL + NL − DI + DT) for a specific passive sonar at a number of different ranges.
The range and frequency at which the target can be discerned can be determined
by inspection of the plots. For example, the target will be first detected at a range of
10 miles according to the line component at frequency f1. But suppose it is required
that three spectral lines must appear on the display before a detection is called; the
range would be reduced to 4 miles and the lines at frequencies f1, f2, and f3 would
be displayed. This procedure helps to distinguish the target parameter SL from
the equipment and medium parameters at the location where it is used, while it
accommodates a wide range of frequencies. Targets can therefore be compared for
the same locations or locations can be compared for the same targets, and so on.

15.14 Transient Form of Sonar Equations and Pulses

So far, the sonar equations have been expressed in terms of the average acoustic
power per unit area or intensity of the sound radiated by the source or received from
the target. But the time interval implied by the terminology “average” can yield
unreliable results in situations where short transient sources exist or whenever
severe distortion is incurred in sound propagation in the medium during the course
of scattering from the target.

We can adopt a more general approach by writing the sonar equations in terms
of energy flux density, which is defined at the acoustic energy per unit area of
the wavefront. Consider a plane acoustic wave that has a time-dependent pressure
p(t). The energy flux density of the wave is given by

E = 1

ρ c

∫ ∞

0
p2(t) dt . (15.19)

Because the intensity is the rms pressure of the wave divided by the acoustic
impedance ρc, averaged over a time interval T , i.e.,

I = 1

T

∫ T

0

p2(t)

ρc
dt

it follows that

I = E

T
. (15.20)

The time interval T represents the duration over which the energy flux density
of the sound wave is to be averaged to yield the intensity. In the case of long-pulsed
active sensors, this time interval equals the duration of the emitted pulse and very
nearly equals the duration of the echo. But for short transient sonars, the interval
T becomes rather ambiguous, and the duration of the echo can be considerably
different from the duration of the transient emitted by the source. Urick (1962,
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Figure 15.12. Time stretching: equivalent source level (SL) in short-pulse sonar.

1983) demonstrated that under these conditions that the intensity form of the sonar
equations can be applied, providing the source level is defined as

SL = 10 log E − 10 log τe (15.21)

where E is the energy flux density of the source referred to 1 yard and measured
in units of the energy flux density of a 1-μPa plane wave taken over an interval
of 1 s, and τ e represents the duration of the echoes expressed in seconds for an
active sonar. As an example, E can be determined for explosives by measurements
for a given charge weight, the depth where the explosion occurs, and the type of
explosive.

Consider a pulsed sonar emitting a rectangular pulse of constant source level SL′

over a time interval τ0. The energy density of a pulse equals the average intensity
H duration,

10 log E = SL′ + 10 log τ0. (15.22)

Combining Equations (15.21) and (15.22), the effective source level (SL) to be
used accordingly in sonar equations is

SL = SL′ + 10 log
τ0

τe
(15.23)

where τ0 denotes the duration of the emitted pulse of source level, SL′, and τe the
duration of the echo. For long-pulsed sonars, τ0 is equal to τe, and therefore SL =
SL′. In the case of short-pulsed sonars, τ0 > τe, and thus the effective SL is less
than the actual SL′ by the amount 10 log (τ0 /τe). This effect of time stretching is
depicted in Figure 15.12. A short pulse duration τ0 at source level SL′ is replaced
in a sonar calculation by a longer pulse of duration τe at a lower SL. The energy
flux density source levels must be the same for these two source levels, i.e.,

SL + 10 log τe = SL′ + 10 log τ0

which is merely a rearrangement of Equation (15.23). A pulse emitted by the
source stretches out in time and becomes reduced in level by the multipath effect
of propagation and by the mechanism of target reflection. The appropriate values
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Figure 15.13. Distortion of the pressure resulting from an explosive pulse upon arrival at
an extended target. The return echo in the vicinity of the source is also shown here.

of the other sonar parameters in the sonar equations, such as target strength (TS)
and transmission loss (TL), are those applying to long-pulse of CW conditions, in
which the effects of multipaths in the medium and target reflection are summed
up and accounted for.

In active short-pulse sonars, the echo duration τe becomes in itself an important
parameter. In Figure 15.13, a pulse is shown as a short exponential transient at the
source, as a distorted pulse at the target, and as an echo reflected back to near the
source. A shock wave pulse, for example, from an underwater explosion occurs as
an exponential pulse. It may have an initial duration of 1/10 of a millisecond, and
it can become distorted into an echo that is 1000 times as long.

The duration of the echo can be subdivided into three components: τ0, which is
the duration of the emitted pulse near the source; τm , the additional time needed for
two-way propagation in the underwater; and τr , the additional duration assessed
by the extension in range of the target. Hence

τe = τ0 + τm + τr . (15.24)

Typical values of these three components of the echo duration for different cir-
cumstances are listed in Table 15.5.

Table 15.5. Examples of Echo Duration.

Component Representative values (ms)

Duration of the emitted pulse at short ranges Explosives: 0.1
Sonar: 100

Duration produced by multiple paths Deep water: 1
Shallow water: 100

Duration produced by a submarine target Beam aspect: 10
Bow-stern aspect: 100
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Example Problem 3
Estimate the echo time duration of an explosive echo from a beam aspect submarine
patrolling shallow water.

Solution
From Table 15.5 and Equation (15.24), the time duration is 0.1 + 100 + 10 =
110.2 ms.

15.15 Overview of the Sonar Equations

A summarization of the sonar equations may be listed as follows:

Active sonars (monostatic)

Noise background

SL − 2TL + TS = NL − DI + DT. (15.25)

Reverberation background

SL − 2TL + TS = RL + DTR . (15.26)

Passive sonars

SL − TL = NL − DI + DTN . (15.27)

The detection threshold (DT) differs quantitatively for reverberation and for noise
and so it carries subscripts to denote the difference.

15.16 Shortcomings of the Sonar Equations

The sonar equations expressed in terms of intensities may not always be com-
plete for certain types of sonars. For example, the short-pulse sonars need the
addition of the echo duration to account for time stretching caused by multipath
propagation. It must also be realized that the sea is an ever-stirring medium that
contains inhomogeneities of different sorts, with irregular boundaries with the top-
most boundary on the move. Multipath propagation tends to predominate, since so
many of the sonar parameters fluctuate erratically with time. Other irregularities
may occur because of internal changes in measurement equipment and possible
reconfiguration of the platform on which the equipment is mounted. In essence,
the “solutions” proffered by the sonar equations really constitute a “best estimate”
time average of what is really a stochastic problem. Thus, precise calculations to,
say the nearest tenth of a decibel are exercises in futility, and the solutions must
be considered “best guesses” or “most probable” values.
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15.17 Theoretical Target Strength of a Sphere

Consider a sphere of radius r as the subject target. As we shall see, the effect of the
pulse length of the probe signals constitutes a very important factor. No account
is taken of the wave nature of sound, i.e., the effects of interference, diffraction,
and phase differences are ignored here. Let I0 denote the intensity of the incident
sound wave striking the target and Ir the intensity of the reflected sound signal
measured at some particular point. With all the other factors remaining constant,
we can write

I0 ∝ Ir .

The intensity Ir of the reflection is a function of the target orientation and the loca-
tion of its measurement. Because Ir is usually measured at the probe signal point,
mathematical treatment becomes considerably simplified. The inverse square law,
which holds for large, not small, distances is expressed as

Ir = K I0

r2
(15.28)

where K is a constant dependent upon the size, shape, and orientation of the target.
Equation (15.28) does not apply to explosive sounds. For the incident signal

I0 = F

r2
(15.29)

where F is the intensity of the projected sound 1 m away from the source. Here it
is tacitly assumed that

r  D

where D is the order of magnitude of the size of the source. Combining Equations
(15.28) and (15.29)

Ir = K F

r4
. (15.30)

For an ideal medium, according to Equation (15.30), the intensity of an echo
is inversely proportional to the fourth power of the range, provided the echo is
measured in the source location and the range is much larger than the dimensions
of either the target or the source.

Reexpressing Equation (15.30) in logarithms, we obtain

10 log Ir = 10 log K + 10 log F − 40 log r. (15.31)

In the course of a signal traveling to a target and the echo reflecting back to the
signal source, some attenuation in the signal intensity must occur. This drop in
intensity in each direction has been defined as the transmission loss TL that should
equal 20 log r in the idealized case of Equation (15.31). The total TL is therefore
2TL, i.e. = 40 log r , which represents the attenuation of the signal traveling to and
from the target. It can be recalled that losses do not occur solely owing to the effect
of the inverse square law; they are also attributable to absorption and scattering
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in sea water, bending by temperature gradients (with consequent focusing and
spreading out). Therefore, the actual transmission loss does not equal 20 log r
alone, but includes other effects of attenuation. The function 2TL represents a
more general situation than 40 log r in Equation (15.31), which is then recast as

10 log Ir = 10 log K + 10 log F − 2TL. (15.32)

As mentioned earlier, because of the great variance of oceanographic conditions,
the quantity 2TL can be established only through careful measurements. Setting
target strength TS

TS = 10 log K ,

and the echo

E = 10 log Ir ,

and source level

SL = 10 log F,

we obtain the first sonar equation of Table 15.4, which constitutes the fundamental
definition of signal strength:

TS = E − SL + 2TL. (15.33)

As it entails only directly measurable quantities Equation (15.33) is particularly
useful in the computation of TS from data measured at sea.

A sphere presents a perfectly symmetric target. The echoes it returns to a sound
source are completely independent of its own orientation, and it is for this reason
that spheres make convenient experimental targets in echo-ranging measurements.
In a simple derivation, we consider a plane wave of intensity Io striking a sphere
of radius a and cross sectional area πa2. The total sound energy intercepted by
the sphere is thus πa2 I0 in the ideal case of perfect reflection. Now let us assume
uniform reflectivity in all directions. At a distance r from the sphere’s center the
acoustic energy will be spread uniformly over the surface of a sphere of radius r or
over the surface area 4πr2. Because the intensity Ir of the reflected sound equals
the total energy πa2 I0 reflected by the target sphere per unit time divided by 4πr2

over which it is distributed, then at a distance r from the sphere’s center

Ir = πa2 I0

4πr2
= a2

4r2
I0.

But from Equation (15.28), Ir = K I0/r2, where r represents the distance from the
target to the measurement point,

K = a2

4

and so

TS = 10 log K = 20 log(a/2).
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Problems for Chapter 15

1. Determine the speed of sound in seawater at 20 m depth and at 20◦C and 34 ppt
using the Leroy formula.

2. Using the same conditions as in Problem 1, find the speed of sound on the
basis of the Medwin formulation.

3. Do Problem 1 using the MacKenzie empirical expression.
4. Compare the velocities of sound in seawater at a depth of 5000 ft for the

latitude of 61◦N and the latitude of 19◦N. Convert the depth to meters and
speed of sound to km/s.

5. If the sound intensity 1 m from a source is 10 W/m2 in the sea, find the
transmission loss (TL) and the intensity 50 m from the source due strictly
to spherical spreading. What other factors usually affect the transmission
loss?

6. If sound is transmitted in a tube of water, what would be the transmission loss?
In real life, would there be transmission loss and why?

7. Predict the value of the attenuation coefficient for seawater in which salin-
ity S = 40 ppt, frequency of the signal is 50 kHz, and the temperature
is 18◦C.

8. Compare the spherical spreading over r = 100 yards with and without
absorption by computing the transmission loss under the conditions of
Problem 7.

9. Given a change of seawater sound velocity of 20 m/s for a depth of 150 m,
what is the gradient and what would be the radius of curvature in terms of c0?

10. If an element of an array has a signal to noise ratio of 40 dB, what would be
the array gain of 25 similar elements in such an array?

11. A transducer is rated at a receiving response of –95 dB re 1 V. If an acoustic
pressure of 3 μPa is applied, what will be the resulting voltage at the terminals?

12. A projector is driven with a 1.8 rms ampere current. Its response is rated at
120 dB re 1 μPa/A. Find the response in dB.
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Ultrasonics

16.1 Introduction

As a subcategory of acoustics, ultrasonics deals with acoustics beyond the audio
frequency limit of 20 kHz. Although ultrasonics has been employed for most of
the twentieth century, the tempo of new and improved applications has reached
virtually explosive proportions only in the past few years, particularly in medical
diagnostics and therapeutics.

Applications of ultrasonics fall into two categories—low intensity and high in-
tensity. Low intensity applications carry the purpose of simply transmitting energy
through a medium in order to obtain information about the medium or to convey
information through the medium. Nondestructive testing, medical diagnostics,
acoustical holography, and measurements of elastic properties of materials fall
into this category. Even marine applications are included in this category, despite
the large energy input into operating sonar submarine detectors, depth sounders,
echo ranging processors, and communication devices.1

High-intensity applications deliberately affect the propagation medium or its
contents. Uses of high intensities include medical therapy and surgery, atomiza-
tion of liquids, machining of materials, cleaning, welding of plastics and metals,
disruption of biological cells, and homogenization of materials.

Human beings are not alone in the use of ultrasonics, and even in this respect they
have been preceded by thousands of years by other species in the animal kingdom.
Certain animals are capable of generating and detecting ultrasonic signals in order
to locate and identify food, navigate their way through their environment, and
detect danger. In fact, the study of these animals have helped and is still helping
scientists to develop and improve techniques in the application of ultrasonic energy.

Bats are known to emit pulses in the 30–120 kHz range, and it has been hy-
pothesized that the bats judge range by sensing the time delay between an emitted
pulse and the echo. Small bats can fly at full speed through barriers constructed
of 0.4 mm vertical wiring spaced only one wingspan apart. They are capable of

1 Emsinger (1988) suggested that a third category not based on intensity be designated to specifically
cover underwater applications.
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catching small insects at the rate of one every 10 s for as long as half an hour. Their
ability to discriminate between objects such as food and raindrops or foliage can
be described as being nothing less than phenomenal; and yet when a large number
of bats fly in close proximity to each other in a potentially confusing background
of ultrasonic noise, they continue to locate prey and avoid collisions with each
other.

The Noctillio bat of Trinidad catches small fish by dipping its feet below the
surface of the water, after emitting a series of repetitive pulses. It has been conjec-
tured that the characteristic ripples created by the fish are being detected by the bat
rather than echoes from an object beneath the water surface. This is particularly
remarkable in view of the fact that the sound must penetrate a barrier with a very
high-reflection coefficient. As with bats, the echolocation of porpoises appears to
be unaffected by the presence of interfering noises or jamming.

Moths, a prime target of bats, use ultrasonics for self-defense. When a moth de-
tects a sonic pulse from a bat, it immediately takes evasive action through zigzag-
ging in its flight and executing power dives. Moths can detect bats as far away as
13 m, and their ears can detect the cries of approaching bats at this distance, but
when the bats are moving away their ears stop registering at about this distance.
It was also observed by Roeder and Treat that when a bat makes a straight-on
approach, it was observed to emit an uneven, sporadic signal; this was interpreted
as an indication that the bat was counter-maneuvering by varying the intensity of
its sonar pings.

Cetaceans constitute a group of sea mammals, which includes whales, dolphins,
and porpoises. They are extremely intelligent as well as beautiful creatures, and
are of the greatest interest to acousticians. Porpoise sounds have been described
as whistling, barking, rasping, repetitive clicks or pulses, mewing. The cetaceans
emit signals for the purpose of echolocation and communication with each other.
Signals as high as 170 kHz have been observed in the clicks of porpoises, which
vary in repetition rate from five clicks to several hundred per second. Extensive
observations are being conducted to observe the emission patterns of different
cetacean species, which vary from location to location at different times of the
year even with the same group tracked on an almost continuous basis.

At least two species of birds, Steatornia and Collocalla, are known to be echolo-
cators. Ornithologists have reported that calls by various birds may be compre-
hended only by members of their own local flocks. Gulls or crows will always
respond to calls from members of their own flocks, but they may or may not
respond to distress or assembly calls from gulls or crows from another region.

The hearing of dogs extends well beyond the frequency range of human hearing.
The “silent” dog whistles that generate ultrasonic output can thus be used to sum-
mon a dog. Although dogs are generally endowed with especially keen senses of
smell, hearing, and sight, there is no evidence that they make use of echolocation.

Certain effects become more evident in wave propagation through a medium
as the acoustic signal extends into the ultrasonic range. The attenuation of the
signal’s amplitude occurs not only because of the spreading of the wave front, but
also because of the conversion of the acoustical energy into heat and scattering
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from irregular surfaces. The process of relaxation, which represents the lag be-
tween the introduction of a perturbation and the adjustment of the molecular energy
distribution to the perturbation, requires a finite time; and the energy interchange
approaches equilibrium in an exponential fashion. Considerable information re-
garding the nature of matter can be derived from the study of relaxation phenomena.

High-intensity ultrasound can result in energy absorption that yields consid-
erable amount of heat, to the extent that glass or steel can be melted quickly.
Ultrasonic waves can also generate stresses, resulting in cavitation in fluids.
Cavitation is also capable of producing free chemical radicals, thus fostering
specific chemical reactions. The stresses produced in the cavitation process are
sufficiently concentrated to erode even extremely sturdy materials. Cavitation also
provides the mechanism of ultrasonic cleaning.

16.2 Relaxation Processes

Relaxation entails molecular interactions in gases and liquids. These interactions
affect absorption and velocity dispersion, both of which depend on frequency
(and on pressure, in the case of gases). Chemical reactions also entail relaxation
processes on their own, but they will not be considered in this chapter, except for
the effect of ultrasound on reaction rates.

To better understand the phenomenon of relaxation, let us consider an ideal gas
made up of diatomic molecules. The individual molecules move translationwise
in three principal directions in a nonquantitized fashion, i.e., any translational en-
ergy is allowable. In addition, the molecules rotate about three perpendicular axes
(actually two, since one axis has zero moment of inertia, hence zero rotational
energy), and the molecules also vibrate along the direction of the bond joining the
atoms. These molecules collide with one another in translation motion, exchang-
ing energy among themselves. A single collision is usually sufficient to transfer
translational energy from one molecule to another, but a certain period of time is
needed to randomize the energy associated with excessive velocity in a particular
direction. This amount of time is referred to as the translational relaxation time
(Herzfeld and Litovitz, 1959), and it is given by

τtr = η

p
= 1.25 τc

where τtr is the translational relaxation time, p is the gas pressure, η is the viscosity
of the gas, and τ c is the interval between collisions. As the gas pressure is lowered,
the rate of collisions decreases in the same proportion.

Unlike the case of translational motion, rotation and vibration are quantitized.
When a collision occurs, a change in rotational or vibrational state will occur
only when the change of energy of another state is sufficient to permit at least one
quantum jump. For rotational energy transfer the spacing between energy levels
is given by 2(J + 1)B, where J denotes the rotational quantum number (which
must be an integer), B = h̄2/2I , I is the effective moment of inertia and h̄ is the
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Planck constant 1.055 ×10−34 J s. Let us assume that J is the most probable value
according to the Boltzmann distribution. The value of 2(J+ 1)B for a typical
molecule (for example, O2) in temperature units is about 1 K. This indicates that
in a gas above 1 K all collisions will have enough translational energy to engender
multiple changes, with the result that rotation rapidly equilibrates with translation.
Hydrogen, however, constitutes an exception, because it has much larger rotational
energy level spacing due to its small moment of inertia. According to Winter and
Hill (1967), as many as 350 collisions may be necessary to transfer a quantum of ro-
tational energy in the hydrogen molecule. As a pressure of 1 atm, this corresponds
to a relaxation time of 2 × 10−8 s. It should be understood that a specific collision
either does or does not transfer a quantum of rotational energy in the hydrogen
molecule. The 350-collision average indicates that only one of the 350 collisions
possesses the proper geometry and energy to execute a transfer of one quantum of
rotational energy. The number of collisions necessary, on the average, to engender
the transfer one quantum of rotational energy is termed the collision number Z .
Where rotational energy is entailed, the collision number is written as Zrot. The
inverse of this dimensionless parameter represents the probability of transferring
a quantum in a collision, symbolized by Prot. Rotational energy levels are spaced
unevenly, i.e., a 1 → 2 transition should be more probable than a 2 → 3 transition.
The probability of these events occurring is distinguished by the symbolsP1→2

rot or
P2→3

rot .
As a rule, the probability for transferring a quantum of energy through a col-

lision drops off rapidly with the size of the quantum transferred. Because vibra-
tional energy levels are much more widely spaced than rotational energy levels,
the vibrational relaxation times are considerably longer than rotational relaxation
times. Vibrational levels in single vibrational mode are virtually evenly spaced,
so energy can therefore be exchanged between levels (e.g., the vibrational quan-
tum number goes up in one molecule and goes down in another) with hardly
any energy exchanged between vibration and translational. Thus, the vibration-to-
vibration exchanges occur very rapidly. The amount of time it takes for energy to
transfer between translation and the lowest lying vibrational level determines the
vibrational relaxation time.

Because this energy level varies greatly for different molecules, the probability
of vibrational energy transfer during a collision also varies greatly. In the case of
N1 molecules colliding with N2 molecules, Z10 (the number of collisions needed to
transfer energy from the lowest vibrational energy to translation) is approximately
1.5 × 1011, so the relaxation time is close to 15 s (Zuckerwar and Griffin, 1980).
Larger molecules possess very closely spaced vibrational energy levels, so fewer
collisions are required to transfer a quantum of first-level vibrational energy into
translational energy. For example, a relatively large molecule such as C2H6 needs
to undergo about 100 collisions to execute this type of transfer.

Let us consider the case of a vibrational state that is excited to an energy Ev (the
subscript v denotes vibration) that is greater than energy Ev(Ttr ) that would exist
in a Boltzmann equilibrium with translation. This excess vibrational energy will
equilibrate with translational energy, in accordance with the following standard
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expression for relaxation:

d Ev
dt

= 1

τ
[Ev − Ev(Ttr)] (16.1)

This reversion to equilibrium occurs through individual molecular collisions in
which energy transfers result.

Let k10 be defined as the rate at which the molecules descend from the first
excited state to the ground state, owing to collisions at 1 atm pressure. This is
simply the collision frequency M multiplied by the probability of energy transfer
P1→0 multiplied by the mole fraction x1 of the molecules in the first excited state.
The reverse process will also occur, i.e., some molecules in the ground state will
become excited at a rate k01. In equilibrium both rates are equal, and we can write

k10x1 = k01x0

The energy is quickly shared from the first excited level of the vibrational mode to
high-level modes through vibrational exchanges. On the basis of quantum mechan-
ics governing the probabilities of energy exchanges between vibrational levels of
a harmonic oscillator, Landau and Teller (1936)derived the following expression:

−dEv
dt

= k10
(
1 − e−hυ/kT

)
[Ev − Ev(Ttr)] (16.2)

where h is the Planck constant (6.626 × 10–34 J s), v is the vibrational frequency
of the relaxing mode, k is the Boltzmann constant (1.38 × 1016 ergs K−1), and T
is the absolute temperature in K. Through comparison with Equation (16.1), the
relaxation time τ for Equation (16.2) is found to be

τ = 1

k10(1 − e−hν/kT )
(16.3)

Relaxation time and ultrasonic absorption and dispersion are interlinked. The
relaxation process causes the specific heat of the gas to be frequency-dependent.
The specific heat of a simple gas can be traced to translational, vibratory, and
rotational contributions. Let us now consider the situation where any acoustically
imposed temperature variation is followed by both translational and rotational
energy equilibrating extremely quickly. The specific heat C ′ is deemed independent
of temperature or the temperature never deviates appreciably from the equilibrium
value T0; so we can write

[Ev − Ev(Ttr)] = C ′(T ′ − T0) (16.4)

and insert this last expression into Equation (16.1) to yield

dT ′

dt
= 1

τ

(
T ′ − Ttr

)
(16.5)

Now consider the case when the translational temperature is suddenly raised
at time t = 0 from T0 to a value T1. Two cases can be ascertained: The external
temperature is kept constant at T1 after t = 0, the energy seeping from the outside
into the internal (rotational and vibrational) degrees of freedom. The solution of
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Equation (16.5) is

T ′ = T1 + (T0 − T1)e−t/τ

But if the external energy is not constant and is lessened by the amount flowing
into the internal degrees of freedom, we have

0 = C̄(Ttr − T1) + C ′(T ′ − T0) (16.6)

where C̄ refers to the specific heat arising from external degrees of freedom and
C ′ denotes the specific heat belonging to the internal degrees. Equation (16.6) is
rewritten as follows:

0 = C̄(Ttr − T ′) + C̄(T ′ − T1) + C ′(T ′ − T0)

= C̄(Ttr − T ′) + C(T ′ − T0) (16.7)

where

T2 = C̄

C
T1 + C ′

C
T0

where C is the total specific heat, and T2 the final equilibrium temperature. We
eliminate (Ttr − T ′) from Equation (16.5) with the use of Equation (16.7) to obtain

−dT ′

dt
= C

C̄

1

τ

(
T ′ − T2

)
which yields the solution

T ′ = T2 + (T0 − T2)e−t/τ ′

The apparent relaxation time is

τ ′ = C̄

C
τ = C − C ′

C
τ

Equation (16.5) can be written as

−τ dT ′

dt
= T ′ − T0 − (Ttr − T0)

or

T ′ − T0 + τ
d

dt
(T ′ − T0) = Ttr − T0 (16.8)

If Ttr − T0 is periodic in time, i.e., it is proportional to eiωt , T ′ —T0 will likewise
be proportional to eiωt . After the transient dies out, then we have

Ttr − T0 = (1 + iωt)(T ′ − T0)

or

T ′ − T0 = Ttr − T0

1 + iωτ

which can also be rewritten as

dT ′

dTtr
= 1

1 + iωt
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The effective specific heat can be established from

dE =(Cv)eff dTtr = C̄v dTtr + C ′dT ′ =
((

C̄v

)
v
+ C ′ dT ′

dTtr

)
dTtr

and

(Cv)eff = C̄v + C ′

1 + iω τ
= Cv − C ′iωτ

1 + iωt
(16.9)

The acoustic propagation constant k can be written in the form

k2

ω2
=

(
1

c
− iα

ω

)2

= ρ0κT

γeff

where c represents the acoustic velocity, α is attenuation coefficient, ρ0 is the
equilibrium density, κT is the compressibility of the gas, and γeff is given by

γeff ≡ (Cv)eff + R

(Cv)eff

where R is the gas constant. In the case of this simple single relaxation, for α/ω
	 1

λa = π

(
c

c0

)2
εωτ

1 + (ωτs)2
(16.10)

and (c0

c

)2
= 1 − ε(ω τs)2

1 + (ω τs)2
(16.11)

where

ε = c2
∞ − c2

0

c2∞
c0 = speed of sound forωτ s 	 1

c∞ = speed of sound at frequencies  relaxation frequency

λ = wavelength

The adiabatic relaxation time τ s is related to the isothermal relaxation time τ as
follows:

τs = Cv + R

C∞
v + R

τ

The frequency at which the maximum absorption per wavelength occurs is called
the relaxation frequency, symbolized by fr . It is related to the adiabatic absorption
time τ s as follows:

fr = 1

2πτs

c∞
c0

We take as an example the gas Fl2 at 102◦C in Figure 16.1 that shows curves for ab-
sorption per wavelength and velocity dispersion due to a single-relaxation process
(Shields, 1962). Measured values are also plotted for the purpose of comparing
with theory.
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Figure 16.1. Sound absorption per wavelength and velocity dispersion in fluorine at
102◦C.

In the case of polyatomic gases or mixtures of relaxing diatomic gases, the re-
laxing modes can be coupled by vibration-to-vibration exchanges. These multiple
relaxation processes follow the general behavior given by Equations (16.10) and
(16.11), but the magnitude of the absorption and dispersion and the associated re-
laxation frequencies assumes a different connotation. For this case of the multiple
relaxing internal energy modes, Equations (16.10) and (16.11) are changed into
the following formats:

α λ
( c

c∞
)2

= −π
∑

j

δ j ks/k∞
s

1 + (ω τs, j )2
(16.12)

( c

c∞
)2

= 1 +
∑

j

δ j ks/k∞
s

1 + (ω τs, j )2
(16.13)
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where δ j ks/k∞
s is a relaxation adiabatic compressibility (which has a negative

value) and j denotes that there may be more than a single-relaxation process
entailed. In such complex cases, τs, j and δ j ks/k∞

s can no longer be respectively
associated with a single-transfer reaction and relaxation energy of a specific mode,
because the various modes and reaction pathways are coupled. So the sums in
Equations (16.12) and (16.13) should cover all eigenvalues of the energy transfer
matrix, which also accounts for all reactions. These two equations constitute the
standard equations for calculating sound absorption in moist air as function of
frequency and temperature. Equations (16.12) and (16.13) can also be used in
the reverse manner, where the measured values of absorption and velocities can
be used to derive the transition rates. But when the number of relaxation modes
increases, the number of possible relaxation paths multiplies very rapidly, thus
limiting this procedure to only a few special cases.

While relaxation processes similar to the energy exchanges in gases occur in liq-
uids, there are important differences that arise from the greater density of molecules
inherent in liquids and the consequential multibody interactions. The concept of a
rate equation is less applicable, but the existence of relaxation time as a measure of
the time for a system to revert to an equilibrium state in sustaining a perturbation
remains valid.

In a few cases such as CS2 and a number of organic liquids, the relaxation
mechanism appears to be the same as that for gases, i.e., the internal energy of
the individual molecules is excited by “collisions.” These types of liquids are
called Kneser liquids, and they generally have a positive temperature coefficient
of absorption. With other liquids, the molecules bond temporarily to form large
groups that reconfigure themselves when an ultrasound wave passes through. Such
figurative relaxations tend to be very rapid, and there is the possibility of the
frequency dependence of absorption and dispersion, which results in a distribution
of relaxation times. Such liquids are termed associated liquids. Water is a prime
example of such a liquid.

Chemical reactions complicate matters even more: in a reversible chemical
reaction with heat of reaction H . H plays a role in the relaxation equations
in the same manner as E for vibrational relaxation. Because chemical reactions
increase the possibility of the number density of the molecules changing, additional
relaxation absorption and dispersion tend to occur.

16.3 Cavitation

The phenomenon of cavitation, the rupture of liquids, is readily observed in boiling
water, turbines, hydrofoils, and in seawater in the vicinity of a ship’s rotating
propeller. It occurs in those regions of liquids that are subject to high-amplitude,
rapidly vacillating pressures. Cavitation also occurs in a liquid irradiated with
high-energy ultrasound.

Consider a small volume of liquid through which sound travels. During the
negative half of the pressure cycle the liquid undergoes a tensile stress, and during
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the positive half the liquid undergoes compression. Bubbles entrapped in the liquid
will expand and contract alternatively. When the pressure amplitude is sufficiently
great and the initial radius of the bobble is less than a critical value R0 given by

R0 = 1

ω

√√√√√
3 γ

(
p0 + 2Tst

R0

)
ρ

(16.14)

the bubble collapses suddenly during the compression phase. In Equation (16.14),
the symbols used are defined as follows:

ω = angular frequency of the signal

p0 = hydrostatic pressure in the liquid

γ = ratio of the principal specific heats of the gas in the bubble

Tts = surface tension at the surface of the bubble

This sudden collapse of bubbles constitutes the phenomenon of cavitation and it
can result in the very sudden release of a comparatively large amount of energy.
The severity of this cavitation, as measured by the amount of the energy released,
depends on the value of the ratio Rm/R0, where Rm denotes the radius of the bubble
when it has expanded to its maximum size. Obviously this ratio depends on the
magnitude of the acoustic pressure amplitude, i.e., the acoustic intensity.

The presence of bubbles facilitates the onset of cavitation, but cavitation can
also occur in gas-free liquids when the acoustic pressure exceeds the hydrostatic
pressure in the liquid. During a part of the negative phase of the pressure cycle,
the liquid is in a state of tension. This causes the forces of cohesion between
neighboring molecules to become opposed, and voids are formed at weak points
in the structure of the liquid. These voids expand and then collapse in the same
manner as gas-filled bubbles. The cavities produced in this fashion contain only
the vapor of the liquid. Cavitation in a gasless liquid can be induced by introducing
defects in the structure of the liquid by adding impurities or by bombarding the
liquid with neutrons.

A hissing noise often accompanies the onset of cavitation. This noise is referred
to as cavitation noise. Th minimum intensity or pressure amplitude required to
establish cavitation is termed the threshold of cavitation. Figure 16.2 displays how
the threshold intensity varies with both aerated and gas-free water. The threshold
intensity is obviously considerably greater for gas-free water than for the aerated
water. This parameter remains fairly constant up to about 10 kHz, then it undergoes
a steady increase up to about 50 kHz and a more pronounced exponential increase
beyond 50 kHz.

Generally speaking, the threshold intensity usually increases with increasing
pressure and decreases with increasing temperature. But a number of exceptions
to this rule exist (Hunter and Bolt, 1955). The threshold intensity decreases as the
time of exposure to sound is increased. This is the result of a time delay between
the acoustic excitation and the onset of cavitation. For pulsed waves, the threshold
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Figure 16.2. Variation of threshold intensity with frequency in aerated and gas-free water
at room temperature (20◦C).

intensity reduces in value as the pulse length is increased to an upper limit, beyond
which it becomes independent of pulse length. This frequency-dependent upper
limit would be of the order to 20 ms for a frequency of 20 kHz.

The amount of energy released by cavitation depends on the kinetics of the
bubble growth and collapse of the bubbles. This energy should increase with
surface tension at the bubble interface and lessen with the vapor pressure of the
liquid. Water has a comparatively high surface tension, so it can be a very effective
medium for cavitation. It can be made even more effective by the addition of 10%
alcohol—this results in an appreciable increase in vapor pressure but at the cost
of a decrease in the surface tension, but the former effect outweighs the latter
effect.

Weak emission of light has been observed in cavitation. This phenomenon is
known as sonoluminescence. Frenzel and Schultes first observed its effects in wa-
ter in 1934 (Frenzel and Schultes, 1934). Two separate forms of sonoluminescence
are thought to exist: multiple-bubble sonoluminescence (MBSL) and single-bubble
sonoluminescence (SBSL). When a sufficiently strong acoustic field propagates
through a liquid, placing it under dynamic stress, preexisting microscopic inho-
mogeneities serve as nucleation sites for liquid rupture. Most liquids such as water
have thousands of potential nucleation sites per milliliter, so a cavitation field can
harbor many bubbles over extended space. This cavitation, if sufficiently intense,
will produce sonoluminescence of the MBSL type. It was more recently discov-
ered that under certain conditions, a single, stable oscillating gas bubble can be
forced into large amplitude pulsations that it produces sonoluminescence emission
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on each and every cycle (Gaitan and Crum, 1992; Gaitan et al., 1992). This is the
SBSL-type of sonoluminescence.

Sonochemistry deals with high-energy chemical reactions that occur during
ultrasonic irradiation of liquids. The chemical effects of ultrasound do not re-
sult from direct molecular interactions but occur principally from the effects of
acoustic cavitation. Cavitation provides the means of concentrating the diffuse
energy of sound, with bubble collapse producing intense, local heating and high
pressures that are extremely transient. Among the clouds of cavitating bubbles,
the highly localized hot spots have temperatures of roughly 5000◦K, pressures
exceeding 2000 atm, and heating and cooling rates greater than 107 K/s. Ultra-
sonics can serve as useful chemical tool, as its chemical effects are diverse and
it can provide dramatic improvements in both stoichiometric and catalytic reac-
tions. In a number of cases, ultrasonic irradiation can increase reactivity by a
million-fold.

The chemical effects can be categorized into three areas: (a) homogeneous
sonochemistry of liquids, (b) heterogeneous sonochemistry of liquid–liquid or
liquid–solid systems, and (c) sonocatalysis (which constitutes an overlap of the
first two categories). Chemical reactions have generally not been observed in the
ultrasonic irradiation of solids and solid–gas systems.

16.4 Phonons

In quantum mechanics, energy states are considered to occur only at discrete levels
or eigenstates, not at any arbitrary values. In the analytical treatment of crystalline
solids, the concept of phonons, often referred to as a “quantitized sound waves,”
is used to represent the effects of a transition between the eigenstates of a system
of coupled quantum mechanical oscillators. Phonons generally apply to discrete
strictly linear systems, while “classical” sound waves derive from continuous,
intrinsically nonlinear systems within the limits of small amplitudes. Although
phonons can occur in all states of matter, they are most easily discerned in crys-
talline solids.

In 1819, Dulong and Petit discovered the first evidence for phonons in solids
when they observed that the specific heat of a solid is twice that of the corre-
sponding gas. This finding suggested the fact that solids have a way of storing
potential energy, in addition to the kinetic energy that is so apparent in gases.
Einstein first postulated an acoustic theory of the specific heat of solids by as-
suming that the kinetic energy and potential energy arose from atoms oscillating
about the equilibrium positions in the crystalline lattices. Applying the Planck
quantum theory, Einstein related the energy to the frequency but he had made the
simplifying assumption that each atom oscillated independently of the other, so his
formula for the specific heat was therefore incorrect. Peter Debye in 1912 correctly
inferred that these atomic oscillators are coupled, and later Max Born, Theodore
von Kármán, and Moses Blackman refined the theory to the extent of matching the
experimental results of the temperature dependence of the specific heat of solids.
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Debye described the role of phonons in his explanation of thermal conductivity,
and in that same year (1912) Frederick Landemond correlated lattice vibrations
to thermal expansion and melting of solids, both of which are attributable to the
nonlinearities of forces between atoms in solids.

Consider a one-dimensional array of masses m j ( j = 0, . . . , N + 1) intercon-
nected with ideal springs of stiffness s j ( j = 0, . . . , N ). A spring s j interconnects
mass m j and mass m j+1. Let ξ j denote the displacement of mass m j . The displace-
ments ξ 0 and ξ N+1 provide the boundary conditions at each end of the system.
Within the boundaries, the motion of each mass is assumed to follow Hooke’s law
of linear elasticity and Newton’s law:

m j
d2ξ j

dt2
= −s j−1(ξ j − ξ j−1) + s j (ξ j+1 − ξ j ) (16.15)

The motion can be assumed amenable to Fourier analysis, so that it assumes a
time dependence eiωt . The left term of Equation (16.15) then becomes –m jω

2ξ j .
The solution to this equation, through the application of the Bloch theorem for
the normal modes of a coupled system, is a linear combination of the normal
modes:

ξ j =
∑

k

(
eik( ja) Xk + e−ik( ja) X−k

)
eiωk t

where

k = eigenvalues of the system determined by the boundary conditions

a = periodic spacing, or the “stretch” of the “springs” connecting the masses

Xk = ξ1 − ξ0e−ika

2i sin(ka)

The values of ξ 0, ξ 1, Xk and the restrictions on k are established by boundary and
initial conditions. For example, consider a system clamped at the ends, i.e., x0 =
0, xN+1 = 0. Then

ξ j = sin[k( ja)]

(
ξ1

sin(ka)

)

The eigenvalue k is quantitized with

k = n

N + 1

π

a
with n = 1, 2, . . . , N

In an infinite system or in a system with periodic boundary conditions, it is
readily established that Xk = 0 or X−k = 0. If we apply a coordinate system with
the mass m0 located at its origin, then the location of the j th mass is x = ja, and
we have

ξk(x) = eikx Xk (16.16)

Equation (16.16) represents the customary Bloch wave result. The subscript k was
added in Equation (16.16) to serve as a label for the normal mode. The solution is
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complete as a linear combination of the normal modes, i.e.,

ξ j =
∑

k

(eik( ja) Xk + e−ik( ja) X−k)eiωk t (16.17)

The normal modes are orthogonal, so the normalization constants can be obtained
for any boundary conditions, whether they be clamped, periodic, and so on. The
total energy E of the system can be found from

E = m
∑

k

|Xk |2ω2
k

Coupled Quantum Particles
In dealing with harmonically coupled particles it is more expeditious to use a
Lagrangian formulation rather than Newtonian formation of Equation (16.15).
The Lagragian for such a set of connected particles is

L = 1

2

∑
j

m j

(
dξ j

dt

)2

− 1

2

∑
j

s j (ξ j+1 − ξ j )
2

With the canonical momenta p j = m j (dξ j/dt), the Hamiltonian becomes

H =
∑

j

p j

(
dξ j

dt

)
− L

The system is quantitized with the commutation relations[
ξ j , p j ′

] = i h̄δ j, j ; (16.18)

where δ j, j ; represents the Dirac delta function that equals unity when j =j′ and
zero when j �= j′. We then assume a periodic system and set m j = m and s = s j ,
and also make use of Equation (16.17) without the coefficient e−iωk t . We obtain
the Hamiltonian

H = 1

2m

∑
k

Pk P−k + 1

2
m

∑
ω2

k Xk X−k

where

Pk = m
d X−k

dt
, ωk = ω0 sin

(
ka

2

)

The above Hamiltonian could be used to construct a Schrödinger wave equation
for a field ψ(X ), where X represents a point in the 2N -dimensional Xk space and

Pk = −i h̄

(
∂ψ

∂Xk

)

Another approach is to construct the properties of the eigenfuctions and eigenvalues
through the use of the commutation relations of Equation (16.18) for x j and p j .
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Defining

ak =
√

m

2h̄ωk

(
ωk Xk + i

m
P−k

)

and

a∗
k = a∗

−k, ωk = −ω−k

the Hamiltonian assumes the form

H =
∑

k

h̄ωk

(
Nk + 1

2

)

where

Nk = a∗
k ak

A general state of the system is constructed from a superposition of the eigenstates:

ψ =
∑

k

∑
n

Cknψkn

where |Ckn|2 represents the probability that the system is in the state ψkn . From
the customary quantum mechanical relation Eψ = Hψ , the expectation value of
the total energy of the system is

〈ψ |E |ψ〉 =
∑

k

∑
n

|Cnk |2h̄ωk

(
nk + 1

2

)

The expectation value of the square of the momentum operator is found from

〈ψ ∣∣P2
∣∣ψ〉 = m

∑
k

〈ψ |Xk |ψω2
k =

∑∑
|Cnk |2h̄ωknk = 〈ψ |E |ψ〉 − E0

where E0 is the zero-point energy.
From the expectation state of the position operator, a state ψnk can be coupled

only to the stateψ (n+1)k orψ (n−1)k . Consequently the time dependence will behave
as 2 cos (ωk t). The term phonon can be defined in the following manner: a phonon is
emitted or absorbed when a system of harmonically coupled quantum mechanical
particles executes a transition from a state ψnk to a state ψ (n–1)k (which results in
emission) or ψ (n+1)k (which results in absorption).

The absorption of ultrasonic waves in solids are attributable to a number of
different causes, each one of which is characteristic of the physical properties
of the material concerned. They can be classified as (a) losses characteristic of
polycrystalline solids, (b) absorption due to lattice imperfections, (c) absorption in
ferromagnetic and ferroelectric materials, (d) absorption due to electron–phonon
interactions, (e) absorption due to phonon–phonon interactions, and (f) absorption
due to other possible causes. It is also interesting to note that a rapid decrease in at-
tenuation occurs at the critical temperature for superconductivity. This variation of
attenuation with temperature has been explained in a Noble-prize winning paper
by Bardeen, Cooper, and Schrieffer through the B.C.S. theory (so-called after the
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initial of their surnames) that predicts a temperature-dependent energy gap 2εwide
around the Fermi level at the critical temperatures of Tc and less (Bardeen et al.,
1957). As the temperature is reduced, the gap increases toward a maximum at zero
absolute temperature, where the predicted value of ε is equal to 1.75 × κ Tc, where
κ is the Boltzmann constant. In the realm of le > λ/2π , the B.C.S. theory predicts
that

αs

αn
= 2

eε/κT + 1

where le denotes the mean-free path of an electron, αs and αn represent the values
of absorption in the super-conducting and normal state, respectively, at absolute
temperature T . This variation was confirmed experimentally by Morse (1959) and
Bohm for indium at 28.5 MHz. Gibbons and Benton measured the velocities of
longitudinal waves in both normal and superconducting tin; they found a very
small reduction in velocity (about 1/500,000th) for the superconducting state.
Application of a magnetic field to a metal at low temperatures affects the mean-
free path and thus affects acoustic attenuation. For le < λ/2π , a decrease in the
attenuation with increasing magnetic field H has been observed experimentally
(Sternberg, 1958).

16.5 Transducers

A transducer is a device that generates and receives (i.e., it senses) sound waves.
The transducer essentially functions as an energy converter. That is, it converts
acoustical energy into or from other forms of energy (e.g., electrical, mechanical,
or thermal). A transducer is said to be reversible if it can convert in either direction.
Most high-intensity ultrasonic generators in use are basically crystal oscillators or
magnetostrictive devices.

Transducers fall into the following categories: (1) crystal oscillators that op-
erate through the piezoelectric effect, which is reversible; (2) magnetorestrictve
devices based on the magnetorestriction phenomenon, which is also reversible;
(3) mechanical generators and receivers that includes whistles and sirens acting as
generators and also radiometers and Rayleigh discs serving as receivers; (4) elec-
tromagnetic transducers that operate on the same principle as the customary audio
loudspeaker but can function only in the lower range of ultrasonic frequencies;
and (5) miscellaneous types such as chemical, thermal, and optical transducers. In
addition there are ultrahigh frequency transducers that work in the megahertz and
gigahertz ranges. In this chapter we concentrate on the first two categories that
constitute a major portion of the transducer types currently in principal use.

Ultrasonic receivers fall into two categories: (1) receivers that terminate ultra-
sonic paths of propagation and (2) receivers that serve as probes. Receivers that
terminate ultrasonic paths have cross-sectional dimensions extending over several
wavelengths, with the result that the presence of such a transducer will materially
affect the acoustic field mainly through reflections. The purpose of an ultrasonic



16.5 Transducers 459

probe is to gauge the characteristics of an acoustic field, so its dimensions must be
sufficiently small so as not to affect the field. A probe diameter is typically only
about one-tenth of the wavelength.

Piezoelectric Crystals
In 1880, the Curie brothers discovered that when a crystal having one or more
polar axes or lacking axisymmetry is subjected to mechanical stress, an electrical
potential difference occurs. Consider a segment of such a crystal, in the form of a
slab or a disk, that is cut with its parallel surface running normal to a polar axis.
When this segment undergoes a mechanical stress, equal and opposite electric
charges arise on the parallel surfaces. The magnitude of the charge density (i.e.,
dielectric polarization) is directly proportional to the applied stress, provided the
applied stresses do not strain the crystal beyond its elastic limit.

The opposite effect, predicted by Lippmann in 1881 and verified experimentally
by the Curie brothers the same year, occurs when an electric field is applied in the
direction of a polar axis, causing a mechanical strain in the crystal segment. The
amount of strain is directly proportional to the intensity of the applied electric field.
From the viewpoint of the principle of conservation of energy, the piezoelectric
effect and its converse may be deemed to be equal and opposite. Such effects
occur in crystals such as quartz (a member of the trigonal system, as shown in
Figure 16.3), Rochelle salt, and lithium sulfate.

Quartz is very commonly applied for ultrasonic generation. A quartz crystal
is shown in Figure 16.3, with a hexagonal cross section normal to the nonpolar

Figure 16.3. A hexagonal quartz crystal with x-cut rectangular and circular plates.
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optic axis, denoted by the z-axis. The axes joining opposite edges are designated
as x-axes, and the associated axes, which are perpendicular to these and joining
opposite faces are termed y-axes. The x- and y-axes are polar axes, and slabs cut
with their faces perpendicular to them manifest the piezoelectric effect. Crystals
which are cut with their faces perpendicular to an x-axis or y-axis are termed
x-cut and y-cut crystals, respectively. The x-cut crystals are generally utilized to
propagate compression waves, and the y-cut crystals are applied to generate shear
waves.

Now consider an x-cut crystal in the form of a rectangular prism shown in
Figure 16.3. Applying an electric field along the x-axis produces compression
in that direction, while expansion occurs simultaneously along the y-direction.
If the direction of the field is reversed, expansion occurs along the x-axis with
an associated compression along the y-axis. No strain, however, occurs along the
z-axis. If a pair of surfaces normal to either of the polar axes (x- and y-axes)
is coated with a conductive material to form electrodes, small-amplitude oscil-
lations will result when an alternating voltage of frequency f is applied across
them. When the frequency f equals one of the natural frequencies of mechanical
vibration for a particular axis, the response amplitude jumps to a considerably
higher value. Crystals are generally operated at resonant frequencies for either
“length” or “thickness” vibrations, as denoted by the resonance occurring in the
direction parallel with or normal to the radiating surfaces, respectively. The natural
frequency for mechanical vibrations is proportional to the inverse of the dimension
along which they occur, so it becomes obvious the lower frequencies are gener-
ated by “length” vibrations along the direction of the longer dimension whereas
the higher frequencies are produced by “thickness vibrations” along the direction
of the smaller dimension.

Maximum acoustic intensities are obviously obtained by operating at the funda-
mental natural frequencies. But material constraints in crystals may necessitate the
use of higher harmonics to obtain higher frequencies. For example, an x-cut quartz
plate can be only 0.15 mm thick in order to generate a fundamental “thickness”
mode for 20 MHz. Such a quartz plate is extremely brittle and it can shatter under
the impetus of a exceedingly high-applied voltage, or its dielectric properties may
break down. To avoid this situation, it is customary to use thicker slabs of crystals
with lower resonance frequencies and operate at one of the upper harmonics. An
example is the vibration of a 1-cm thick quartz crystal at its 191st harmonic to
generate 55 MHz ultrasound.

The piezoelectric effect occurs only when opposite charges appear on the elec-
trodes, and for that reason, only odd harmonics can be generated. At the nth har-
monic, the thickness of the crystal is divided into n equal segments with compres-
sions and expansions alternating in adjacent sections, as illustrated in Figure 16.4.
For even harmonics in the nth mode, compressions occur in n/2 segments and
expansions occur in the other n/2 segments, with the result no net strain exists
in the crystal. When n is odd, the (n–1)/2 compressions offset the same num-
ber of expansions, leaving either a compression or an expansion in the remaining
segment.
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Figure 16.4. Crystal divided into segments.

The Electrostrictive Effect
The electrostrictive effect, which is the electrical analog of the magnetostrictive
effect discussed in a later section, occurs in all dielectrics, but it is not a very pro-
nounced phenomenon in most materials except for a certain class of dielectrics. The
effect is much more apparent in this class namely, the ferroelectrics. An electric
field applied along a given direction produces a mechanical strain. The magnitude
of the strain is proportional to the square of the strength of the applied electric
field and is therefore independent of the sense of the field. A positive strain may
thus result for both positive and negative values of the excitation field. For a sinu-
soidally varying electric field, the waveform of the strain assumes that of a rectified
but unsmoothed alternating current, and its frequency is twice that of the applied
field.

It is possible to obtain a sinusoidal variation in the strain, and this is done by
permanently polarizing the transducer, namely, one that has magnetostrictive prop-
erties. The transducer is heated to a temperature above the Curie point, causing the
magnetostrictive effect to vanish, and then it is cooled slowly in a strong direct field
oriented in the direction along which it is intended to apply the exciting field. If
the exciting field is kept small compared with the initial polarizing field, the strain
should vary sinusoidally at the frequency of the exciting field. Because a polar-
ized ferroelectric transducer appears to manifest the same effect as a piezoelectric
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transducer, it has mislabeled as being “piezoelectric.” Among the principal ferro-
electrics, barium titanate, lead meta-niobate, and lead zirconate titanate are greatly
used for electrostrictive applications. To construct this type of transducer, many
small crystallites of ferroelectric substances are bonded together to form a ceramic
of the appropriate shape. Because such materials are polycrystalline, they may be
considered as being isotropic and thus do not have to be cut along specific axes.
This renders possible the construction of a concave transducer so that the ultrasonic
radiation can be focused without the need for an auxiliary lens system.

Fundamental Piezoelectric Relationships
For a given temperature, consider a piezoelectric element having cross-sectional
area A, thickness t , with electrodes attached to the opposite faces. A voltage V is
applied across the electrodes to generate an electric field E = V/t , and a constant
tensile stress σ is applied to the surfaces. Within the elastic limits, the resultant
mechanical strain s relates to the stress as follows:

s = aσ + bE (16.19)

and we also have

D = cE + dσ (16.20)

where D represents the electric displacement and a, b, c, d are coefficients defined
below.

Let us now short circuit the electrodes so that E = 0. Equation (16.20) now
reads

D = dσ

We note here that the electric displacement D equals the dielectric polarization P ,
or the charge per unit area. Hence

P = dσ (16.21)

under short-circuit conditions. The coefficient d constitutes the piezoelectric strain
constant, which is defined as the charge-density output per unit applied stress under
the conditions of short-circuited electrodes. Now if the stress σ is reduced to zero,
Equation (16.19) modifies to

σ = bE

The principle of conservation of energy dictates that b = d, resulting in

σ = d E (16.22)

for the no-load condition. The coefficient d may also be described as the mechanical
strain produced by a unit applied field under the conditions of no loading and it is
expressed either in units of coulomb/newton (C/N) or meter/volt (m/V). Equation
(16.19) becomes altered to

s = aσ + d E (16.23)
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If no piezoelectric effect is present, the term d vanishes from Equations (16.20)
and (16.23), which yields the familiar relationships

s = aσ = σ/Y (16.24)

and

D = εE (16.25)

where Y is the elastic constant (or Young’s modulus) for the material and ε is the
corresponding electrical permittivity

Under short-circuit conditions for the crystal, Equations (16.21) and (16.24)
lead to

P = es (for short-circuit conditions) (16.26)

where e = d/Y.
When a compressive stress is applied to the crystal, Equation (16.23) becomes

s = −aσ + d E (16.27)

When the crystal is clamped to keep strain zero and when stress is applied, we
see from Equations (16.26) and (16.27) that

σ = eE (for the constraint s = 0) (16.28)

where e is the piezoelectric stress constant which is expressed on C/m2or N/V m.
It must be realized at this stage that the piezoelectric phenomenon is a three-

dimensional one. Not only we have to consider the changes in voltage, stress,
strain, and dielectric polarization in the thickness direction of the crystal, we must
also take into account the effects in any direction. A stress applied to a solid in a
given direction may be resolved into six components: three tensile stresses σ x , σ y ,
σ z along the principal axes x , y, and z, respectively, and three shear stresses τ yz ,
τ xz , and τ yz about axes x , y, and z. In the notation for shear, the subscripts indicate
the action plane of the shear—thus yz denotes a shear in the yz plane acting about
the x-axis. Also, we note that τ yz = τ zy , and so on. The corresponding components
of strain are εx , εy , εz , εyz , εxz , and εyx . In general, the following stress–strain
relationship of Equation (5.2) can be generalized as follows

σ j i = c jkεi j (16.29)

where c jk denotes the elastic modulus or stiffness coefficient. This yields 36 values
of c jk :

σxx = σx = c11εx + c12εy + c13εz + c14εyz + c15εxz + c16εxy

σyy = σy = c21εx + c22εy + c23εz + c24εyz + c25εxz + c26εxy

σxx = σz = c31εx + c32εy + c33εz + c34εyz + c35εxz + c36εxy

τyz = c41εx + c42εy + c43εz + c44εyz + c45εxz + c46εxy

τxz = c51εx + c52εy + c53εz + c54εyz + c55εxz + c56εxy

τxy = c61εx + c62εy + c63εz + c64εyz + c65εxz + c66εxy

⎤
⎥⎥⎥⎥⎥⎥⎦

(16.30)
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Table 16.1. Value of the
Adiabatic Elastic Constants
for Quartz ×1010 dyne/cm 2

or ×109 N/m2.

c11 = 87.5
c33 = 107.7
c44 = 57.3
c12 = 7.62
c13 = 15.1
c14 = 17.2

Because cmn=cnm, the number of these constants is reduced from 36 to 21. Sym-
metry of the axes will lessen this number even further. In the case of quartz, only
six elastic constants are independent of one another, and the values of cmn can be
expressed as a matrix as follow:∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 c13 c14 0 0
c13 c11 c13 −c14 0 0
c13 c13 c23 0 0 0
c14 −c14 0 c14 0 0
0 0 0 0 c44 c14

0 0 0 0 c14
(c11 − c12)

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
The values of these constants for adiabatic conditions are given in Table 16.1

The Dynamics of Piezoelectric Transducers
A body undergoing forced vibrations can be considered analogous to an electric
circuit that is activated by an electromotive force, with the current i corresponding
to body velocity u and the voltage V to the applied force F . In terms of the strain
s, velocity u = l(ds/dt), and the current is expressed as i =(dQ/dt) = A(dP/dt).
Here l is the body length, Q is the electric charge, A is the cross-sectional area.
We invoke Equation (16.26) to obtain

d P

dt
= e

ds

dt

which gives

i = Ae

l
u = αT u (16.31)

where the transformation factor αT = Ae/ l, which constitutes a characteristic
constant for a specific transducer. Because P has three components and S has six
components, we can write Equation (16.31) in the general matrix form

i = aTu
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From Equation (16.28) we have

F = Ae

l
V = αT V

or

F = aTV

The mechanical compliance Cm is analogous to the electrical capacitance C , i.e.,

Cm = sl

F
= sl

σ A
= Yl

A

When an applied force F causes a strain s, mechanical energy Wm is stored in the
transducer, according to

Wm = 1

2
Fsl = 1

2
F2Cm = 1

2
α2

T V 2Cm = 1

2
CV 2 (16.32)

where

C = α2
T Cm

The electrical capacitance Ce between the electrodes of the transducer follows
the relationship:

Ce = εA

l
(16.33)

The corresponding electrical energy We is equal to 1/2CeV 2. From Equations
(16.32) and (16.33) the ratio of mechanical energy stored in a piezoelectric trans-
ducer to the electrical energy provided to it is given by

Wm

We
= C

Ce
= α2

T

Cm

Ce
= k2

e

Here the electromechanical coupling factor k2
e constitutes a measure of the effi-

ciency of the transducer.

The Q Factor
The Q factor of either a mechanical or an electrical system determines the contour
of the frequency response curve for that system. A low value of Q results in
a resonance spreading over a wide frequency band. At higher values of Q, a
resonance will be confined to a considerably narrower frequency band. Two Q
factors exist in a transducer, one mechanical and the other electrical, denoted by
Qm and Qe, respectively. The mechanical Q factor is defined by

Qm = mωr

Rm

where ωr represents the resonance frequency of the transducer, m its mass and Rm

the mechanical resistance. In the simplest case for the radiating transducer surface,
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the mechanical resistance is given by

Rm = σ A

u
= ρcA

in terms of the stress, radiating surface velocity u, material density ρ, and sound
propagation speed c. For the electrical Q factor, electrical capacitance Ce between
transducer electrodes must be taken into consideration. At resonant frequencies
the only effective mechanical impedance is Rm . Thus

Qe
∼= Ceωr R = Ceωr

Rm

α2
T

= π2/2k2
e

Qm

Magnetostrictive Transducers
Magnetostriction occurs in ferromagnetic materials and certain nonmetals that
are termed ferrites. When a magnetic field is applied, a bar of ferromagnetic or
ferrimagnetic material undergoes a change in length. Conversely, a mechanical
stress applied to the bar will cause a change in intensity of magnetization. The
former effect was discovered by Joule in 1847 and the converse effect by Villari in
1868.

Magnetostriction occurs prominently in materials such as iron, nickel, and
cobalt. Whether there occurs an increase or decrease in length fully depends on the
nature of the material as well as on the strength of the applied magnetic field. The
change in length does not depend on the direction of the magnetic field. The mag-
nitude of the strain varying as a function of the applied magnetic field is shown
in Figure 16.5 for four different materials, viz. cast cobalt, permendur, nickel,
and iron. Figure 16.6 shows strain varying as a function of magnetic polarization.
The magnetostrictive effect generally decreases with a rise in temperature and
disappears altogether at the Curie temperature.

Figure 16.5. Mechanical strain as a function of magnetic field.
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Figure 16.6. Mechanical strain as a function of magnetic polarization.

When a sinusoidally varying magnetic field is applied in the direction of the axis
of a bar of ferromagnetic material, the bar will oscillate at double the frequency of
the applied field. In accordance with the relevant curve in Figure 16.6, a decrease in
length occurs when a field is applied to nickel, regardless of the sense of the field.
A negative strain occurs every half cycle. The waveform of the strain occurs as a
rectified sine curve, with the result that unwanted harmonics may be generated. A
purely sinusoidal wave corresponding to the frequency of the applied field, along
with a markedly increased energy output, will be obtained if the bar is polarized.
This is achieved by simultaneously applying the alternating field and a direct
magnetic field of sufficiently high intensity for the value of the resultant field to
remain above zero.

The maximum output for magnetostriction occurs by operating at the funda-
mental frequency fr of the bar, given by

fr = 1

2L

√
Y

ρ
(16.34)

where Y is the Young’s modulus for the bar material,ρ is the density of the material,
and L is the length of the bar. The term

√
Y/ρ in Equation (16.34) also happens to

be the propagation velocity of sound in the material. At resonant frequencies the
mechanical strains reaches the order of 10–4 rather than magnitudes in the order
of 10−6 that prevails in operating at nonresonant frequencies.



468 16. Ultrasonics

The Physics of Magnetostrictive Transducers
Magnetrostriction theory is highly analogous to that of piezoelectricity, but, in this
case, account is taken of the polarizing field H0. We now consider a ferromagntic
rod undergoing polarization throughout its length with a magnetic field H0, with B0

denoting the associated flux density. The resultant strain ε0 is directly proportional
to the square of the flux density, i.e.,

ε0 = C B2
0 (16.35)

where C is a constant. It is seen from Equation (16.35) that the sign of the resultant
strain is independent of the direction of the field. Now if we apply an exciting
magnetic field of strength H , which is appreciably less than H0with an associated
flux density B, we can write

B = μi H = B0 	 B0 (16.36)

where we have denoted μi as the incremental magnetic permeability. For a state
of constant stress, we have for the resulting strain by differentiation of Equation
(16.35):

ε = ε0

ε = 2C B0B0

or

ε = 2C B0 B = βμi H (16.37)

Here β = 2C B0 constitutes the magnetostrictive strain coefficient (given in units of
m2/weber) that applies to small strains. Equation (16.36) is analogous to Equation
(16.22) for no-load conditions. When no alternating field is applied, the value of
the strain ε is given by Hooke’s law,

ε = σ/Y (16.38)

in terms of stress σ and Young’s modulus Y . We can now obtain the analog to
Equation (16.23) by using H instead of the electric field E , Y instead of 1/a, and
βμi instead of d. This gives us

ε = σ

Y
+ βμi H (16.39)

for a rod undergoing simultaneously a tensile stress σ and a magnetic field H . The
analogy extended to Equation (16.20) yields

B = σβμi + μi H (16.40)

Clamping the rod causes strain ε to be zero in Equation (16.38), yielding

σ = Yβμi H = �B

where σ denotes the compressive stress and� = Yβ represents the magnetostric-
tive stress constant (given in units of newton/weber). The reciprocal of�, preferred
by some authors, is called the piezomagnetic constant (units of weber/newton).
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16.6 Transducer Arrays

A single-element ultrasound transducer tends to radiate a rather narrow beam or
receive signals over a narrow spatial range. In order to cover a wider area through
a process called scanning, and, in many instances, to emit more powerful signals
than is possible with a single element, an especially arranged group of transducers
or arrays are used to extend the versatility of transducers.

Array transducers are also used to focus an acoustic beam. Variable delays are
applied across the transducer aperture. The delays are electronically controlled in
a sequential or phased array and can be changed instantaneously to focus the beam
on different areas.

With linear-array transducers, which are far more versatile than piston trans-
ducers, the electronic scanning entails no moving parts, and the focal point can
be changed readily to any position in the scanning plane. A broad variety of scan
formats can be generated, and received echoes can be processed for other appli-
cations such as dynamic receive focusing, correction for phase aberrations, and
synthetic aperture imaging. The principal disadvantages of linear arrays obviously
lie in the greater complexity and increased costs of the transducers and scan-
ners. In order to ensure high quality imaging, many (as high as 128 and on the
increase) identical array elements are required. Each array element tends to be
less than 1 mm on one side and is connected to its own transmitter and receiving
electronics.

Phased Arrays: Focusing and Steering
We examine how a phase-array transducer can focus and steer an acoustic beam
along a specified direction. An ultrasound image is created by repeating the scan-
ning process more than a hundred times to probe a two-dimensional (2D) or a
three-dimensional (3D) locale in the medium. In Figure 16.7(a), a simple six-
element array is shown focusing the transmitted beam. Each array element may
be considered a point source that radiates a spherical wavefront into the medium.
Because the topmost element is the farthest away from the focus in this example, it
is activated first. The other elements are triggered progressively at the appropriate
time so that the acoustic signals from all the elements reach the focal point simulta-
neously. According to Huygens’ principle, the resultant acoustic signal constitutes
the sum of the signals that came from the source. The contributions from each
element add in-phase at the focal point to yield a peak in the acoustic signal. Else-
where, some of the contributions add out-of-phase, lessening the signal relative to
the peak.

On receiving an ultrasound echo, the phased array works in reverse. An echo
is shown in Figure 16.7(b) originating from receive focus 1. The echo is incident
on each array element at a different time interval. The received signals undergo
electronic delay so that they add in phase for an echo originating at a focal point.
Echoes originating elsewhere have some of their signals adding out of phase,
thereby reducing the receive signal relative to the peak at focus.
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Figure 16.7. The phased array illustrated above provides for steering and focusing of an
ultrasonic beam. In (a) the six-element linear array is shown in the transmit mode. In the
receive mode of (b), dynamic focusing allows the scanner focus to track the returning
echoes.

In the receive mode, a dynamic adjustment can be made with a focal point so that
it coincides with the range of returning echoes. After the transmission of a pulse,
the initial echoes return from targets nearest the transducer. The scanner therefore
focuses the phased array on these targets, located at focus point 1 as shown in
Figure 16.7(b). As echoes return from the more distant targets, the scanner focuses
at a greater depth (e.g., focus point 2). Focal zones are achieved with adequate
depth of field so that the targets always remain in focus in receive mode. This is
the dynamic receive focusing process.

Array-Element Configurations
The dynamic receive focusing process is repeated many times to form an ultrasonic
image in the scan of a 2D or 3D region of tissue. In defining the 2D image, the
scanning plane is the azimuth dimension; the elevation dimension is normal to
the azimuth scanning plane. In linear sequential arrays, as many as 512 elements
constitute a sequential linear array in currently available scanners. A subaperture
containing as many as 128 elements is selected to function at a given time.

In Figure 16.8(a), the scanning lines are directed perpendicularly to the trans-
ducer face; the acoustic beams is focused but not steered. The advantage is that
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Figure 16.8. Various configurations of array elements and the corresponding regions
scanned by the acoustic beam: (a) sequential linear array scanning a rectangular region;
(b) curvilinear array scanning a sectored region; (c) linear-phased array sweeping a sectored
region; (d) 1.5D array scanning a sectored region; and (e) 2D array sweeping a pyramidal
region.

elements have high sensitivity when beam is directed straight out. The disadvan-
tage is that the field of view is limited to the rectangular region directly facing
the transducer. Linear-array transducers also require a large footprint to obtain a
sufficiently wide field of view. Another type of array configuration is that of the
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curvilinear array. Because of its convex shape [Figure 16.8(b)], the curvilinear (or
convex) array scans a wider field of view than does a linear-array configuration.
The curvilinear array operates in the same manner as the linear array in that the
scan lines are directed normal to the transducer face. In the linear-phased array of
Figure 16.8(c), which may contain as many as 128 elements, each element is used
to emit and receive each line of data. In Figure 16.8(c), the scanner steers the beam
through a sector-shaped region in the azimuth plane. These phased arrays can scan
a region considerably wider than the footprint of the transducer, thus rendering
them suitable for scanning through acoustically restricted windows. This is ideal
for use in cardiac imaging, where the transducer must scan through a small window
in order to avoid obstruction by ribs and lungs.

The 1.5D array is structurally similar to a 2D array but operates as 1D. The
1.5D array consists of elements along both the azimuth and elevation directions.
Dynamic focusing and phase correction can be implemented in both dimensions
to enhance image quality. Steering is not possible in the elevation dimension since
a 1.5D array contains a fairly limited number of elements in elevation (usually
3 to 9 elements). Figure 16.8(d) shows a B-scan conducted with a 1.5D phased
array. It is also possible to use linear sequential scanning with 1.5D arrays. In the
2D phased array, a large number of elements are employed in both the azimuth
and elevation. This permits focusing and steering of the acoustic beam along both
dimensions. With the application of parallel receive processing, a 2D array can
scan a pyramidal volume in real time to yield a volumetric image, as illustrated in
Figure 16.8(e).

Linear-Array Transducer Specifications
In the design or selection of an ultrasound transducer, a number of compromises
are entailed. The ideal transducers have high sensitivity and SNR (signal-to-noise
ratio), excellent spatial resolution and freedom from spurious signals. Additionally
an individual array element should possess wide angular response in steering
dimensions, low cross-coupling with another element, and an electrical impedance
matching the transmitter.

16.7 Basic Instrumentation: Scanning Methods

Figure 16.9 illustrates a “generic ultrasonic instrument” in block diagram format.
The synchronization generator establishes a repetition rate (typically 1,000 rep-
etitions per second) for a pulse input and a display module. The pulser provides
electrical energy to the transducer through a pulse limiter, which clips the voltage
experienced by the amplifiers down to a tolerable threshold but allows the full
voltage to impact the transducer. The transducer generates the ultrasonic waves
and receives the echoes. The resulting voltage of the echoes, not clipped by the
pulse limiter because their voltages are usually below the clipping threshold, goes
on directly to the amplifier and then onward to a display. The computer (which
may or may not be present) acts to process algorithms.
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Figure 16.9. Block diagram of a “generic ultrasonic instrument.”

A-Scan
In a flaw-detection instrument the display may be an oscilloscope with limited
adaptability. The display, shown in Figure 16.10(a) resulted from a well-damped
transducer. If the transducers incorporate less damping or if they are electroni-
cally tuned, the echoes will contain more RF (radio frequency) cycles. In general
terms, the result is rectified and detected prior to the display stage, as shown in
Figure 16.10(b). This results in the A-scan, which is simply amplitude versus time
for the echoes falling in the range of the transducer.

Analog processes are incorporated in commercial flaw-detection instruments to
analyze data. In addition to the rectification of detection of the echoes described
above, another process is that of a baseline suppressor that eliminates a few deci-
bels of the amplitude just above zero amplitude. This process serves to emphasize
the more significant flaw echoes, which are now easier to ascertain. A third process
constitutes the range gate that selects a time range from t1 to t2 along the A-scan
baseline. The signals within the range gate may be either (a) suppressed or (b) ana-
lyzed to the exclusion of all other signals. A computer, an internal alarm trigger, or
an external analog instrument may execute the analysis. An alarm may be activated
if echoes fall within the range gate exceeds a certain amplitude or threshold.

The A-scan procedure is also used to measure gauge thickness on the basis of
the known velocity of the pulse inside the workpiece and the time it takes for an
echo to be received from the backside of the workpiece.
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Figure 16.10. A-scan display for the generic ultrasonic instrument of Figure 16.9. The
amplitude is shown presented as RF in (a) pr as rectified and detected in (b), versus time,
which is proportional to the distance into the workpiece.

B-Scan
By introducing a mechanism to physically move a transducer over a workpiece in
an appropriate manner, a 2D electronic or electromechanical display can provide a
picture of a slice of the interior of the workpiece. Figure 16.11 shows a schematic
of a scanning mechanism in an immersion tank. The transducer moves in the
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Figure 16.11. Schematic of a scanning mechanism in an immersion tank. The transducer
can be translated and angulated to aim at a target.

x- and y-directions while propagating signals in the z-direction (travel time is
along the z-direction).

A B-scan portrays an x–z slice of the workpiece at a specific position yi and then
makes another x–z survey at yz+1, and so on. The transducer travels along x at a
rate allowing the ultrasonic pulse to interrogate the workpiece many times over the
x-direction of the workpiece. The pulse repetition rate must be kept sufficiently
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slow to allow the previous pulse to drop below the noise level before the next pulse
is sent. One of the coordinates on the display is the position xB representing the
location the transducer was at the time of arrival tB of a refection from a reflector
R (R1 or R2 or R3) as shown in Figure 16.11, depending on whether the beam
in the slice y passes over them. It follows that tB represents the other coordinate
of the point (xB, tB). If the display is assigned a gray scale, the brightness of
the display corresponds to the amplitude of the reflection. In order to establish an
“on-off” scale, a threshold may be assigned to that only echoes exceeding a certain
amplitude are displayed. The B-scan procedure is extensively used in medical
ultrasonics, especially in obstetrics.

C-Scan
The C-scan procedure differs from B-scan in that, while the transducer scans
along the x-axis in consecutive steps yi , the coordinate on the display is (x , y).
The display is nonzero only if a reflecting surface R lies within the beam range
along z centered at (x , y). This configuration would ordinarily result in the echoes
from the front and back surfaces of the workpiece swamping the display, but they
are disallowed by setting up a range gate to accept and transmit echoes only if
they arise from regions below the top surface and above the bottom surface of the
workpiece. It is also apparent that the range gate can be narrowed to accept signals
from a slice thinner in the z-direction. A threshold may also be prescribed within
the gate so that only signals above a set amplitude will be displayed. A gray scale
can also be assigned.

In both the B-scan and A-scan procedures, a computer can be utilized for data
storage and image enhancement. Color monitors can be useful for pseduocolor
gray scales.2
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Problems for Chapter 16

1. For a frequency of 0.1 MHz, find the threshold frequency in gas-free water for
the onset of cavitation. Compare with the value of the threshold for aerated
water subjected to the same frequency.

2. At a hydrostatic pressure of 135 μPa and a 35 kHz sinusoidal signal, find the
critical radius for cavitation to occur. Assume a value of 1.4 for the ratio of
specific heats and a surface tension of 75 dynes/cm.

3. At a magnetic field of 500 oersteds, find the mechanical strain of nickel.
4. At the magnetic field of 500 oersteds, find the mechanical strain of permendur.

What is the major difference between the mechanical strain of this problem and
that of Problem 3?
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5. In the cases of Problems 3 and 4 for a crystal of 20 mm length, what will be the
respective changes in the length of the crystals fabricated from the materials of
the last two problems?

6. Compare the mechanical strains of ferrous ferrite with that of 12 Alter for a
magnetic polarization of 20 weber m2.

7. Given a magnetostrictive material with a known Young’s modulus of 110 GPa
and a density of 7650 kg/m3:
(a) what is the velocity of sound in that material?
(b) find the fundamental frequency for magentostriction for a length of 50 mm.

8. Why is A-scanning inadequate for a sonogram of a fetus?



17
Commercial and Medical
Ultrasound Applications

17.1 The Growth of Ultrasonic Applications

It is recognized among technologists that the field of ultrasonics is still in its in-
fancy, and many new uses for ultrasound will continue to accrue in commercial
and medical fields. Ultrasound is proving its continued worth in diagnostics, as it is
generally nondestructive at lower intensities and does not engender the deleterious
effects on materials and living tissues that X-rays do. At higher levels of operation,
ultrasound is used in manufacturing operations in cleaning, cutting, and welding
materials and to provide therapeutic treatment and alleviate the trauma of surgery
by making possible increased precision in incisions, targeting of tumors and in-
fected tissues for selective ablation, and stanching bleeding. Improvements have
been made and are still continuing; as the results of better imaging, more versatile
transducer arrays, and more powerful analytical algorithms are rendered possible
by more powerful computers and larger data storage systems. In this chapter a
survey is conducted of the uses of ultrasound in manufacturing and agricultural
processes, quality control, and in medical (including dentistry) diagnostics and
therapeutic procedures. In addition to manufacturing, the petroleum, chemical,
and pharmaceutical sectors also make use of ultrasound to monitor and facilitate
production. The safety of ultrasound also constitutes an important topic in this
section.

17.2 Industrial Applications of Ultrasound

Ultrasonic Cleaning
Ultrasonic cleaning is the oldest industrial application of power ultrasound. Appli-
cations span a wide variety of industries ranging from castings to semiconductors.
Ultrasonic cleaning works best on relatively hard materials such as metals, glass,
ceramics, and plastics, which reflect rather than absorb sound.

Both cavitation and the agitation of the fluid by the waves are entailed in
the process of ultrasonic cleaning. At lower frequencies, cavitation acts as the

479
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Figure 17.1. Conveyor belt for ultrasonic cleaning.

principal agent but at higher frequencies the cleaning effect occurs mainly from
agitation. Most cleaning applications are executed in the frequency range of 20–
50 kHz, where cavitation effects occur more strongly. Either piezoelectric or mag-
netostrictive sources are used. The workpiece being cleaned is immersed in a
tank containing a liquid selected on the basis of its susceptibility to cavitation,
its detergent properties, ability to degrease, and so on. Trichlroethylene and cy-
clohexane are among the more satisfactory fluids used for ultrasonic cleaning.
Standard ultrasonic cleaners range in power from 100 to several thousand watts
with corresponding tanks capacities of 4–160 liters. Multi-kilowatt special sys-
tems with tank capacities of several hundred liters are not uncommon. In recent
years, low-power, inexpensive (below $100) ultrasonic cleaners have been made
available, thereby rendering ultrasonic cleaning accessible to small shops and
laboratories.

Ultrasound cleaning lends itself to continuous processing in which a series of
workpieces can be transported on a conveyor belt through a series of processes
in separate tanks as shown in Figure 17.1. Ultrasonic cleaning has superseded
other older usual methods of cleaning, particularly when these methods are in-
effective and liable to cause damage. Applications include the removal of lap-
ping paste from lenses without scratching after grinding, the flushout of grease
and machining particulates from otherwise inaccessible small crevices in engine
components, removal of blood and other organic material from surgical instru-
ments after use, and so on. Very delicate parts that can be damaged by cavita-
tion are cleaned by wave agitation at much higher frequencies, from 100 kHz to
1 MHz.

In general, modern ultrasonic cleaners employ solid-state electronic power sup-
plies incorporating automatic tuning; thus they do not require operator’s attention.
A problem prevalent with all ultrasonic cleaners is the gradual deterioration of the
tank due to cavitation erosion. This depends principally on the application, and
well-designed systems can provide years of satisfactory service.
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Flaw Detection and Thickness Measurements
A method of nondestructive testing, the pulse technique, is used extensively to
determine the propagation constants of solids, particularly in the MHz frequency
range. This method consists of sending a short train of sound waves through a
medium to a receiver. In the transmission mode of the pulse technique, the receiver
is placed at a measured distance from the source. In the echo mode, a reversible
transducer acts as both source and receiver, with a reflector used to reflect the
pulses. The speed of sound in a medium can be determined from the time of travel
of the pulse over a given length of acoustic path. Longitudinal waves are generally
used. In gauging the thickness of a specimen, advantage is taken of the fact that a
beam of pulses will reflect from the specimen surface opposite to the side of the
reversible transducer.

The use of the single-pulse method for flaw detection is fairly straightforward
when the specimen has two parallel surfaces and the defect is linear and roughly
parallel to these surfaces but not too close to a surface or another defect. If the
pulse is followed on an oscilloscope and there is no defect present, two peaks,
say, A and B, will appear on the screen. Peak A represents the instant of the
transmission of the pulse, and peak B that of its return after a simple echo. Peak
B is referred to as the bottom echo. When a defect is present, a discontinuity
of the characteristic impedance and some, or possibly all, of the sound energy is
prematurely reflected back to the transducer. Another peak will then occur between
A and B. The distance AC indicates the depth where the flaw exists and the height
of the peak C determines the extent of the defect.

Figure 17.2 illustrates a schematic of a longitudinal wave probe used to detect
flaws. A crystal transducer is normally used, and it is encased in a suitable housing.
The crystal is mounted for heavy damping, which results in the propagation of

Figure 17.2. Longitudinal wave probe for detecting flaws.
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small pulses to allow for greater accuracy in locating defects and better resolution
of neighboring defects from one another. The transducer is protected by a plastic
cover that is coupled to the crystal with oil so as to prevent wear by friction between
the surfaces of the crystal and the material being tested. It would be ideal for the
characteristic impedances of the transducer material, the material of the protective
cover, and the oil should be similar. Sometimes it is more desirable to apply the
immersion method, whereby both the specimen and the probe are immersed in
water, with the probe at a fixed distance from the upper surface of the sample. An
additional peak that represents the echo from the interface between the immersion
liquid and the sample will appear on the oscilloscope screen.

When a defect is not parallel with a surface, it is preferable to use an angled
probe, which consists of a transducer mounted on a wedge. This enables the sound
waves to be incident normally to the defect, and a greater degree of sensitivity is
thus achieved. Using variable-angled probes makes it easier to better gauge the
direction of defects that might otherwise remained undetected. For samples having
irregular shapes, two probes are used, one acting as a sender and the other serving
as a receiver in order to locate the defects. Care should be taken that coupling
between the transducers should involve the medium and nothing else.

Flaws, such as those that occur in butt welds oriented at right angles to the
surface, are commonly detected through the procedure of forward scanning. Here
a beam of transverse waves is propagated, after refraction at the boundary, in the
medium at a shallow angle to the surface. In Figure 17.3(a) the transducer is shown

Figure 17.3. Transducer mounted on plexiglass wedge and setup of transverse wave
probes for locating a defect in a specimen.
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mounted on a Plexiglas wedge and the longitudinal waves are directed to the surface
with an angle of incidence greater than the first critical angle (this is the angle of
incidence sufficiently large that the refracted ray is directed along the boundary
rather than into the medium). The figure shows that the wedge is shaped in such a
manner that the longitudinal waves that are reflected at the surface become totally
absorbed by subsequent reflections. In Figure 17.3(b) a similar probe is positioned
at a suitable location to receive the waves from the defect after a reflection at
the base of the specimen. In a given substance, the transverse wave velocity is
generally about half that of the longitudinal wave velocity, so the sensitivity of this
methodology is twice that for longitudinal procedures.

Surface defects can be discerned through the means of surface waves. These
are produced by a probe similar to that shown in Figure 17.3(a), but the inci-
dent longitudinal waves are directed to the surface at the second critical angle
where the transverse waves are refracted at an angle of 90◦ (i.e., along the bound-
ary surface). Laminar defects that exist just below the surface, which are hard
to detect by normal longitudinal wave methods, can be located by Lamb waves
(Worlton, 1957). According to Lamb, a solid plate can resonate at an infinite
number of frequencies. The portion of specimen between the surface and a lam-
ination close to it forms such a plate. If surface waves are directed toward this
plate, it will resonate and generate a signal that can show up on an oscilloscope
screen.

Determination of Propagation Velocity and Attenuation
through an Interferometer
The interferometer is a continuous wave device that can accurately measure ve-
locity and attenuation in liquids and gases that can sustained standing waves. It
consists of a fluid column that contains a fixed, air-backed piezoelectric trans-
ducer at one end and a moveable rigid reflector at the other end. A fixed frequency
is selected. The reflector is moved with respect to the transducer by a microm-
eter adjustment mechanism. As the reflector moves, the reflected waves become
periodically in and out of phase with the transmitted waves, as a result of the corre-
sponding constructive and destructive interference. The effect of the interference
on the crystals influences the load impedance detected by electronic system. The
load current in the electronic amplifier fluctuates accordingly. The wavelength of
the sound is established by the distance the micrometer moves the reflector over
one cycle of load current fluctuation, with the distance between two successive
maxima being equal to half-wavelength λ/2.

Optical interference methods also have been used in this fashion to accurately
measure the wavelengths of standing waves at high frequencies (near 1.0 MHz
or above). An accuracy of 0.05% is typical for the interferometer, which depends
on the quality of micrometer readings, the parallelism between transducer and
reflector surfaces, and the accuracy of the frequency determination. The velocity
of sound is found by simply multiplying the frequency by the wavelength. The
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Figure 17.4. Magnetostrictive delay line.

attenuation is found from the decay of the maxima of the periodic amplitude plotted
as the function of the distance x between the transmitter and the reflector increases.

Ultrasonic Delay Lines
Delay lines are used to store electrical signals for finite time periods. These are used
in computers to store information to be extracted for a later stage of calculation. A
method for generating the delay is to convert those signals into ultrasonic waves
that then travel through a material to be reconverted into their original forms. The
simplest ultrasonic delay line is a crystal transducer radiating into a column of
liquid, such as mercury, that terminates at a reflector. An adjustment of the delay
time can be effected by changing the position of the reflector relative to the crystal.
As liquid delay devices are not always convenient to use, solid delay lines are
more common. For delay times of a few microseconds, only a few centimeters of
a solid rod or block is sufficient. The delay time may be doubled by using shear
waves instead of longitudinal waves. If even longer delay times are required, say,
in the order of a few milliseconds, very long acoustic paths are necessary. These
can be achieved by using materials in the form of polygons in which large numbers
of multiple reflections can occur. The solid delay line has the disadvantage that
the delay time usually cannot be varied. However, the magnetostrictive delay line,
illustrated in Figure 17.4, can be varied in length and unwanted reflections are
avoided by coating the ends of the rods with grease, which completely absorbs the
sound waves. The line may be a wire, a rod, or some sort of ribbon of ferromagnetic
material such as nickel. An electrical signal applied to coil A induces through a
magnetostricive effect a sound pulse in the line. The pulse travels along the line
and induces an electrical signal in coil B by the reverse magnetostrictive effect.
The permanent magnets C and D provide the requisite polarization.

Measuring Thicknesses through the Pulse Technique
When the pulse technique is used for gauging thicknesses, better results are
achieved through the use of a variable delay line. Two pulses are generated si-
multaneously. One pulse is sent through the sample and the other through a delay
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line, which can be a length of nickel wire or a column of liquid terminating in a
reflector. The latter pulse is indicated on the oscilloscope by a trace following that
representing the pulse passing through the sample. The delay line is adjusted in
length by means of a micrometer device until the two traces on the screen coincide
positionwise. The thickness of the specimen is derived from the predetermined
calibration of the delay line.

A major advantage of using ultrasound for thickness measurement is that access
to only one surface is needed. This is especially useful in measuring the extent
of corrosion in infrastructures such as viaducts, sewers, gas pipes, and chemical
conduits. The thicknesses of ship hulls can be monitored at sea without resorting to
taking sample borings, an expensive and tedious process that is not 100% effective.
In the livestock industry, ultrasonic thickness measurement is used to measure the
amount of fat on the bodies of live animals.

Mechanical Stress Measurements
When a solid material undergoes a change in mechanical stress, changes also
occur in its elastic moduli and hence in its acoustic velocities (Shahbender, 1971).
This method can also determine the variations of stress in real time. In order
to render possible the use of this procedure, a calibration curve is necessary to
provide the reference data, namely, plots of velocity (in terms of percentage) in
a direction as a function of stress applied normal to that direction. Figure 17.5
displays typical calibration curves for longitudinal waves and also for shear waves
polarized perpendicular to the direction of the stress and also polarized parallel
to the direction of the stress. It can be inferred that the variations of the two
components of shear velocity with time are different. Thus, at any given time
the corresponding wave vectors will be out of phase with each other. This phase

Figure 17.5. Calibration curves for longitudinal waves.
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difference φ is given by
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whereω denotes the angular frequency, L is the acoustic path length, c0 is the shear
wave velocity in the unstressed medium, and (c/c0)n and (c/c0)p represent
the fractional shear velocity for polarizations in directions normal to and parallel
with the direction of stress, respectively. The value of L is found simply from
longitudinal wave measurements while φ is obtained by the means of a suitable
phase-shift network. This methodology is also applied to determine third-order
elastic constants.

The Ultrasonic Flowmeter
The Doppler principle constitutes the operating basis of the ultrasonic flowmeter.
Two reversible transducers are submerged in the liquid along the line of flow. One
transducer acts as a signal source of ultrasonic pulses and the other acts as a receiver.
At short regular intervals the roles of the transducers are reversed, so that the source
becomes the receiver and the receiver becomes the source. The wave velocities are
c + u along the direction of the flow and c − u in the opposite direction, where c
represents the propagation velocity of sound in the fluid and u the velocity of the
streamline flow of the liquid. A number of techniques have been used to compare
the upstream and downstream propagation rates. A “sing-around” method uses a
pulse generator to produce a short train of ultrasonic waves. The received signal is
amplified and used to retrigger the pulse generator. If we neglect delay times due
to the electronic system and the distance the pulse travels beyond the fluid stream,
the difference between the downstream and upstream pulse repetition rates is

f1 − f2 = 2u

d

where d represents the distance between the two transducers.
Another type of ultrasonic flowmeter is based upon the deflection of an ultrasonic

beam by the fluid flow (Dalke and Welkowitz, 1960). In Figure 17.6, a transmitting
transducer located on one side of the fluid conduit emits a continuous signal into the
fluid stream. A split transducer on the other side of the pipe determines the amount
of beam deflection. A differential amplifier is used to determine the difference in
the outputs of the two receiving transducers. If there is no flow, the beam falls
midway between the two receiving sections, and the two sections generate equal
voltages, and the output from the differential amplifier will be zero. When fluid flow
occurs, the beam shifts in the direction to the flow by an amount corresponding to
the flow speed, and the outputs from the two sections differ. The difference voltage
then corresponds to the rate of flow. Assuming a constant flow rate across the pipe,
the deflection φ of the beam is computed from

φ = tan−1
(u

c

)
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Figure 17.6. Schematic of a beam-deflection ultrasonic flowmeter.

Ultrasonic meters are being used to measure flow rates of rivers, nuclear reac-
tor heat-exchanger fluids, gas-containing emulsion, slurries, corrosive liquids, and
wind velocities. These measurement devices carry the advantage that they intro-
duce negligible pressure loss in a system and they are economical to operate and
can handle a wide range of flow rates, pipe diameters, and pressures.

Resonance Method of Measuring Sound Propagation Speed
The resonance method is similar to the interferometer method for measuring ve-
locity, but it can be applied to solids as well as to fluids. This involves the use of
a fixed transducer and a fixed reflector or two transducers spaced a fixed distance
apart. The transducer is driven to sweep through a range of frequencies to deter-
mine successive resonances. In a nondispersive medium, the difference between
two successive resonant frequencies equals the fundamental resonant frequency
of the medium, i.e.,

c = 2 l f

where l is the distance between the transducer and the reflecting surface and  f
denotes the difference between successive resonant frequencies.

Motion and Fire Sensing
One of the few ultrasonic applications in open air is that of the motion and fire
sensor, which is restricted to the lower kilohertz range, where attenuation is not
very much. A magnetostrictive transducer placed at some point in a room emits
pulses in all directions. The reflected signals from the walls and furniture are
eventually picked up by a receiver, from which a constant indication is generated.
Any variation in the sound field, caused by an intruder or a change in temperature,
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gives rise to a change in this indication, which triggers an alarm. One version of
this device is a light switch that goes on automatically when someone enters an
empty room and goes off automatically when nobody is present in the room after
a predetermined period of time.

Working of Metals and Plastics
Ultrasound have been successfully used in the treatment and working of metals
and plastics. As a molten metal is cooled, bubbles should be removed before
solidification sets in. Otherwise defects will occur. Irradiation of the melt with
ultrasound sets the fluid particles in motion so that bubbles tend to coalesce and,
when sufficiently large, tend to rise to the surface. As cooling progresses, crystals
begin to form at the solidification temperature. The crystal growth depends on
the rate of cooling and the presence of specific impurities in the metal. The high
energy of the ultrasound-induced cavitation causes the crystals to be break up as
they form. The solid that is finally formed has a much finer grain structure than it
would have if cooling had taken place with the melt undisturbed.

Ultrasonic machining is one of the first industrial applications of high-intensity
ultrasound. In one technique, a slurry consisting of abrasive particles suspended in
a low-viscosity liquid flows over the end of a tool shaped in the desired geometry
of the impression to be made. The axial motion of the tool tip and the ensuing
cavitation impart high accelerations to the abrasive particles and thus erode away
the material from the workpiece. This method is suitable for machining of brittle
ceramic materials as well as of powder-metal components. But in the latter ap-
plication, there has been evidence of highly accelerated electrolytic erosion that
adversely affects the tool.

Ultrasonic drills do not have transducers in immediate contact with the work-
piece. An intermediate material is necessary, and this has the task of matching the
impedance. In order to achieve maximum velocity amplitude in the tool, a tapered
rod that acts as an acoustic transformer in the same manner as a loudspeaker horn
is used. The rod is made of a material that has a characteristic impedance match-
ing that of the transducer to which it is rigidly fixed. It is exactly one wavelength
long in order to achieve maximum transfer efficiency and clamped at a distance of
one-fourth wavelength from the transducer.

The soldering of metals without any flux can be achieved through an ultrasonic
soldering iron illustrated in Figure 17.7. The soldering iron is similar in design to
an electronic drill, but the tool at the end of the drill is replaced by the electrically
heated bit. The vibration of the bit produces cavitation in the solder, thus effectively
cleaning the surface of the workpiece and removing any oxide coating. Until fluxes
were developed for soldering aluminum, ultrasound had provided the only effective
method of soldering this metal. Ultrasound soldering is now being extensively used
for soldering joints in miniaturized printed circuit boards.

Ultrasonic welding is effected when two materials are pressed together in inti-
mate contact and the ultrasound vibrations produce shearing stresses at the inter-
face, thereby generating a great deal of heat. This phenomenon lends itself well to
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Figure 17.7. Ultrasound soldering iron.

produce spot and seam welds in metals such as 304 and 321 stainless steel, alu-
minum, brass, copper, zirconium, titanium, gold, molybdenum-0.5% titanium, and
platinum. This type of welding can be applied to very small wires to seam welding
of metal plates up to 0.5 cm in thickness. Both similar and dissimilar metals can
be welded. While the formation of a thin molten film in the interface seems to be
the primary mechanism of bonding, there is some evidence of solid-state bonding
instigated by diffusion in the welding zone at low amplitudes and high clamping
pressure.

Bonding of thermoplastic materials1 through ultrasound is even easier than for
metals, since the necessary equipment is smaller and requires appreciably less
power. Ultrasonic welding of thermoplastic materials has gained wide acceptance,
particularly in situations where thick materials are joined together and the toxicity
of adhesives must be avoided. In addition to bonding plastic parts, the same equip-
ment can be used to insert metal parts in plastic pieces. A hole slightly smaller
than the metal is drilled or incorporated in a molding part and the metal is driven
into the hole ultrasonically. During the insertion the melted plastic encapsulates
the metal piece and fills flutes, threads, undercuts, and so on.

Ultrasound welding combines the ideal ingredients sought in modern manu-
facturing. The process is fast and clean, requires no consumables, does not call
for skilled operators, and lends itself to automation. It is used extensively in the
automotive industry of assembly of taillights dashboards, heater ducts, and other
components where plastics have replaced the traditional use of metal and glass.

1 Plastics fall into two categories: thermoplastic and thermosetting. The former plastic type will soften at
sufficiently elevated temperatures and reset upon cooling. Thermosetting plastics retain their rigidity
at elevated temperatures.
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In contrast with ultrasonic cleaning, ultrasonic plastic welding requires much
greater power densities, typically at hundreds of watts per square centimeter at the
weld and at the contact of the tool with the workpiece. Modern plastic welders
operate predominantly around 20 kHz at power outputs below 1 kW, lock automat-
ically on the horn resonance, and keep vibrational amplitude constant for varying
mechanical loads.

Commercial gear for ultrasonic metal welding was introduced in the late 1950s
and originally used in the semiconductor industry. Later advances in equipment
design and the need for joining high-conductivity metals spurred greater in-
terest in the process. Standard equipment now available can weld parts up to
0.32 cm (1/8 in.) thick and larger, depending on the material and part configu-
ration. Ultrasonic metal welds are characterized by low heat (the material does
not melt as in the process of arc welding) and relatively low distortion. Be-
cause welding temperatures are well below the melting temperatures, embrittle-
ment and formulation of high-resistance intermetallic compounds are avoided.
The equipment for ultrasonic metal welding range from low power microbon-
ders (used in semiconductor industry) operating between 40 and 60 kHz to ma-
chines of several kilowatt output capacity operating between 10 and 20 kHz for
welding of larger parts. It is interesting to note that on high-conductivity ma-
terials ultrasonic welding can be over 20 times more energy efficient than re-
sistance welding. A 5 kW welder may be equivalent to a 100-kVA resistance
welder.

Agriculture
Over the last decade, ultrasound technology has considerably impacted the meat
industry, with a commanding role in the rating of product value. Ultrasound is being
used to measure the thickness of fat layers in pigs and cattle as part of livestock
management. It is utilized to predict carcass traits such as fat cover, ribeye area,
and intra-muscular fat (marbling) in live animals. Ultrasound also has been used
to improve the quality of homogenized milk. A related agricultural application is
pest control that includes killing of insects.

Extraction Processes
High-intensity cavitation is widely used for biological cell disruption in research
and low volume processing. Near field cavitation breaks down cell walls, caus-
ing release of the cell contents into the surrounding fluid. This method is ap-
plied to extract active antigens for making vaccines and as a general tool for
studying cell structure. Other extraction uses include the extraction of perfume
from flowers, essential oils from hops, juices from fruits, and chemicals from
plants. The equipment is normally in the range of 100 –500 W, operating at around
20 kHz. High amplitude horns are used to produce power densities of around
80 W/cm2.
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Atomization
Ultrasonic atomizers can produce small droplets of predictable size. For a given
liquid, droplet size depends on atomizer frequency and it gets smaller with increas-
ing frequency. Ultrasonic nebulizers are widely used for medical inhalation and
operate between 1 and 3 MHz to produce droplets between 1 and 5 μm. Increased
combustion engine efficiency and reduction of pollution have been made possible
by ultrasound atomization of fuel, operating between 20 and 200 kHz.

Emulsification and Flow Enhancement
The principal advantage of ultrasonic emulsification lies in the ability to mix some
immiscible liquids without additives (surfactants). Liquid flow through porous
media can be increased by ultrasound and can find use in filtering and impregnation.

Ultrasonic Viscometer
The ideal liquid should not support a shear stress, but the fact is that liquids do
have viscosity that gives rise to shear waves. A viscoelastic liquid combining
the attributes of both fluid and solid behaviors (which produces shear stresses) is
described by

− ∂ε
∂y

= 1

η
py + 1

G
ṗy (17.1)

where py represents a variable shear stress; ṗy is the time rate of the shear stress, ε
is the fluid particle displacement, η is the viscosity coefficient; and G is the shear
coefficient. The solution to Equation (17.1) is
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Equation (17.2) indicates that a periodically varying shear produces a relaxation
process characterized by a time constant τ = η/G. The associated relaxation fre-
quency is given by

f0 = 1

2πτ
= G

2πη
(17.3)

From Equation (17.2) the attenuation of shear waves in a viscous liquid at a given
frequency decreases with increasing viscosity. The damping of a vibrating shear
wave transducer submerged in the liquid is a function of the coefficient of vis-
cosity of the liquid. One way of measuring this quantity is to apply a pulse to
a Y-cut crystal or to a torsionally vibrating rod immersed in the liquid so that
it vibrates freely with damped harmonic motion. When the amplitude of the vi-
bration drops to a predetermined level, another pulse is generated. The rate of
pulse repetition increases with damping and hence decreases with increase in vis-
cosity. The device is calibrated by using liquids having known coefficients of
viscosity.
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17.3 Ultrasound Imaging

The application of ultrasound to imaging processes is extremely important in in-
dustry and in medicine. Because imaging entails low-intensity ultrasound energy,
it provides a valuable nondestructive testing technique. Ultrasonic imaging, which
may be defined as any technique of providing a visible display of the intensity and
phase distributions in an acoustic field, falls into a number of categories: (1) the
electronic-acoustic imaging; (2) B-scanning, most commonly used in medical di-
agnosis; (3) C-scanning, widely used in nondestructive testing and inspection of
flat and cylindrical surfaces; (4) liquid-surface-levitation presentations; (5) liq-
uid crystal display (LCD), photographic or similar display; (6) light-refraction
methods; and (7) acoustical holography.

Electron-acoustic Image Converters
The concept of an electron-image converter originated by the Russian scientist S.
Ya. Sokolov (1937) who envisioned a device, similar to a video camera tube, in
which the photosensitive element is replaced by a pressure-sensitive piezoelectric
plate. Secondary electrons are given off when the plate is struck by a scanning
beam of electrons. An ultrasound field aimed at the plate influences the electrical
potentials on the faces of the plate. These potentials are proportional to the im-
pressed acoustic pressure, with the result that the electrical potentials modulate
the secondary emission of electrons. The secondary emission that results from the
impingement of an electron beam is a function of the velocity of the primary elec-
trons and also of the plate material. The ratio of the number of secondary electrons
leaving the plate to the number of electrons impinging on the plate is called the
secondary emission ratio. When the primary electron voltage is increased from
zero, the secondary emission rate also increases from zero, passes through a max-
imum, and then decreases. With some piezoelectric materials, the maximum ratio
exceeds unity and there are two velocities, one above and one below the point of
maximum secondary emission, at which the ratio becomes unity. In other materials,
the maximum secondary emission ratio never exceeds unity.

Smythe et al. (1953) improved on the Sokolov concept by developing an
ultrasonic-imaging camera that could be operated in either an amplitude-sensitive
mode or a phase-sensitive mode. In the amplitude-sensitive mode, a relatively low-
voltage (160–200 V) scanning beam is used. The secondary emission ratio is less
than zero, which allows the potential of the surface of the (quartz) piezoelectric
plate to nearly equal that of the electron gun cathode, in absence of ultrasound.
After a scan without ultrasound, the ultrasound is activated and the plate scanned
again. The electrons are distributed over the surface of the plate in direct ratio to the
piezoelectric voltage present at each point of the surface. A corresponding image
charge forms on an anode located externally to the tube, and the video image is
obtained directly from the anode charges. The ultrasound is then turned off and the
negative charge on the piezoelectric surface is removed by inundating the surface
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with gas ions, a process which occurs in about 0.2 s. High-voltage scanning can
also be applied to remove the negative charge, followed by a low-voltage scanning
to restore the surface back to the cathode potential, with the ultrasound turned
off. This procedure removes the need for ion recharging and allows the use of a
high-vacuum tube.

For the phase-sensitive mode of operation, higher-voltage (600 V) beams are
used in conjunction with an auxiliary grid on which the secondary emission current
is collected. The inner quartz surface is stabilized at approximately the same voltage
as the auxiliary grid. The piezoelectric charge in the quartz plate tends toward
neutralization and, consequently, the current to the quartz plate and to the collector
grid fluctuates at the frequency of the ultrasonic waves. The output pressure at each
point on the plate is therefore proportional to the incident ultrasonic pressure.

Other methods have been developed to reproduce the image on the piezoelectric
plate in order to circumvent problems posed by high-velocity scanning-beam sta-
bilization of an insulating surface. One method entails the use of a photoemissive
surface deposited on the piezoelectric surface, with the scanning being executed
by a moving beam of light. Mechanical methods also were developed, and they
proved to be appreciably more sensitive than scanning with an electron beam. The
surface of a piezoelectric plate subjected to an ultrasonic field is scanned mechan-
ically using a capacitive, noncontacting electrode or by sliding a small electrode
over the surface itself.

Jacobs (1962) introduced the use of electron multipliers in the camera tube of
ultrasound image converters based on Sokolov’s method. A schematic diagram
of Jacob’s device is shown in Figure 17.8. The construction provides shielding
for the low-voltage circuits and virtually eliminates ground loops. The secondary
emission beams produced by the scanning beam are attracted toward a positive-
charged electrode in the electron-multiplier unit. The electron multiplier amplifies

Figure 17.8. Jacobs device for ultrasonic scanning.
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the signal currents by about 100,000 times greater than the threshold values before
they are fed into the associated amplifiers. Thus, the electron multiplier serves
as a wide-band amplifier with good noise characteristics. Its output constitutes
the video signal that is processed through a conventional closed-circuit television
system.

Two sealed ultrasonic camera tubes were developed by Jacobs: one version in-
corporates quartz crystals permanently sealed to the end of the tube and the features
interchangeable crystals which permit operation over the frequency range from 1
to 15 MHz. Color also has been introduced to increase the sensitivity of the ultra-
sonic image converter, particularly in view of the fact that the human eye is more
sensitive to changes in color than to differential changes in display brightness. The
color display indicates both relative amplitude and phase of the ultrasonic signal
undergoing analysis. In North America, the video method used is the National
Television System Committee (NTSC) color broadcasting standard, and the oper-
ating frequency is 3.58 MHz.2 A more dominant video broadcasting method is the
PAL system that is used in the United Kingdom, Germany, Spain, Portugal, Italy,
China, India, most of Africa, and the Middle East. Several distinguishing features
of the PAL system are: (a) a better overall picture than NTSC because of the in-
creased amount of scan lines and (b) because color was part of the standard from
the beginning, color consistency between stations and TVs is considerably better.
There is a down side to PAL, however, as there are fewer frames (25) displayed
per second, compared with nearly 30 frames per second of the NTSC system.

Acoustic Lens
Acoustic lens are necessary in the use of electron-acoustic image converters.
Acoustic lens can (a) increase the sensitivity of an imaging system through energy
concentration and (b) provide coverage of a larger area by concentrating the image
on the receiving piezoelectric element of the image converter in almost the same
fashion as an optical lens reduces a larger picture into a smaller area. For optimal
performance, the velocity of sound in the lens material must differ considerably
from that of the surrounding media, and the reflection of energy at the boundary
between the lens and the surrounding should be minimal. The latter condition is
fulfilled automatically when the acoustic impedances of the lens materials and
the surrounding medium match each other. Liquid lens of carbon tetrachloride or
chloroform have the same acoustic impedance as water, but their toxicity gener-
ally precludes their use in industry. Plastic lenses also have been developed, but
the sound propagation velocity in these materials exceeds that of water and they
present an impedance mismatch between the lenses and water, but not to the de-
gree of rendering them useless. The relatively high absorption of plastics limits
their use to frequencies less than 15 MHz. Metallic lenses, which can be made of
aluminum and other metals, possess low-absorption characteristics, so they can

2 In the year 2006 analog NTSC television broadcasts are scheduled to cease in the United States in
favor of the ATSC Digital Television Standard. This should result in higher definition video imaging.
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be used at frequencies exceeding 15 MHz, but the impedance mismatch between
metals and water essentially prevents their effective use.

The velocity of sound in solids is higher than in liquids, so solid concave lenses
are convergent and solid convex lenses are divergent—unlike the case of light
traveling in a vacuum or a gas through optical lenses.

Schlieren Imaging
Schlieren imaging has been used for many years as a tool to visualize sound fields.
Advantage is taken of the physical fact that pressure gradients in an ultrasonic wave
cause density gradients in the medium. When a light beam passes through these
gradients, it becomes refracted. The refracted light is used in schlieren apparatus
to produce an image of the sound field. Either of the two methods can be used to
produce the sound field image: (a) interruption of the refracted part of the beam
in order to remove it from the beam and focusing the remainder of the field onto
an image detector (e.g., a ground glass screen or camera film), or (b) focusing
the refracted rays on the image plane and eliminating the remainder of the beam
of light from the image. The result of the first method is a dark image on a light
background, and that of the second method is a light image on a dark background.

A schlieren device for direct viewing during nondestructive testing is schemat-
ically illustrated in Figure 17.9. The image is viewed directly on a ground plate
glass screen. At the right-hand side of Figure 17.9, the lamp (e.g., zirconium arc),
condenser lenses, a filter, first knife edge, and first collimator are mounted on a
single 1-m optical bench. The second collimator, second knife edge, and camera
system are mounted on another 1-m optical bench. The two benches themselves are
positioned on a 0.25 m wide, 5.75 m long steel girder. The water tank is mounted
apart from the optical system so that any movement or changes in the tank will not
cause the optical system to go out of alignment.

The optical system must be mechanically isolated from all the other parts of the
apparatus. When the device is being used, the image of the light source is centered
on the first knife edge, and then the collimating lenses, tank windows, second knife
edge, camera lenses, and viewing screen are centered in the light beam. Centering

Figure 17.9. Schlieren device for direct viewing in nondestructive testing.



496 17. Commercial and Medical Ultrasound Applications

of the optics must be precise to ensure maximum sensitivity and uniform field.
Through careful alignment and focusing, the field can be made to go from light
to gray to dark uniformly by adjusting the second knife edge further into the light
beam until it intercepts it completely. In the range of gray settings, convection
currents both in air and water become clearly visible. The ultrasonic field is best
rendered visible when the second knife edge is set to intercept all of the main beam,
thus allowing only light refracted in the ultrasonic field to pass and illuminate the
viewing plane. The optical system may also be adjusted for bright-field operation,
in which situation the ultrasonic perturbations appear as dark shadows.

Color schlieren photography is useful in the study of ultrasonic waves and shock
waves. Color can indicate the various pressure levels in an ultrasonic field. One
method of color schlieren photography uses a spectroscopic prism between a slit
located at the position of the first knife in Figure 17.9 and the first collimating lens.
This method produces colors ranging from red or from blue to green. Another
method developed by Waddell and Waddell (1970) produces a complete color
spectrum. They eliminated the spectroscopic prism and used a color-filter matrix
in place of the second knife edge and a vertical slit in place of the first knife edge.
Illumination was provided by a high-pressure mercury arc lamp. The color matrix
consisted of three filters, which represent the primary colors.

Liquid Crystal Imaging
Liquid crystals exhibit properties of solid crystals that are not apparent in ordinary
liquids. When a stress is placed upon a liquid crystal, its optical properties change.
A certain class of liquid crystals known as nematic crystals is used to indicate the
presence of an ultrasonic field with sensitivity equal to that of schlieren systems,
and with high resolution, large-area capability, and handling ease.

Ultrasonic Holography
Holography is a form of three-dimensional imaging that was conceived and de-
veloped by Dennis Gabor who received the Nobel Prize in physics for his efforts.
Gabor applied his discovery to electron microscopy to overcome the problem of
correcting spherical aberration of electronic lenses. The principle of holography is
as follows: a diffraction diagram of an object is taken with coherent illumination
and a coherent background is added to the diffracted wave. A photograph so taken
will contain the full information on the changes sustained by the illuminating wave
in traversing the object. The object can be reconstructed from this diagram by re-
moving the object and illuminating the photograph by the coherent background
alone. The wave emerging from the photograph will contain a reconstruction of
the original wave, which seems to issue from the object. A hologram, therefore, is
a recording or a photograph of two or more coherent waves. If one recorded wave
is from an illuminated object and another is a reference wave, simply illuminating
the hologram with the reference wave reconstructs twin images of the original
object, thus giving the illusion of three dimensions.
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Figure 17.10. Ultrasonic holography making use of liquid levitation.

The wave used in the reconstruction does not have to be the original, and this
allows the use of ultrasonic waves and the subsequent reconstruction of the image
using light from a laser. But the size of the image changes in proportion to the
ratio of the wavelength of the reconstructing wave to the wavelength of the original
illuminating wave. There are a number of methods of making acoustical holograms.
One method as shown in Figure 17.10 uses liquid levitation, where the acoustic
waves from below the surface of a liquid forms an ultrasonic image at the surface
of the liquid that can be rendered visible on a photographic plate. The reference
beam may be obtained either by reflecting a portion of the irradiating beam onto
the surface or by generating a separate wave through a second transducer. The
height of the bulge of the liquid surface due to the impetus of an acoustic wave is
critical; it should be small compared to the wavelength of the light.

17.4 Medical Uses of Ultrasound

Ultrasound use in the medical arts can be classified as being diagnostic or ther-
apeutic. While the diagnostic procedures involving ultrasound have been in use
for a number of years, ultrasonic therapeutics constitutes a newer, rapidly growing
domain. The ultrasound frequencies used in medical applications range from ap-
proximately 25 kHz used in dental plaque removal to the megahertz range that is
required for medical imaging. The merits of ultrasound diagnostics include safety,
convenience, and capability of detecting medical conditions to which X-rays and
other means of diagnosis are insensitive. Because ultrasound is much safer than
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X-rays, it is used in fetal monitoring, detection of aneurysms, and echocardiogra-
phy. The production of heat in the body through ultrasound is applied for its thera-
peutic value. The selectively greater absorption of ultrasound in cancerous tissues
has proven its usefulness in hypothermic treatment of cancer. Emerging develop-
ments include the use of ultrasonic waves to perform noninvasive or “bloodless”
surgery, stop internal bleeding in trauma patients, and control delivery of drugs or
other compounds. Enormous advances in electronic miniaturization are resulting
in fairly compact handheld diagnostic units.

Diagnostic Uses of Ultrasound
Diagnostic medical applications are based on the imaging procedures described in
Section 16.7. One diagnostic technique is based on the pulse method and second
diagnostic technique is based on the Doppler effect where the reflected wave is
shifted in frequency from that of the incident wave impinging on a moving target. In
the reflection or pulse-type equipment, A-scan, B-scan, or a combination of these
two methods are utilized to present data on an oscilloscope display or process
the data for permanent record. The A-scan presents echo amplitude and distance,
and it is used principally in echoencephalography for the detection of midline
shifts traceable to tumors or concussions. It has also been applied in obstetrics,
gynecology, and ophthalmology in conjunction with B-scanning techniques. In
B-scanning, the radar/sonar techniques of data processing are applied to synthesize
the reflected signals into a pattern on the oscilloscope display that corresponds to
a cross section of the region scanned lying in a plane parallel to the direction of
beam propagation.

The position of the probe is synchronized with the sweep of one of the axes of the
oscilloscope, and the echo amplitude appears as a spot with a specific intensity at a
position on the screen corresponding to the position of the plane causing the echo.
The TM-mode (or M-mode) is a diagnostic ultrasound representation of temporal
changes in echoes in which the depth of echo-producing interfaces is displayed
along one axis, and time (T) is displayed along the second axis, thus recording
motion of the interfaces toward and away from the transducer.

In order to resolve small structural details, the transmitted pulse should be as
short as possible, which means that the transducer must be highly damped. In order
to promote good coupling between the transducer and the body, a film of oil or
grease is applied at the selected spot, and care must be taken that the contacting
film is free of air bubbles. In immersion procedures (such as that for kidney stone
pulverization), coupling is effected through a bath of liquid, usually water. The
impedance match between water and soft tissue is good, and little energy is lost in
irradiating soft tissue. But the match between water and bone is poor and also the
attenuation in bone is high. The result in echoencephalography is that considerable
energy is lost, even where almost immediate contact is made with the skull bone.

Ultrasound densitometry is used to measure bone density in the heel, shinbone,
or kneecap. It is used as a screening tool and while currently not as precise as
absorptiometry techniques, it is still effective, inexpensive, portable and uses no
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radiation. This technique is primarily used as a screening tool to predict bone
fracture risk or to determine the need for single-energy X-ray absorptiometry
(SXA) or peripheral dual-energy X-ray absorptiometry (pDEXA) to ascertain the
presence of osteoporosis (degeneration or decalcification of the bone).

Ultrasound imaging is being extensively used to study cardiac functions. One
use of the A-scan technique is to monitor for early signs of rejection following a
heart transplant. As the heart fills at the onset of rejection, the muscle walls swell
and stiffen. Measurements are made using a 2-cm diameter, 2.25 MHz transducer
at a pulse repetition rate of 1000/s. Echo indications from the anterior wall and the
posterior wall supply the measurement information, as the distance between the
two walls indicates overall heart size. Echocardiography is useful in diagnosing
pericardial effusion (escape of fluid from a rupture in the pericardium) because
the echo received from the posterior wall of the heart is split when the transducer
is located on the anterior chest surface.

Echocardiography is also useful in assessing the degree of stenosis (narrowing
of opening) in mitral valves. The transducer is aimed at the anterior mitral leaflet
and the echo signal can record on a strip chart so that an upward movement of the
recorder pen corresponds to a movement toward the transducer and a downward
movement corresponds to a movement away from the transducer. The slope of the
tracing indicates the velocity of motion. The degree of stenosis affects the blood
flow rate through the opening. A number of symptoms can be discerned with the
use of this method; for example, rigidity or calcification of the mitral valve is
indicated by decrease in the total amplitude of the anterior mitral leaflet between
the closed position during ventricle systole and the position of maximum opening
in early diastole.

Intercardiac scanning is used to obtain plan-position (C-scan) displays for the
interior of the heart. A tiny probe is inserted into the right atrium through the exter-
nal jugular vein or the femoral vein. An advanced version of the probe consists of
many elements so that scanning can be achieved by sector techniques in which the
positions of points on the recorded image are correlated with beam direction. The
data from the transducer can be processed by computer and displayed. A-scanning
may be combined with C-scanning to provide 3D information. The motion of se-
lected regions of the heart can even be viewed on a video display, particular with
the use of focusing transducers, which can provide high-resolution images of the
heart.

A tomographic method of observing interior structures of the heart three-
dimensionally is based on a stereoscopic display of two-dimensional images. The
ultrasonic device functions in synchronism with the cardiac cycle to obtain phase-
specific tomograms, which then can be displayed on a storage CRT. Tomographic
systems are also used to investigate other internal organs such as right ventricle,
atrium, and kidney cysts that have irregular shapes.

Accurate diagnosis is rendered possible in the field of ophthalmology through
the use of ultrasound to diagnose conditions existing in the soft tissues of the orbit of
the light-opaque portions of the eye. Focused transducers are used with frequency
typically being at 15 MHz. This method can outline tumors, and detached retinas,
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measuring the length of the axis of the eye, and detect foreign bodies close to the
posterior eye wall. One instrument combines a diagnostic transducer for locating
foreign bodies with a surgical instrument for removing an object, which enables
rapid removal of foreign bodies from the eye by directing the surgical tool to the
object with least damage to the eye.

In the field of neurology, ultrasonic echoencephalography provides an imme-
diate means of detecting lateral shifts in the midline septum caused by tumors
or concussion. It is notable that every emergency ambulance in Japan is outfitted
with echoencephalographic equipment in order to identify victims with possible
subdural hemorrhage so that they may be transported directly to special neuro-
logical units for treatment. Posttraumatic intercrannial hemorrhage and skull and
brain trauma can be quickly diagnosed and lesions can be located rapidly without
discomfort to the patient. Ultrasonic pulses are transmitted through the temples. In
the A-scan mode, echo indications from the midline and the opposite temple areas
of the skull are presented on an oscilloscope screen. A shift in the midline is readily
discernible. B-scans, which could provide more information, are more effective
with small children and infants because their skulls are soft and have attenuation
coefficients lower than those in adults.

The ultrasonic B-scan technique for examining the abdomen is useful for detect-
ing pelvic tumors, hydatiform moles, cysts, and fibroids. It is also used to diagnose
pregnancy at 6 weeks (counted from the first day of the last menstrual period) and
afterwards. The obstetrician can follow the development of the fetus throughout
the pregnancy, including size and maturity and positioning of the placenta. The
presence of twins or multiple pregnancy is also revealed. This avoids the need for
X-rays and the attendant danger of irradiation to mother and child. Fetal death can
be confirmed much earlier by ultrasound than it can by radiography.

With improvements in ultrasonic and computer technology, 3D visualization
began to appear in the early 1980s. Some work came from the domain of cardi-
ologists where initial efforts were directed to determining the volume of cardiac
chambers. Real-time scanner probes mounted on articulated arms were often em-
ployed where positions of the probe can be accurately established. The principle
of 3D imaging has always been to stack parallel image sections together with their
positional information into a computer.

Ultrasonic diagnosis by echo methods extends to all parts of the body. Air and
other gases have much lower impedance than either liquid or solids, so air cavities
produce distinct echoes. Stationary air embolisms can be so identified because
they are located in areas usually filled with fluids. Moving embolisms can be
identified by Doppler methods. Gallstones have an acoustic impedance equivalent
to that of bone and so can provide good ultrasonic echoes. The ultrasonic B-scan
technique has been proven effective in diagnosing thyroid disorders. Disorders
detected ultrasonically include neoplastic lesions including cystic nodules, solid
adenoma and carcinoma, nonneoplastic lesions, subacute thyroidiis, and chronic
thyroiditis.

The Doppler method takes advantage of the fact that a shift in frequency occurs
when an ultrasonic wave is reflected from a moving target. Also any variation in
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fluid motion that causes a beam of ultrasound to be deflected causes a Doppler shift
in frequency. One application of the Doppler shift principle is for the detection of
fetal blood flow and heartbeat, which can provide a mother the exciting assurance
that her unborn baby is alive by listening to its heartbeat through a set of headphones
connected to the detecting equipment. Blood flow is measured through intact blood
vessels through the use of the Doppler principle with the carrier frequency ranging
from 2–20 MHz. The Doppler frequency signal is calibrated in terms of velocity,
according to the pitch of the Doppler signal. Doppler-type diagnostic units are
used to determine the severity of atherosclerosis, locating congenital heart defects,
and continuously monitoring fetal heartbeat during birth.

In 1991 researchers at Duke University developed a matrix array scanner for
imaging the heart. Three years later, the world’s first electronically steered matrix-
array 3D ultrasound imager was developed and it became commercially available
in 1997. The matrix array transducer, which steered the ultrasound beam in three
dimensions, contained 2000 elements of which 512 were used for image for-
mation. Newer units became available commercially for providing 3D scans of
fetuses in “color.” This resulted in a new market for “re-assurance” scans (some-
times called “entertainment scans”), as the attraction of being able to see a baby
before birth apparently is proved to be quite irresistible to parents-to-be (as well
as grandparents-to-be). Three-dimensional ultrasound has been helpful in deter-
mining the topographical geography of fetal heart valves while blood is flowing.
Another application is the imaging of microcirculation, which is important in the
study of artherosclerosis, diabetes, and cancer—this means that 3D ultrasound is
a powerful tool for ascertaining the progression of diseases in the body. As re-
cently as 2003, researchers at Norway’s SINTEF Unimed Ultrasound (Kaspersen,
2003) have demonstrated that real-time 3D ultrasound can be used as a diagnos-
tic imaging tool during surgery. These researchers have applied 3D ultrasound to
laparoscopic, neurological, and vascular surgeries.

Use of Contrast Agents
In the last decade, researchers in academia, pharmaceutical companies, and scanner
manufacturers invested manpower and funding in developing efficacious contrast
agents and new contrast specific modalities. Contrast agents can improve the image
quality of sonography either by decreasing the reflectivity of the undesired inter-
faces or by increasing the backscatter echoes from desired regions. In the former
approach, the contrast agents are taken orally, and for the latter approach, the agents
are introduced vascularly. In the upper GI tract, sonographic assessment is limited
by the gas-filled bowel, which produces shadowing artifacts. One agent, recently
approved by FDA, is SonoRx r©, a simethicone-coated cellulose. Vascular enhanc-
ing ultrasound entails the injection of contrast agent, such as perfluorochemicals
that have low solubility in blood and high vapor pressure.

One of the most important clinical uses of ultrasound contrast is in cardiology,
where it will potentially compete with thallium nuclear scans. Newer agents such
as Optison, Definity, and Sonazoid can produce myocardial perfusion images in
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humans. This is clinically significant, because visualization of the myocardial flow
permits direct assessment of underperfused or unperfused regions (i.e., areas of
ischemia or infarction) in patients with a history of chest pain. Myocardial imaging
using ultrasound contrast agents provides an assessment of the coronary arteries
and of the coronary blood flow reserve, as well as collateral blood flow that may
exist.

Any body cavity that can be accessed can, in principle, be injected with vas-
cular contrast. According to Shi et al. (2005), the most successful application in
this category is hysterosalpingo-contrast sonography (abbreviated HyCoSy) for
the evaluation of fallopian tube patency. Degenhardt et al. (1996) reported on
103 patients with fertility problems who underwent transvaginal sonography and
HyCoSy with Echovist 14. In 58 cases, HyCoSy was compared with conventional,
more invasive techniques such as chromolaparoscopy and 91% agreement was
found. The upshot is that HyCoSy is rapidly becoming the screening test of choice
to determine tubal patency.

Safety of Ultrasonic Diagnosis
Extensive studies on the safety of ultrasound in Japan and elsewhere have led to
issuance of Japanese industrial standards (JIS) for diagnostic ultrasound devices.
These standards place limits on various diagnostic procedures:

1. Ultrasonic Doppler fetal diagnostic equipment, 10 mW/cm2 or less.
2. Manual scanning B-mode ultrasonic diagnostic equipment, 10 mW/cm2 or less

for each probe.
3. Electronic linear scanning B-mode ultrasonic diagnostic equipment,

10 mW/cm2 or less in a single aperture.
4. A-mode ultrasonic diagnostic equipment, 100 mW/cm2 or less: This standard is

limited to diagnosis of the adult head and is not for pregnancy where B-mode is
the principal technique used. This higher permissible level is due to attenuation
through the adult skull bone.

5. M-mode ultrasonic diagnostic equipment, 40 mW/cm2 or less: The M-mode is
used in clinical diagnosis of the heart. For a combination of the M-mode with
the B-mode, the intensity is limited by the B-mode standard, i.e., 10 mW/cm2.

In 2000, the Safety Group of the British Medical Ultrasound Society issued the
following statement on the safe use and potential hazards of diagnostic ultrasound
(Ter and Duck, 2000):

� Ultrasound is now accepted as being of considerable diagnostic value. There is
no evidence that diagnostic ultrasound has produced any harm to patients in the
four decades that it has been in use. However, the acoustic output of modern
equipment is generally much greater than that of the early equipment and, in
view of the continuing progress in equipment design and applications, outputs
may be expected to continue to be subject to change. Also, investigations into the
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possibility of subtle or transient effects are still at an early stage. Consequently
diagnostic ultrasound can only be considered safe if used prudently.

� Thermal hazard exists with some diagnostic ultrasound equipment, if used im-
prudently. A temperature elevation of less than 1.5◦C is considered to present
no hazard to human or animal tissue, including a human embryo or fetus, even
if maintained indefinitely. Temperature elevations in excess of this may cause
harm, depending on the time for which they are maintained. A temperature ele-
vation of 4◦C, maintained for 5 minutes or more, is considered to be potentially
hazardous to a fetus or embryo. Some diagnostic ultrasound equipment, operat-
ing in spectral pulsed Doppler mode, can produce temperature rises in excess of
4◦C in bone, with an associated risk of high temperatures being produced in ad-
jacent soft tissues by conduction. With some machines colour Doppler imaging
modes may also produce high temperature rises, particularly if a deep focus or a
narrow colour box is selected. In other modes, temperature elevations in excess
of 1◦C are possible, but are unlikely to reach 1.5◦C with equipment currently in
clinical use, except where significant self-heating of the transducer occurs.

� Non-thermal damage has been demonstrated in animal tissues containing gas
pockets, such as lung and intestine, using diagnostic levels of ultrasound (me-
chanical index values of 0.3 or more). In view of this, it is recommended that
care should be taken to avoid unnecessary exposure of neonatal lung , and
to maintain MI as low as possible when this is not possible. In other tissues
there is no evidence that diagnostic ultrasound produces nonthermal damage,
in the absence of gas-filled contrast agents. However, in view of the difficulty
of demonstrating small, localised, regions of damage in vivo, the possibility of
this cannot be excluded. The Mechanical Index, if displayed, acts as a guide to
the operator. The use of contrast agents in the form of stabilised gas bubbles
increases the probability of cavitation. Single beam modes (A-mode, M-mode,
and spectral pulsed Doppler) have a greater potential for nonthermal hazard
than scanned modes (B-mode, Colour Doppler), although the use of a narrow
write-zoom box increases this potential for scanning modes.

Therapeutic Uses of Ultrasound
We may very well be witnessing at this time only the beginning of the use of
ultrasound for therapeutic purposes. Some techniques, such as the use of 25 kHz
ultrasound combined with a water jet to remove plaque from teeth and the cleaning
of dental and medical tools with ultrasound, have been well established for a num-
ber of years. Ultrasonic nebulizers of pharmaceuticals operate without producing
destructive temperature levels. Athletic centers and sports medicine specialists
make use of ultrasound devices to heat sore muscles. Newer techniques are ar-
riving on the market or are still in the testing stages. One example is the use of
ultrasound in catheters to ream out arteriosclerositic deposits in arteries that is still
very much in the experimental stage.

One therapeutic use of ultrasound already in widespread clinical use, extracor-
poreal shock wave lithotripsy, has completely changed the treatment of kidney
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stones. Kidney stones are calcified particles that tend to block the urinary tract.
In this type of treatment, the patient is immersed in water to equalize as much as
possible the acoustic impedances between the transducer and the patient’s body.
A focused, high-pressure ultrasonic pulse is directed through the water and into
the patient’s torso to break the stone into small pieces. The pulverized material
can now pass out of the body unhindered. Lithotripsy causes very little damage to
kidney tissue.

A promising procedure for therapeutic ultrasound is the laser-guided ablative
acoustic surgery, in which sound supersedes the scalpel in destroying benign or
malignant tissues. The ultrasound focused by a specially shaped set of transducers
converges inside the body to create a region of intense heat that can destroy tumor
cells. The spot of destruction is so small that a boundary of only six cells lies
between the destroyed tissue and completely unharmed tissue, which connotes a
precision far beyond any current method of surgical incision.

Acoustical surgery offers a potentially better means of treating cancerous tumors
because it does not require an anesthetic, can be administered in a single treatment,
and causes no observable side effects. In a Phase I clinical trial at Marsden Hospital
in London, focused sound waves destructed parts of liver, kidney, and prostate tu-
mors in 23 patients. In the next phase the researchers will attempt to fully destroy
tumors in the liver and prostate. Also under testing is the SonabladeTM system
by Focus Surgery of Indianapolis, IN, which incorporates proprietary transducer
technology in a transrectal probe that provides imaging for tissue targeting and
high-intensity focused ultrasound (HIFU) for tissue ablation. After the operator
defines the area of periutheral tissue to be ablated, the treatment process begins
under computer control, where the focus of the dual-function transducer is elec-
tromechanically stepped through the designated volume of the tissue. HIFU results
in thermally induced coagulative necrosis only in the intraprostatic tissue encom-
passed by the focal volume, with effect on intervening tissues. Confirmation of
targeting accuracy is provided through continuously updated images. The necrotic
tissue is either sloughed during urination or reabsorbed, along with the cessation
of patient symptoms.

Ultrasound can also be used to stop internal bleeding through an effect called
acoustic hemostatis. With sufficient power, ultrasonic pulses can elevate the body
temperature at selected sites from 37◦C to between 70◦C and 90◦C in an extremely
short time, less than 1 s. This causes the tissue to undergo a series of phase
transitions, and the protein-based bodily fluids and blood coagulate as the result
of the proteins undergoing cross-linking (a process similar to cooking an egg).

A research team at University of Washington’s Applied Physics Laboratory is
investigating the use of ultrasound to stop internal bleeding during surgery and for
treating trauma cases. The present method of stemming bleeding in delicate organs,
such as the liver, pancreas, or kidney, is through cauterization on the surface with
ion or microwave systems. The focused ultrasound waves, however, can penetrate
deeply into the organ and “cook” the tissue in a layer as thin as 1 mm. It follows that
trauma patients could be treated without the need for a sterile environment of an
operating room and without the danger of infection that accompanies conventional
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surgery. To date, success has been achieved by the University of Washington group
in identifying patients with internal bleeding and in the use of HIFU in the operating
room to stop bleeding in the organs and vessels of animals.

Another promising technology still under development testing for use in biopsies
is that of augmented reality system, in which 3D ultrasound technology is combined
with virtual reality (State et al., 1996). This concept uses ultrasound echography
imaging, laparoscopic (referring to the use of a small video camera to perform
surgery) range imaging, a video see-through head-mounted display (HMD), and
a high-performance graphics computers to generate live images through the use
of computer-generated imagery with the live video. An augmented reality system
presents live ultrasound data or laparoscopic range data in real time while recording
data from the part of the patient that is being scanned.

Advances in magnetic resonance imaging (MRI) and diagnostic ultrasound
imaging will allow these two areas to be combined. Manufacturers of MRI equip-
ment are developing models that combine therapeutic functions such as ultra-
sound with imaging processes. One company (Therus Corporation, Seattle, WA)
is combining ultrasound diagnostic imaging with a separate therapeutic ultrasound
capability to produce a relatively small, portable system that can be carried by
paramedics and rescue workers for use at the site of disaster.

A newer method of targeted drug delivery is that of sonophoresis, which uses
sound waves instead of needles to inject drugs such as insulin and interferon
through the skin. The high-frequency waves open tiny holes in cell membranes, thus
rendering the cells temporarily permeable in localized regions and allowing better
penetration of the drug into the blood vessels below the skin. This results in greater
effectiveness of the drug, lessens the dosage requirements and toxicity, and allows
for more precise localization of drug delivery. Although the mechanisms by which
ultrasound augments these effects are only partially understood, it is known that
ultrasound produces biophysical reactions yielding hydroxyl radicals that in turn
affect cell membranes. A system developed by Ekos Corporation of Bothell, WA, to
dissolve life-threatening blood clots constitutes an early application of ultrasound
drug delivery. The Ekos device injects thrombolytic drugs through a catheter using
low-energy, localized ultrasound to the target site in the body. Thrombolytics,
which are generally administrated to break up clots, are dramatically more effective
with the use of ultrasound because the sound waves help to concentrate the drugs
at the site of the clot. Ekos’s device and similar products are meant to provide
treatment of cardiovascular obstructive diseases (e.g., stroke and arterial and deep-
vein thrombosis). In these types of ailments, rapid response is critical, and therapy
necessitates applications of massive doses of clot-dissolving drugs over 72 h.
Ultrasound may also be used with antiresrenosis agents, which are intended to
prevent coronary arteries from reclosing after angioplasty—a procedure in which
a balloon-tipped catheter is inserted into a clogged vessel and the balloon is inflated
to open up the vessel.

Another long-term application is the use of ultrasound to deliver insulin through
the skin for treating diabetes. It may be even possible through ultrasound to pen-
etrate the blood–brain barrier, which insulates the brain from foreign substances
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and also prevents many drugs from reaching diseased tissues there, so that the
effects of chemotherapy can be enhanced.

Higher frequencies of ultrasound can cause the transfer of large molecules such
as DNA to migrate among cells, as the result of sonoporation, which enhances the
porous effect on cell membranes by induction of ultrasonic shock waves through a
lithotripter. One pharmaceutical company (ImaRx, Tucson, AZ) developed a gene-
delivering system for improving gene expression, i.e., revising a gene’s genetic
code to make a specific protein. The ImaRx system employs acoustically driven
microbubbles that carry the gene and fluorinated compounds that serve as markers
to detect the DNA. The ultrasound assists in delivering the DNA to targeted areas in
the body and in tracking its progress through the use of contrasting agents injected
with the microbubbles of genetic material.

References

AIUM. 2000. Mechanical bioeffects from diagnostic ultrasound: AIUM consensus state-
ments. Journal of Ultrasound in Medicine 19/2. Bethesda, MD: American Institute of
Ultrasound in Medicine.

Bachman, Donald M., Crewson, Philip E., and Lewis, Rebecca S. 2002. Comparison
of heel ultrasound and finger DXA to central DXA in the detection of osteoporo-
sis. Implications for patient management. Journal of Clinical Densitometry 5(2): 131–
142.

Barnett, S. B. and Kossoff, G. (eds.). 1998. Safety of Diagnostic Ultrasound. Progress in
Obstetric and Gynecological Sonography Series. Parthenon.

Barnett, S. B. (ed.). 1998. WFUMB Symposium on Safety of Ultrasound in Medicine. Con-
clusions and Recommendations on Thermal and Mechanical Mechanisms for Biological
Effects of Ultrasound. Ultrasound in Medicine & Biology 24, Supplement 1.

Baum, G., Cruz, B., and Rosenblatt, R. 1980. Advantages of ultrasound mammography.
Ultrasound in Medicine & Biology. Amsterdam: Excerota Medica.

Bruining, N., Burgelen, C. V., De Feyter, J., et al. 1998. Dynamic imaging of coronary
structures: an ECG-gated three-dimensional intercoronary ultrasound in humans. Ultra-
sound in Medicine & Biology 24: 631–637.

Brown, B. and Goodman, J. E. 1965. High Intensity Ultrasonics. London: Iliffe.
Crum, Lawrence A. 2004. Therapeutic Ultrasound. Proceedings of the Advanced Metrology

for Ultrasound in Medicine Meeting, April 27–28, 2004. Teddington, UK.
Chen, L., Ter Haar, Gail, Hill, C. R. et al. 1998. Treatment of implanted liver

tumors with focused ultrasound. Ultrasound in Medicine & Biology 24: 1475–
1488.

Dalke, H. E. and Welkowitz, W. J. 1960. Journal of the Instrument Society of America
7(10): 60–63.

Degenhardt, F., Jibril, S., and Eisenhauer, B. 1996. Hysterosalpingo-contrast sonography
(HyCoSy) for determining tubal patency. Clinical Radiology 51(s1): 15–18.

Ensminger, Dale. 1988. Ultrasonics: Fundamental, Technology, Applications, 2nd ed. New
York: Marcel Dekker.

EPSUMB Study Group. 2004. Guidelines for the use of contrast agents in ultrasound.
Ultraschall in Medizine 25: 249–256.



Problems for Chapter 17 507

Hope, Simpson D., Chin, C. T., and Burns, P. N. 1999. Pulse inversion Doppler: a new
method for detection of nonlinear echoes from microbubble contrast agents. IEEE Trans-
actions UFFC 46: 372–382.

Jacobs, J. E. 1962. Proceeding On Physics and Nondestructive Testing. October 2–4, 1962.
San Antonio, TX: Southwest Research Institute: 59–74.

Jacobs, J. E., Reimann, K., and Buss, L. 1968. Materials Evaluation 26(8): 155–158.
Joyner, Claude R, (ed.). 1974. Ultrasound in the Diagnosis of Cardiovascular-Pulmonary

Disease. Chicago: Year Book Medical Publishers, Inc. (written by clinicians primarily
for clinicians.)

Kaspersen, J. H. 2003. Clinical trials with new navigation system: Custus X. SINTEF [On
line, available at: http://www.sintef.no/static/UM/UL/cx/cx.html].
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Problems for Chapter 17

1. Can you think of a household application for ultrasonic cleaning?
2. A “sing around” flowmeter is used to measure the flow of a chemical slurry

inside a pipe. The two transducers are placed 10 cm apart. A 25,000 Hz pulse
is initiated and the received frequency is 24,500 Hz. Find the velocity of the
slurry.

3. If the fluid went the other way, what would be the receiving frequency for the
same setup of Problem 2 emitting 25,000 Hz?

4. A beam-deflection flowmeter is used to measure flow inside a nuclear reactor
heat exchanger pipe. The velocity of sound in the liquid coolant is known to
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be 2550 m/s, and the deflection of the beam is 8.58◦. Find the velocity of the
fluid.

5. We can also measure the velocity of sound in a fluid by the beam-deflection
method. It is known that a gas is passing through a conduit at the rate of
120 m/s. The deflection was measured to be 0.056 radian. Estimate the speed
of sound in the gas.

6. Two transducers are set apart 21.2 cm in a nondispersive medium. The two
resonance frequencies are 2164 Hz and 4617 Hz. Find the sound propagation
speed of the medium.

7. How could motion sensing be useful in a home garage? Where else in a home
would you use a sensor?

8. Why is ultrasound considered to be safer than X-rays? Would you expect the
ultrasound equipment to be more expensive or cheaper than X-ray gear?

9. Why is it preferable to use ultrasound to examine the fetus in the womb to
X-rays? How would the images compare in quality?

10. What is the principal difference between high-intensity and low-intensity ul-
trasound as used in the human body or on a live animal?

11. What are the two primary factors in controlling ultrasound dosage?



18
Music and Musical Instruments

18.1 Introduction

From time immemorial music has impacted humanity in many ways. In moments
of sadness, music provides solace; in happier times, enhances exhilaration; during
stressful periods, a greater sense of calm intertwined with an intensified feel-
ing of purpose; and when diversion is needed, entertainment. Music reached its
greatest heights through the evolution of primitive contraptions into more ele-
gant instruments and the emergence of great composers such as Monteverdi,
Vivaldi, Bach, Handel, Haydn. Mozart, Beethoven, Verdi, and in more modern
times, Rimsky-Korsakov, Stravinsky, Mahler, Ravel, Gershwin, Schoenberg, and
Ellington.

Music has given rise to a whole slew of industries: the manufacture and mar-
keting of instruments; staging of performances which can range from solo appear-
ances to a lavish operatic production or a frenzied giant rock concert, on stage or
through electronic transmission (radio, television, the Internet); and distribution
of recorded media (tape, CD, or DVD) and playback equipment.

In surveying the musical scene, we must realize the manner in which music
influences people cannot possibly be adequately gauged, and this constitutes a
situation that provides a fertile field of research in psychology and anthropology,
to say nothing of musicology and music theory. In the medical field, classical music
serves as a valuable tool in psychotherapy. Musical acoustics is an extremely broad
interdisciplinary field—a field that deals with the production of musical sound and
the transmission of musical sound to the listener as well (Rossing, 1990). The
study of music from a physical approach provides the opportunity to bridge the
gap between art and science.

In this chapter the structure of music is examined from an acoustical approach
and the principles of generating musical tones with instruments, which also in-
cludes the human voice, are outlined. Many but not all musical instruments are
described herein, as well as the makeup of orchestras and bands.

509
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18.2 Musical Notation

As pointed out by Olson, music can be memorized and passed from one person
to another by the direct conveyance of the sound, but this does not constitute a
satisfactory, nor an efficient method of communicating music to performers and
preserving the music for future performances (Olson, 1967). Accordingly, musical
notations were developed to use symbols on paper to denote frequency, duration,
quality, intensity, and other tonal characteristics. A human can typically distin-
guish 1400 discrete frequencies, but in the equally tempered musical scale, there
are only 120 discrete tones ranging from 16 Hz to 16,000 Hz. Pitch is an attribute
of aural sensation, dependent on the frequency of the sound. Musical tones are as-
signed specific values, allowing for specific frequency values, and leaving out the
“in-between” values. A principal reason that we can identify a musical instrument
is that the musical instruments are essentially resonant instruments and therefore
response only to certain frequencies. These resonant frequencies are fixed and
cannot be altered, except for certain instruments such as those members of the
violin family and the trombone. Moreover, when same notes are played on differ-
ent instruments, the overtones differentiate one instrument from another. With the
relatively small number of fundamental frequencies designated in Western music,
matters are greatly simplified in designating the discrete frequency characteristics
of tones.

In the five-line staff of Figure 18.1, the pitch of a tone is denoted by placing
notes, , , on the lines and in the spaces between the lines. The pitch range

of a set of lines is designated by the clef ( or ) which is placed at the left of
the staff. The most common clefs are the treble or G clef and the bass or F clef,
both of which are shown in Figure 18.1. The notes are designated alphabetically
from A to G. The interval in pitch between two notes with the same letter is the
octave. As explained earlier in this text, the two sounds separated by an octave
have a fundamental frequency ratio of 2. The pitch interval between adjacent notes
(i.e., between a note on a line and a note in the adjacent space, as designated by
successive letters) is a whole tone in the equally tempered scale. Pitches that are
higher and below the staff are designated by notes written upon and between short
lines called leger lines, as shown in Figure 18.1. The number of leger lines can
hypothetically be extended without limit. The sign 8va above the staff denotes that
all tones are to be played an octave higher than their placement and, conversely, the
sign 8vs placed below the staff indicates that all tones are to be played an octave
lower. This is shown in Figure 18.2.

There is also another clef—the movable or C clef—which was meant to accom-
modate music instruments with extended range (e.g., the bassoon, cello, or viola).
In older musical manuscripts there are C-clefs for the soprano, alto, and tenor parts,
Figure 18.3 shows the three different symbols to indicate the C-clef. The C-clef
is placed on the middle C line. The old C-clef positions for the soprano, alto, and
tenor are given in Figure 18.4. The position of the C clef always corresponds to
the middle C.



Figure 18.1. The five-line musical staff, the notes of the most common bass, and the treble
clefs and the leger lines (the lines above and below the staff) for the treble and bass clefs.

Figure 18.2. The position of 8va above the staff indicates that all notes are sounded an oc-
tave higher. When 8va is located below the staff, the notes are to be sounded an octave lower.
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Figure 18.3. Three symbols used to indicate the C, or movable, clef.

Figure 18.4. The positions of the C-clef for the soprano, alto, and tenor clefs.

Figure 18.5. Sharp, flat, and natural designations: the sharp raises a pitch by a semitone,
the flat lowers a pitch by a semitone, and the natural nullifies a sharp or flat to restore a
note to normal.

A note can be moved up in its pitch a half step or semitone; this is labeled a
sharp. The sharp is designated by the natural note preceded by the sign, as shown
in Figure 18.5. A note can also be moved down a semitone, thus rendering that note
a flat with the symbol , which is also shown in Figure 18.5. A natural designation

nullifies a sharp or a flat, returning the note to normal. A note may be moved
up by a whole step by a double sharp designation or ×. A note may be moved
down a whole note by a double flat . A standard system for the identification
of tones used in music is given in line 1 of Figure 18.6 (Young, 1939). The other
seven lines represent the various systems for identifying the musical tones without
the benefit of using the staff, but the system represented by the first line is the
most logical one to use and understand. The reference standard frequency C0 is
16.352 Hz, which just about constitutes the lowest frequency that a human ear can
detect. It is customary to consider C as the point to begin counting whole octaves.
Figure 18.7 displays the frequencies of the notes in equally tempered scale in the
key of C from 16 Hz to 16 kHz.
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Figure 18.6. Eight systems used for tone identification in music (Young, 1939).

18.3 Duration of Musical Notes

The duration of a musical tone is the length of time assigned to it in the musical
composition. Figure 18.8 displays the symbols used to indicate duration. While
the pitch of a tone is given by its position on the staff, its length is assigned by
the choice of one of the symbols of Figure 18.8. However, the magnitude (i.e.,
its duration) of a tone is not rigidly fixed and it may vary from composition to
composition. But nevertheless, in a particular composition the duration of each
tone is kept in proportion to the magnitude of a whole note.

In the traditional musical notation a vertical bar is drawn across the staff. The
time interval between two vertical bars in a staff is called a measure, or the less
precise but more commonly used bar. The time intervals of all measures within
a composition are usually equal. If two whole notes constitute a measure, then
the measure will need four half notes, or eight quarter notes, or any combination
that adds up to two whole notes in time interval. A double bar that consists of two
vertical bars across the staff denotes the end of a division, movement, or an entire
composition.

To indicate periods of silence in a composition, one or more rest symbols of
Figure 18.9 is used to indicate the duration of the silence. The duration of a whole
rest is equal to that of a whole note, the duration of a half rest is equal to that of a
half note, and so forth.

The duration of a tone represented by a note or a rest of a certain denomination
can be modified by the addition of a dot to the note. The effect of the dot is to



Figure 18.7. The frequencies of the notes in the C scale of equal temperament from 16 Hz
to 16 kHz.



Figure 18.8. Note values which indicate duration.

Figure 18.9. Rest symbols.
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lengthen the duration of the preceding note by half as much, i.e., a whole note
becomes equal in duration to a whole note plus a half note, a dotted half note
equals the duration of a half note plus a quarter note.

There is no absolute time-interval standard for the duration of a tone represented
by a note, and it generally depends on the performer’s interpretation of the music
with respect to its tempo. Some compositions carry an indication of the setting of
a metronome for a quarter note. A metronome is a mechanical device that consists
of a pendulum activated by a clock-type of mechanism driven by a spring motor.
At the extremities of the pendulum swing an audible tick is produced. The interval
between ticks can be adjusted by moving a bob on the pendulum arm: the further
the bob is located from the fulcrum, the longer the duration between ticks, and
vice versa. The pendulum itself is graduated in ticks per minute. The numbers
usually indicate the number of ticks per minute, the interval between ticks usually
specified as that of a quarter note or, in some cases, half notes. Modern versions of
metronomes use electronic means to generate ticks. The metronome setting sets
the rate of movement or tempo of the music. Instead of metronome settings, the
composer may specify one of a number of terms to designate tempos. Commonly
used terms to describe tempos are as follows:

� Largo: Slow tempo
� Andante: Moderately slow tempo
� Moderato: Moderate tempo
� Allegro: Moderately quick tempo
� Vivo: Rapid tempo
� Presto: Very rapid tempo

18.4 Time Signature Notation

A musical selection’s time signature is specified at the beginning of the staff by
a fraction, as illustrated in Figure 18.10. Common time signatures include 2/4,
3/4, 4/4, and 6/8. The denominator indicates the unit of measure (i.e., the note
used to define a pulse). The numerator stands for the number of these units or their
equivalents included in a measure (i.e., the interval between two vertical lines
across the staff).

Figure 18.10. Time signatures for 2/4, 3/4, C or 4/4, 6/8, and 9/16 times.
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Figure 18.11. Notes and beats for 2/4 and 3/4 times.

In upper portion of Figure 18.11 for 2/4 time, each measure contains one half
note, or two quarter notes of four eighth notes. Each measure contains two beats,
so when a musician plays, the count is one, two. In 2/4 time, a stressed pulse
is followed by a relaxed pulse, a sequence used for marches. In the 3/4 time as
shown in Figure 18.11, each measure equals three quarter notes or 1 half note plus
a quarter note, and so on. Each measure carries three beats, and usually there is
one stressed pulse followed by two relaxed pulses, which yields a time used for
waltzes. In the 4/4 (or common) time, each measure contains the equivalent of
four quarter notes, with the performer counting one, two, three, four. In 4/4 time, a
stressed pulse is followed by three relaxed pulses, and this time is used for dances.
In 6/8 time, each measure contains six eighth notes or a combination of notes
equaling the same duration. There are then six beats to each measure, and in 6/8
time the stressed pulses are one and four of six beats.

Listeners mentally arrange the regular repetition of sounds into groups of
stressed and relaxed pulses. These groups are called meters. The meter is assigned
by the numerator of the time signature, and the most common ones are 2, 3, 4, 6,
9, and 12. Each measure contains a certain number of beats or pulses according to
the meter. Meters are classified in terms of the numerators of the time signatures
in the following manner:

1. Duple meter: Two beats comprise each measure, with the first beat stressed and
the second beat relaxed. Example signatures are 2/2 and 2/4 times.

2. Triple meter: Three beats occur in each measure, with the first one stressed
and the following two relaxed. Example time signatures are 3/8, 3/4, and
4/8.

3. Quadruple meter: Four beats occur in each measure, with the first beat stressed
and the remainder relaxed. Occasionally the third beat carries a secondary stress.
Examples include 4/2, 4/4, and 4/8 time signatures.

4. Sextuple meter: Six beats occur each measure, with the first and fourth beats
stressed. The 6/8 time signature is such an example.

Rhythm is the repetition of accents in equal intervals of time.
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18.5 Key Notation

The keynote denotes the note with which any given scale begins. The tonic is the
keynote of the scale, whether the latter is a major or a minor scale. Many short
compositions are written in one key only, but more elaborate musical pieces may
shift from one key to another. The key signature of a musical piece is denoted
by the number and arrangement of flats and sharps following the clef sign at the
beginning of each staff, or it may appear only once at the beginning. Figure 18.12
shows some of the most common key signatures for different major and minor
keys.

Major and minor keys play a role in determining the mood of music. In earlier
times, a key may have been selected by a composer because a number of wind
instruments were able to play only in certain keys. Certain desired effects may be
better achieved on more flexible instruments in a specific key than another key.
As Machlin pointed out, romantic composers developed affinities for certain keys,
for example, Mendelsohn preferred E-minor, Chopin leaned toward C-sharp, and
Wagner made use of D-flat major for majestic effects.

Whether it starts with C, D, E, or any other tone, a major scale follows the same
arrangement of whole and half steps. Such an arrangement is known as a mode.
All major scales typify the arrangement of whole and half steps.

The minor mode serves as a foil to the major. The principal difference from the
major is that its third degree is flatted. For example, in the scale of C, the third
degree is E rather than E. In a natural minor scale, the sixth and seventh steps are
also flatted (i.e., C-D-E -F-G-A -B -C). The minor differs considerably from the
major in coloring and mood. It should not be inferred that the minor is deemed
“inferior”—the nomenclature simply refers to the fact that the interval C-E is
smaller (hence minor, the Latin word) than the corresponding interval in the major
scale.

If a mode is not specified, the major is implied. For example a Minuet in G
indicates the G-major. The minor is always specified (e.g., Mozart’s Symphony
No. 40 in G minor).

To classical composers the tonal qualities of the minor key assumes a more
somber aspect (e.g., the funeral music of Beethoven and Mendelssohn) than the
triumphal portions of symphonies and chorales which are generally played in major
keys. Also, the minor mode carries a certain exotic tinge to Western ears, and thus in
the popular view it was associated with oriental and Eastern European music. This
was reflected in such works as Mozart’s Turkish Rondo, a number of Hungarian-
style works by Schubert, Liszt, and Brahms, the main theme of Rimsky-Korsakov’s
Scheherazade, and other musical pieces that passed for exotica.

18.6 Loudness Notation

Loudness depends upon the intensity of the musical signal. Although loudness
can be measured objectively with the use of a sound-level meter, a conductor or
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Figure 18.12. Key signatures for number of major and minor keys.
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a musician depends on his or her own sense of subjectivity to obtain the proper
intensity or range of intensities. The common notations and abbreviations for
loudness are as follows:

� Pianissimo (ppp): softly as possible
� Pianissimo (pp): very soft
� Piano (p): soft
� Mezzo piano (mp): half soft
� Mezzo forte (mf ): half loud
� Forte ( f ): loud
� Fortissimo (ff ): very loud
� Fortisissimo (fff ): extremely loud

Loudness can vary in musical passages. An increase in loudness can be indicated
by the term crescendo or the abbreviation cres or the sign . A crescendo
connotes a gradual increase in the intensity of the music. A decrescendo is a
decrease in loudness and is thus the converse of a crescendo. It is denoted by the
word decrescendo (also diminuendo) or the abbreviation decresc or the symbol

.

18.7 Harmony and Discord

Consider two tuning forks being sounded together. Let us keep the pitch of one fork
fixed at 261 Hz, while the pitch of the other begins at 262 and is gradually raised.
As the pitch raises, beats can be heard, due to the difference in the frequencies
for a time and then can longer be discerned. The sound of the combined tones
starts out by sounding pleasant to the ear and then it becomes gradually more
unpleasant. The unpleasantness reaches a maximum at about 23 beats per second,
and then begins to abate. This unpleasantness or discord declines only slightly,
and the discord remains at a fairly uniform level until the octave-marking value of
522 Hz is reached, at which point the unpleasantness disappears.

If this experiment is repeated with violin strings, radically different results will
be obtained. The discord does not stay at a uniform level but fluctuates erratically.
It almost vanishes at the interval of a major third, and again at the intervals of the
fifth and octave. At the precise points at which the minimums of the unpleasantness
occur, the frequency ratios of the variable to the fixed tone are found to have the
values: 5/4, 4/3, 3/2, and 2/1.

It has been observed that tone tones sound well together when the ratio of their
frequencies can be expressed in terms of small numbers. The smaller the numbers,
the better is the consonance. Table 18.1 lists the intervals in order of increasing
dissonance.

The further away from small numbers, the more we encroach into the realm of
discord. Pythagoras knew this fact more than 2500 years ago when he associated
consonance with the ratios of small numbers. The premise of the Pythagorean
doctrine “all nature consists of harmony arising out of number,” may be somewhat
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Table 18.1. Interval Nomenclature and Frequency Ratios.

Largest Integer Occurring
Interval (second) Frequency Ratio in the Ratio

Unison 1:1 1
Octave 2:1 2
Fifth 3:2 3
Fourth 4:3 4
Major third 5:4 5
Major sixth 5:3 5
Minor third 6:5 6
Minor sixth 8:5 8
Second 9:8 9

simplistic, but the Chinese philosophers in Confucius’s time also regarded small
numbers 1, 2, 3, 4 as the source of all perfection.

The Swiss mathematician Leonhard Euler adopted the psychological approach
in declaring that the human mind takes pleasure in law and order, particular in
natural phenomena. His theory of harmony is this: the smaller the numbers required
to express the ratio of two frequencies, the easier it is to find this law and order,
thus making it more pleasant to hear the combined sounds. Euler went so far as to
propose a definitive measure of the dissonance of a chord. His idea was to express
the frequency ratio of a specific chord by the smallest number possible and then to
find the common denominator for these frequencies. For example, the frequency
ratio of the common chord CEG c′ is 4:5:6:8. The least common denominator is
120, since it is the smallest number of which 4, 5, 6, and 8 are all factors. But
this theory falls apart when the same denominator is assigned to the chord of
the seventh CEFGB (frequency ratios 8:10:12:15) that turned out to be far more
unpleasant to listen to.

18.8 Musical Instruments

Musical instruments fall into four categories: string, wind, percussion, and elec-
trical instruments. A string instrument may have its strings struck, bowed, or
plucked. Wind instruments can be sub-classified as single-mechanical reed,
double-mechanical reed, lip reed, air reed, and vocal-cord reed. Percussion instru-
ments are classified as being either definite pitch or indefinite pitch. The advent
of electronics has given rise to a whole new class of instruments, such as synthe-
sizers which can effectively replicate the sounds of conventional strings, winds,
and percussion instruments as well as generate unusual sounds not heard from any
other instruments. Even personal computers can function as musical instruments
provided they are equipped with special soundboards and speakers and they are
programmed to simulate various types of instruments. Table 18.2 lists a number
of musical instruments and their respective classifications.
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Table 18.2. Classification of Musical Instruments.

String Instruments
Plucked Strings Bowed Strings Struck Strings

Lyre Violin Piano
Lute Viola Dulcimer
Harp Violoncello
Zither Double bass
Guitar
Ukulele
Mandolin
Banjo
Sitar
Harpsichord

Wind Instruments
Air Reed Single-Mechanical Reed Double-Mechanical Reed Lip Reed

Whistle Free-reed organ Oboe Bugle
Flue Organ Pipe Reed organ pipe English horn Trumpet
Recorder Accordion Oboe d’amore Cornet
Flageolet Harmonica Bassoon French horn
Ocarina Clarinet Contra bassoon Trombone
Flute Bass clarinet Sarrusophone Bass trombone
Piccolo Saxophone (soprano, Tuba
Fife alto, tenor, and bass)

Bagpipe

Organ (combination air reed and mechanical reed)

Percussion Instruments
Definite Pitch Indefinite Pitch

Tuning fork Celesta Snare or side drum Triangle
Xylophone Kettledrums (tympani) Military drum Steel drum
Marimba Bell Bass drum Cymbals
Chimes Carillon Gong Tambourine
Glockenspiel Castenets

Electrical or Electronic Instruments
Siren Electrical piano Electrical carillon Computer (specially configured)
Automobile horn Electric guitar Synthesizer
Electric organ Music box Metronome

18.9 Strings

Possibly the oldest method of creating music is vibrating string under tension,
which is capable of producing a full range overtones of that are harmonics of the
fundamental. As was explained in Chapter 4, the presence and the amplitudes of
these harmonics depend upon the manner the string is excited (namely, by plucking,
striking, or bowing) and where the excitation is applied. Because the string projects
a small area, it is not an efficient producer of sound as it is not by itself capable
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of moving very much air. It is for this reason that strings are coupled to a large
multiresonant surface (or soundboard) to increase the sound output.

All string-musical instruments make use of a soundboard or a combination of
a ported hollow body and a soundboard to couple the string to the air. The larger
the radiating surface, the greater the acoustic impedance, and this provides the
increased coupling to enhance the sound output of the strings. Soundboards exhibit
the complex modes of vibrations that have been described in Chapter 6 that deals
with membranes and plates. In a number of string instruments such as the lute,
lyre, zither, guitar, mandolin, and the violin family, a hollow body with portholes
is coupled to the strings. The vibration imparted by the strings to the body exterior
produces radiation in a fashion similar to that of the soundboard. The hollow body
with a hole(s) coupled to the outside air comprises a Helmholtz resonator, and
the fundamental frequency can be established from the theory of Section 7.11.
The dimensions of the resonator may equal or be larger than the wavelength of the
sound in air for some of the tones or overtones produced in the instrument, so the
hollow body with its holes can manifest other resonant frequencies in addition to
the fundamental resonant frequency. A hollow body is a quite complex resonant
system.

Some examples of a plucked-string instrument include the lyre, lute, zither, and
harp, three of which are illustrated in Figure 18.13.

The lyre traces its origin to ancient Greece, and it consists of a frame, fingerboard,
and a hollow body with sound holes. The lyre is played by plucking the strings
with fingers, and the length of the string (and hence the resonant frequency) is
varied by pressing the finger against the fingerboard. The hollow body serves as a
soundboard to increase the sound output of the string.

The lute, developed more than a thousand years ago, is the precursor of the
instruments of the guitar class. It comprises a pear-shaped hollow body, a neck
with frets (projecting ridges across the neck), and a head equipped with pegs to
tune the strings.

The zither, similar to the lyre in appearance but having its soundboard underneath
the entire length of strings, consists of two sets of strings stretched across a flat
hollow body featuring a large round holes. One set of steel strings, which pass
over a fretted fingerboard, is used to play the melody while a set of gut strings is
used for accompaniment. The modern zither now consists of 32 strings, of which
four are assigned to the fretted fingerboard. Each of the strings can be tuned by
turning pegs of pins at one end of the instrument. The plucking of the zither occurs
in the following way: A ring-type plectrum is used on the thumb of the right hand
to play the melody. The left hand is used to stop the melody strings by pressing
the strings against the frets of the fingerboard. The spacing of the frets are such
that the sounds produced by stopping the strings on any two adjacent frets are
one semitone apart. The first, second, and third fingers of the right hand play the
accompaniment. Zithers are available in three sizes, called bass, bow, and concert
types. The open melody strings of the concert zither are tuned to C3, G3, D4, and
A4. The accompaniment strings provide the fundamental-frequency range of C2

to A 4.
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Figure 18.13. Plucked-string instruments: lyre, lute, and harp.

The harp, often portrayed as being the instrument of angels, consists of strings
stretched vertically upon a triangular frame and connected to a soundboard con-
stituting the lower leg of the triangular frame. The soundboard is quite small, and
so the strings are not highly damped and the sound from each string persists for a
rather long time, yielding a rather mellow tone. The modern harp is usually pro-
vided with seven pedals that actuate a transposing mechanism for shortening the
strings in two stages.

The mechanism for shortening the strings is illustrated in Figure 18.14. In panel
A of the figure the string is positioned at its maximum length. Depressing the pedal
halfway causes disk 1 to rotate along with the pins attached thereto, so the string
is shortened by a semitone as shown in panel B. When the pedal is depressed all
the way, disk 2 is rotated along with its attached pin, thus shortening the string
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Figure 18.14. Mechanism for shortening strings in the harp for transposing tones.

even further so that the string is a whole tone higher, as shown in panel C. Each
pedal operates on strings with notes having the same letter notation, i.e., the C
pedal controls all the C strings; the D pedal all the D strings, and so on. The harp
is generally tuned in the key of C flat. The pillar of the harp serves to bear the
stresses produced by the stretched strings and to serve as a housing for the rods
connected to the pedals and for the transposing mechanism of Figure 18.14. The
overall height of the standard harp is approximately 173 cm. The harp is played
either by plucking the strings with the fingers or by sliding the fingers over the
strings in a manner referred to as a glissando. There are 44 strings, usually made
of gut (some bass strings may be constructed of silk overlaid with metal wire for
greater density); portable models have as few as 30 strings.

Figure 18.15 shows views of a ukulele, guitar, mandolin, and banjo. The ukulele
is a small version of the guitar. The former consists of four strings, tuned to D4,
F4, A4, and B4, stretched between a combined bridge and tailpiece attached to the
top flat surface of the body and the end of a fretted fingerboard. The body itself
consists of two flat surfaces fastened together by a contoured panel at their outside
edges. The bottom of the body is mechanically attached to the top by a post, and
the cavity of the body, coupled to the external atmosphere, acts as a resonator.
The body of the ukulele may be made of wood or steel or plastic. The 61-cm long
instrument is played by strumming the strings with the fingers, and the resonant
frequency of each string is varied by the fingers pressing against the frets that are
spaced so the sounds produced by stopping a string on any two adjacent frets are
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Figure 18.15. Additional plucked-string instruments from top to bottom: ukulele, guitar,
banjo, and mandolin (from Olson, 1967).

one semitone apart. The guitar is similarly constructed except it is larger than the
ukulele by nearly twice the length, and it consists of six strings, tuned to E2, A2,
D3, G3, B3, and E4. The guitar is played by either plucking with fingers or with a
pick or plectrum (a flat piece of metal or plastic) held firmly between the thumb
and the first finger. The adjacent frets also result in notes that are one semitone
apart.

The body of a mandolin consists of a flat top attached to a hollow semiellipsoidal
body. This combination of the body and the body cavity coupled to the external
air through a hole constitutes a complex resonator. A bridge mounted at the center
of the flat surface of the body couples the vibrating strings to the body.
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The difference between the construction of a banjo and other string instruments
is that its body consists of a skin membrane stretched over one end of a truncated
cylinder, thus making the body drumlike. The other end of the cylinder is open. The
bridge is supported by the stretched skin and it couples the strings to the stretched
membrane, which, in turn, provides a large resonant area that is coupled to the
air. Four long strings and a short string are stretched over the bridge between the
tailpiece and the fingerboard. The relatively long neck is fretted; the short string is
referred to as the melody string. A more modern version called the tenor banjo is
equipped with four strings of equal length, and it has supplanted the older model
with the one short string. The four open strings are tuned to C3, G3, D4, and A4.
This instrument can be played by either plucking the strings with the fingers or
with a pick or plectrum that can be made of a flat piece of tortoise shell. The note
of a string and hence the resonant frequency can be varied by pressing it against
the frets. The spacing between a pair of adjacent frets corresponds to a difference
of one semitone. The overall length of a banjo is approximately 86 cm.

Over the past three decades, Europeans and Americans have become familiar
with structured musical compositions called ragas through concert performances
by Ravi Shankar who performed them on the sitar which is northern India’s pre-
dominant string instrument. The sitar’s seven main strings are tuned in fourths,
fifths, and octaves to approximately F#

3,C#
2,G#

2,G#
3,C#

3,C#
4, and C#

5. In addition
there are 11 sympathetic strings tuned to the notes of the raga. The inharmonicities
are quite small; the high-curved frets permit the player to execute with vibrato and
glissando. The curved bridge allows for both amplitude and frequency modulation
from the rolling and sliding of the string.

The harpsichord (or cembalo) and its older cousin, the clavichord, both of which
resemble shrunken baby grand pianos (the clavichord is more boxlike in configura-
tion), trace their common origin as far back as the twelfth century. The harpsichord
was the mainstay of chamber music during the baroque and classical period until
the advent of the more versatile and louder pianoforte, the immediate precursor
of the modern piano. Because so many excellent examples exist to this day, the
art of constructing harpsichords have been revived so that modern audiences can
today enjoy the music that have been composed expressly for this medium. During
the twentieth century, a number of excellent performers revived audience inter-
est in the instrument and the works written for it, among them the great Wanda
Landowska and later on Igor Kipnis (the son of the great Ukrainian operatic basso,
Alexander Kipnis).

Figure 18.16(a) illustrates the structure of a harpsichord, which consists of a large
number of steel strings stretched over a rather triangular steel frame. The keyboard
ranges about 41/2 octaves from A1 to F6, but different versions of harpsichords
have been built to cover both larger and smaller ranges. The strings are excited by
being plucked by a key-actuated mechanism shown in Figure 18.16(b). The key
is coupled through a level system to a short plectrum of leather, fiber, or tortoise
shell that plucks the string which deflects to let the plectrum slip past. When the
key is released, the plectrum, which is attached to a short spring-loaded level, slips
back under the string. A damping pad also mounted on the jack stops the sound.
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Figure 18.16. The harpsichord: (a) its construction and (b) the string-plucking mechanism
of a harpsichord.

Bowed-string instruments are played by exciting the strings with a bow. Four
modern instruments of this type, in order of increasing size, are: the violin, viola,
violoncello, and double bass (cf. Table 18.3). Figure 18.17 is illustrative of the
comparative size of these instruments. Details and nomenclature of the violin’s
components (the nomenclature also fairly applies to the other three instruments)
are shown in Figure 18.18. The two smaller instruments, the violin and the viola,
are generally played with the chin rest tucked under the chin, with the fingerboard
cradled in the arch formed between the thumb and the index finger of the left
hand; and the fingers of that hand vary the notes of the strings by pressing them
against the fingerboard surface. The bow is handled by the right hand. The larger
violoncello and the double bass, being much larger instruments, are played held
in a tilted, almost vertical position, between the knees of the seated players, with
endpins elevating the instruments from the floor.

Table 18.3. Typical Characteristics of Standard Bowed-String Instruments.

Typical Overall
Bowed-String Notes of Tuned Length of Full-Fize Typical Overall Range, Number
Instrument Open Strings Instrument, cm Length of Bow, cm of Octaves

Violina G3, D4, A4, E5 60 75 >4
Viola C3, G3, D4, A4 70 75 >4
Violoncello C2, G2, D3, A3 124 72 3
Contrabass E1, A1, D2, G2 198 66 3

aSmaller violins, as small as quarter size, have been constructed to accommodate small children learning
to play. Even smaller ones have been constructed for 2-year-olds learning under the Suzuki method.
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Figure 18.17. Modern bowed-string instruments: (a) violin, (b) viola, (c) violoncello, and
(d) double bass.
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Figure 18.18. Construction details of a violin and nomenclature of its structural elements.

These instruments developed in Italy during the sixteenth and seventeenth cen-
turies require extremely sophisticated skills to construct. Their quality of crafts-
manship reached a peak during the eighteenth century in Cremona, Italy, partic-
ularly under the skilled hands of Antonio Stradivari (1644–1737) and Guiseppe
Guarneri del Gesù (1698–1744). Because of the complexity of their construction
that affects the quality of their tones, the violin family has been the object of
much acoustical research. Savart, Helmholtz, and the Nobel Laureate C. V. Raman
(1888–1970) contributed to the understanding of the generation of sound with these
instruments (Savart, 1840; Raman, 1918; Helmholtz, 1954). In more recent times,
considerable work has been conducted in Germany through the efforts of Werner
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Lottomoser, Jürgen Meyer, and Frieder Eggers. Especially noteworthy is the work
of Lothar Cremer (1905–1990) and his colleagues, which culminated in Cremer’s
classic text The Physics of Violins. In the United States, Frederick Saunders (1875–
1963), best known for his work in spectroscopy, investigated many violins, making
many acoustical comparisons between the old and the new. He, Carleen Hutchins
(1911–), John C. Schelleng (1892–1979), and Robert Fryxell (1924–1986) es-
tablished the Catgut Acoustical Society, an organization that promotes research
on the acoustics of the violin family. In 2004, the society combined with the
nonprofit Violin Association of America, becoming a sector known as the CAS
Forum.

Violin makers (or luthiers) are especially concerned with the vibration of the
free top and back plates. They tested these plates by tapping and listening to
tones. Modern technology is now being used to visually observe mode shapes
(Figure 18.19) through the use of holographic interferometry. The finished violin’s
vibrational modes are considerably different from those of the free plates forming
the top and bottom of their bodies.

The bow for any of these four instruments consists of horsetail hair stretched
between the two ends of a thin wood, one end constituting the head and the other
point of attachment being a movable frog that is connected at the other end of the
bow to a screw inside the bow wood (cf. Figure 18.18). The screw can be turned to
move the frog, thus adjusting the tension of the stretched horsehair. The horsehair
is rubbed with rosin to provide friction between the bow and the strings. When the

(a) 369 Hz

(e) 739 Hz (f) 852 Hz (g) 880 Hz

(b) 459 Hz (c) 503 Hz (d) 335 Hz

Figure 18.19. Holographic interferograms of a top plate of an instrument of the violin
family (Ågren and Stetson, 1972).
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bow is drawn across the strings, the string vibrates as the result of its being dragged
with the bow and then springing back under the impetus of the restoring force.
The normal range of the bow’s action on the strings depends on its force acting
on the strings and the position of the bow relative to the bridge. Too heavy a force
results in raucousness of the tone. Too little force results in instability of the string
displacement’s saw-toothed curve. According to Schelleng (1974), the maximum
bow force depends primarily on the string and on its coefficient of friction. This
bow force is inversely proportional to the distance of the bow from the bridge; the
minimum bow force, on the other hand, is inversely proportional to the square of
the distance of the bow from the bridge. The maximum and minimum bow forces
are equal when the bow is placed at a point very close to the bridge, and they
diverge as the bow moves away from the bridge. The disparity between these two
limits, as the bow is positioned further away from the bridge, provides the wide
tolerance that makes fiddle playing possible. As a far distance from the bridge,
for a given bow velocity, the volume of the sound is less, the amount of high-
frequency content lessens, and the timbre possesses a gentle character designated
by composers as sul tasto (“bow over the fingerboard”). In placing the bow near
the bridge, the required bow force soars dramatically to almost prohibitive levels
and the solidity of the fundamental tone disappears, leaving little more than the
remnants of high harmonics to suggest the fundamental tone: this is the eerier
sounding sul ponticello (“bow over the little bridge”). In the normal playing area,
the tone becomes more brilliant (i.e., the relative harmonic content increases) as the
bow moves toward the bridge or as the bow force increases toward the maximum.

A vibrating string alone produces almost no sound, because it is so slender that
almost no air is displaced by its vibration and, moreover, the two diametrically
opposite sides of the string are so close together that when the air on one side is
compressed, the air on the other side is rarified. These two effects are so close to
each other that they effectively cancel each other. In order to avoid the cancellation,
one vibration must follow another by a substantial fraction of a phase.

In the bowed instruments, under optimal conditions, the top and the back plates
can move inward and outward at a given moment that nearly the entire surfaces of
the instrument act to change the volume of displaced air, thus acting as a “simple
source” in the lower frequency range (Cremer, 1971). In the violin family, this
volume change, essential to generating sounds in the lower octaves, is rendered
possible by the asymmetric layout of the bass bar and the sound post inside the
body. When the bow is pulled across the string, a rocking motion is set up in
the bridge so that the two feet of the bridge are in a “push–pull” mode, with one
foot of the bridge pressing down and the other foot going up in opposition. If
the box (i.e., the body of the instrument) has total bilateral symmetry, the motion
of one foot of the bridge would cancel that of the other foot of the bridge, and
no volume displacement would occur. But the sound post, essentially a dowel
firmly coupling the back plate to the top plate tends to immobilize the right (with
respect to the player holding the instrument) foot while allowing the left foot to
more freely and causing the body of the instrument to vibrate under the influence
of the left foot. Thus, the sound post’s chief role can be considered as creating
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acoustical asymmetry inside the body. The shape, positioning, wood quality, and
fitting of the sound post constitute highly critical factors in performance quality
of the instrument.

The bass bar runs along the length of the interior surface of the top plate approx-
imately under the lowest-tuned string. Its function is to keep the vibrations of the
upper and lower areas of the top plate in phase with the left foot of the bridge. The
bar is glued to the top plate in such a manner so as to provide structural strength to
the thin wood forming the top plate. Both the sound post and the bass bar enable the
top plate to withstand downward forces of 70–90 N from the strings. The contour
of the bass bar is extremely important in the proper “thinning” or “tuning” of the
top plate.

The f-holes serves two acoustical purposes: (a) reduction of the stiffness of the
surface on which the bridge stands in order to provide suitably tapered transition
between the bridge and the radiating area of the top plate and (b) formation of a
Helmholtz resonator with the body of the instrument, thereby strengthening sound
in the lowest octaves. The purling are inlays of thin wood placed in grooves along
the edges of the plates. This allows the plates to vibrate more as if they were hinged
rather than being clamped at the edges.

In the violin, the top plate is generally constructed of softer Norway spruce
(Picco abies or Picca excelsis), and back plate and the ribs are carved from (harder)
curly maple (Acer platanoides). Fingerboard, tailpiece, and pegs are usually made
of ebony. The bow stick is made from pernambuco.

The strings of the violin were originally all gut. Since about the seventieth
century, the lowest (G) string was commonly wound with silver to improve the
response. Present-day violinists use wound strings (i.e., metal wound over cores
of gut, nylon, or metal) for D and A strings and steel E-string. The latter string can
be finely adjusted with the use of a fine tuner.

In addition to the four principal members of the violin family, the aforementioned
Catgut Acoustical Society was responsible for the development of the violin octet,
an ensemble of eight specially scaled new violin family instruments (Hutchins,
1967). The octet of instruments, illustrated in the photograph of Figure 18.20 and
developed by the society to meet the challenge of encompassing the entire range
if orchestral music, consists of the treble violin, the soprano violin, the mezzo
violin, the alto violin, the tenor violin, the baritone violin, the small bass, and the
contrabass. Although these instruments form a family with basic traits in common,
each member has its own individual personality. The homogeneity of sound arises
from adjustments in body length and other physical characteristics so that each
instrument has its own main wood resonance and main air resonance near the two
open middle strings. The musical ranges of the strings on these instruments are
shown in Figure 18.21, as they relate to the corresponding notes on a standard
piano. These eight instruments of the new violin family range in overall length
from 48 cm to 214 cm.

The principal modern struck-string instrument is the piano that are available
in several models, ranging in size from the more modest upright or spinet piano
to the concert grand piano. The heart of the piano consists of a large number of



Figure 18.20. The violin octet developed by the Catgut Acoustical Society. (Courtesy of
the New Violin Family Association.)

Figure 18.21. The musical ranges of the of the new violin octet developed by the
Catgut Acoustical Society as related to piano notes. (Courtesy of the New Violin Family
Association.)
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Figure 18.22. Schematic of the mechanism of a grand piano (from Olson, 1967).

steel strings stretched on a metal frame. The strings couple through a bridge to
a large soundboard. The strings are activated by being struck by hammers that
are connected to keys forming a keyboard. Pressing down on a key actuates the
hammer, which, in turn, strikes the string. The conventional piano is equipped
with 88 keys, and the piano covers a wide frequency range of more than seven
octaves, from A0 to C8 (27.5–4186 Hz). The Bosendorfer 244-cm concert grand
piano features 97 keys, but not much music has been written for these extra keys.
The extra keys are mainly there because of the additional resonances produced by
the extra strings and the larger soundboard.

Figure 18.22 illustrates a schematic of the piano mechanism for a grand piano.
The strings stretch from the pin block across the bridge to the hitch-pin rail at the
other end. When a key is pressed downward, the damper rises and the hammer
impacts the string, causing it to vibrate. The string’s vibrations are transmitted to the
soundboard through the bridge. The hammer rebounds, remaining about 1.25 cm
from the string as long as key remains pressed. When the key is depressed, the
damping pad does not engage the string. When the key is released, the damping
pad engages the string to speed up the decay of the sounding note.

The largest version of the piano, the concert grand, has 243 strings that vary
in length from about 200 cm at the bass end to approximately 5 cm at the treble
end. In this group there are 8 single strings wrapped with one or two layers of
wires, 5 pairs of strings also wrapped, 7 sets of 3 wrapped strings, and 68 sets
of 3 unwrapped steel strings. The smaller pianos may contain fewer strings but
they still play the same number of notes. A small grand piano may carry 226
strings. The arrangement of the strings is such that the bass strings may overlay
the middle strings, so that they can function nearer the soundboard. The sound-
board itself is usually made of spruce and it is up to 1 cm thick; it acts as the
principal source of radiated sound just as the top plate of a violin does. Because
the tension forces in the strings are so high, the frames are fabricated of cast



536 18. Music and Musical Instruments

iron, which also provides dimensional stability necessary to maintain the state
of tune.

Three pedals are provided on the conventional piano. The right or sustaining
pedal removes all dampers from the strings so that the strings become damped only
by the soundboards and end supports. The center or bass sustaining pedal removes
the dampers from all the bass strings. The left pedal, or the soft pedal, reduces the
sound output by lessening the length of the stroke of the hammers or by shifting
the hammers so that fewer strings are struck or by permitting the dampers to act.

The dulcimer, considered by some to be the forerunner of the piano, consists of
a large number of strings stretched over a frame mount in an oblong box. These
strings pass over bridges that are coupled to a soundboard. The oblong box is
mounted on legs, causing the instrument to resemble a square piano without keys.
The instrument is played by striking the strings with two hammers, one in each
hand. Dampers controlled by a foot pedal are provided. The range of the dulcimer
is from D2 to E6.

18.10 Wind Instruments

A wind musical instrument is a device that generates sound by (a) blowing a jet
stream of air across some type of opening, as in whistles, flutes, or piccolos, fife
and flue organ pipe; or (b) by buzzing of lips (acting as reeds) of a bugle, French
horn, trumpet, tuba, or trombone; or (c) by vibrating a reed (or a double reed, i.e., a
set of two reeds) through the means of airflow in an accordion, clarinet, saxophone,
oboe, bagpipe, English horn, bassoon, sarrusophone, and the human voice.

The reed instruments fall into two sub-categories: one category entails instru-
ments in which air pressure tends to force the reed valve open (the human larynx,
buzzing lips of brass instruments, and harmonium reeds); the other category in-
cludes instruments in which the air pressure forces the reed valve to close (e.g., clar-
inets, oboes, similar woodwinds, and organ reed pipes). The first category tends to
act as a sound generator over a relatively narrow fundamental frequency range, just
above the fundamental frequency of the reed. The other category serves as a sound
generator over a wider range of frequencies, just below the resonant frequency of
the reed—but some type of coupling to a pipe resonator must be provided.

Figure 18.23 illustrates two possible configurations of a vibrating reed generator.
The reed generator is really is a pressure-controlled device for cutting off and
reinstating airflow at selected frequencies. In both cases of Figure 18.23, the blow
air pressure pb (gauge pressure, relative to the atmospheric pressure) is applied
from the left. If pb > 0 (i.e., the blow pressure is above atmospheric pressure), the
valve in (a) is forced closed by the positive pressure and the valve in (b) is forced
open. The opposite situation occurs when pb < 0. In general terms, the motion of
a reed can be described by (Fletcher and Rossing, 2004).
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Figure 18.23. Two types of vibrating reed generator.

where

mr = mass of reed
Qr = quality factor of reed resonance

x = position of valve relative to its seat
x0 = equilibrium position of valve
ωr = angular frequency of reed
pb = blow pressure
p = acoustic pressure

γgr = geometric factor for the exposed reed faces
γbe = Bernoulli force factor based on internal flow

in the narrow part of valve gap
U = flow velocity.

In the air-reed instruments, a steady stream of air does the activation by flipping
in and out of the pipe or cavity at the resonant frequency of the system, as shown
in Figure 18.24. This steady stream of air thus becomes an alternating flow, and
because of the nonlinear nature of the exciting force, a number of the resonant
elements in the system are excited, thus yielding a series of overtones that add to
the fundamental tone. The whistle and flue organ pipe, each consists of a cavity,
a closed or open pipe coupled to an air reed that is activated by a steady air
stream. The air stream entering the pipe vacillates between moving to the inside
of the pipe and moving to outside of the pipe. Upon entering the pipe, the air
stream compresses the air in front of it, as depicted in Figure 18.24 at θ = 0◦. The
pressure inside the pipe builds up to the equilibrium point, and no more air will
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Figure 18.24. The mechanism of the flue pipe organ, an air-reed instrument. The mag-
nitude of the pressures are indicated by the diameter of the circles. A dark circle denotes
a pressure above atmospheric, and a white circle indicates a pressure below atmospheric.
The direction of the arrows represents the direction of airflow, and the magnitude of particle
velocities are indicated by the length of arrows.

then enter the pipe, as indicated in Figure 18.24 at θ = 90◦. The excess pressure
will now direct the incoming air stream to the outside at θ = 180◦. This results
in the excess pressure being relieved and a rarefaction owing to the inertia of the
outgoing air, as shown for θ = 270◦.

The decreased pressure pulls in the air to renew the cycle at 0◦. This cycle con-
sisting of the four phases repeats itself at the resonant frequency of the system.
The frequency of the complete cycle occurs at the resonant frequency of the closed
pipe. Odd harmonics are also produced, because the closed pipe resonates at these
frequencies as well as the fundamental; this action steers the air stream vacillating
from the interior and the exterior. In the case of the open pipe, both odd and even
harmonics are produced. Sectional views of the open-flue pipe (made of metal) and
a stopped-flue pipe are shown in Figure 18.25. A whistle, such as that used by police
officers and referees of athletic contests, operates on the same principal as the or-
gan flue pipe except that the resonating chamber is a Helmholtz resonator, which is
essentially a chamber with a narrow neck. The resonance of a whistle can be found
from application of Equation (7.66), on the basis of the volume of the whistle cham-
ber and the area of the sound-radiating hole coupling the chamber to the outside air.
The overtones due to resonances within the small chamber occur at relatively high
frequencies and are effectively suppressed by the inertance of the sound-radiating
hole, thus resulting in a nearly pure tone of the whistle. A calliope is a group
of whistles with frequencies corresponding to the notes of a musical scale. Each
whistle is controlled by a valve connected to a key that is part of a keyboard similar
to that of a piano. Either steam or compressed air is used to actuate the whistles.
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Figure 18.25. Sectional views of the open flue pipe (left) and a stopped-flue pipe (right).

The recorder and the flageolet can be categorized as instruments of the whistle
class. Each is equipped with a mouthpiece, a fipple hole, and a cylindrical tube
bearing a set of fingerholes. The recorder has eight fingerholes plus one thumbhole
on the opposite side of the tube to alter the resonant frequency of the air column.
Different types of recorders have been constructed ranging in length from 30 cm to
almost 900 cm. The flageolet features a set of four fingerholes plus two thumbholes.
The ocarina’s construction differs from that of a flageolet in that its resonating
system is a cavity and hole combination, not a pipe. The resonator is coupled to
the air through several holes, including the fipple hole. The resonance frequency
is increased as the number of holes is increased, because the inertance decreases
with the number of holes. Ocarinas, which may be made of metal, ceramic, or
plastic, cover about a range of an octave and a half.

The flute illustrated in Figure 18.26 is a cylindrical main tube with a slightly
tapered head-joint. One end of the flute is open and the other is closed. The em-
bouchure (blowhole) is located a short distance from the closed end. The holes are
controlled by closing or opening them in order to vary the resonant frequencies
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Figure 18.26. The modern flute.

corresponding to the musical scale, either by the fingers directly or through ac-
tuation of keys. This system of keys and connecting shafts and levels constitute
a mechanism that actuates valves that are basically disks that cover fingerholes.
Springs are utilized to keep the valves in the unactuated position, which may be
either open or closed. This system renders it possible to open or close fingerholes
that are too far apart or are too large to be stopped by the fingers alone.

The sound of the flute is generated in this manner: In Figure 18.27 an air stream
from the lips impinges upon the embouchure of the flute. Resonant frequencies are
generated by the air stream slipping back and forth between entering the flute body
and flowing past the embouchure. A stream of air enters the blowhole (ϑ = 0◦),
causing a pressure to build up to the extent that it stops air from entering (ϑ = 90◦).
The excess pressure (ϑ = 180◦) then forces the air out of the blowhole until it stops
leaving the blowhole (ϑ = 270◦). The cycle then repeats itself.

The piccolo can be considered a smaller version of the flute that operates one
octave higher. The operational principle of the piccolo is fundamentally the same

Figure 18.27. The action of the flute: the directions of the arrows indicate airflow direction.
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Figure 18.28. Reed position and particle velocities (indicated by arrows) in a mechanical
reed instrument for a complete cycle (after Olson, 1967).

as that of the flute, but the fundamental range is from D5 to B7 instead of the range
from C4 to C7 of the latter instrument. The fife is a somewhat simpler instrument,
consisting of a tube of metal or wood that is closed at one end and open at the
other. It is equipped with six fingerholes distributed along the tube and a blowhole
near the closed end.

Mechanical reed instruments are those that use a steady air stream to actuate a
mechanical reed to throttle the airflow at the resonant frequency of the reed and
the associated acoustical system. These instruments may be subdivided into two
categories: single- and double-reed instruments.

Single-reed instruments use a single-mechanical reed to throttle a steady air
stream to generate a musical sound. A free-reed instrument is one that radiates
its sound directly into the air. Modern examples of the free-reed instrument are
the free-reed organ (harmonium), accordion, and harmonica. In other instruments
(e.g., reed organ pipe, clarinet, saxophone, or bagpipe), the reed couples to a
resonant air column. The action of the reed is that of a free-end (cantilever) vi-
brating bar described in Chapter 5. The mechanical reed in its quiescent state
is positioned so that it forms an opening with the structure of the instrument as
shown in Figure 18.28. The velocity of the air moving past the reed through the
opening results in a lower pressure on the flow side, due to the Bernoulli effect,1

which causes the reed to flex toward the lower pressure, causing the opening to

1 Bernoulli’s principle states that the dynamic pressure of a nonviscous fluid flow will drop with an
increase in the velocity of the flow and vice-versa according to the relation:

p + 1

2
ρu2 = constant

where p is the air pressure, ρ the air density, and u the air velocity.
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Figure 18.29. Two accordion versions: (a) button keyboard accordion and (b) piano key-
board accordion. (Photographs of the Hohner Corona II diatonic accordion and Hohner
Atlantic IV piano keyboard accordion courtesy of Hohner, Inc.)

become smaller. The airflow then becomes reduced by the constricted passage,
which causes the pressure on the flow side to increase, and the reed springs back
to its original position. It then moves beyond its original position, under the effect
of inertial energy, and the airflow becomes larger. The pressure again drops and
the reed returns to the normal position it had at the beginning, and the cycle of
events repeats at the resonant frequency of the system. This action has the effect
of converting a steady air stream into a saw-toothed pulsation that contains the
fundamental and its harmonics.

The harmonium or the free-reed organ operates through a series of air-actuated
free reeds tuned to specific notes. The air supply driving the reeds is provided
by two pedal-operated pedals connected to bellows that connects to a wind chest
on the top of which reeds are mounted. This type of organ features a piano-like
keyboard. Each key operates a valve that controls the air supply to the reed, with
one key for each reed. Reed organs are usually equipped with stops for connecting
banks of reeds. Thus, a single key can activate a number of reeds.

The accordion shown in Figure 18.29 functions by the player’s arms working a
bellows which provides the air supply to the reeds, alternatively creating pressure
(when the bellows is compressed) and a partial vacuum (when the bellows is
expanded). The air-actuated reeds, tuned to notes of a musical scale, are controlled
through a keyboard. Each key connects to a valve that controls two separate reeds.
One reed operates under pressure and the other under a vacuum. In some versions
of the instrument, two differently tuned reeds are assigned to each key that one tone
is produced with expansion of the bellows and another tone with the compression.
The vibrational action of the reed is that of a free-end bar. Accordions, which are
really portable versions of reed organs, are usually equipped with stops to connect
individual reeds so as to form banks of reeds. This enables operation of several
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reeds from a single key. In playing the accordion, the performer uses the left hand
to move the bellows and to play the bass parts and the accompaniment and uses
the right hand to play the melody.

The simple accordion shown in Figure 18.29 contains 10 melody buttons or
keys and tow bass keys. Each key produces two different tones, one tone upon
bellows expansion and the other upon bellows compression. The piano accordion
of Figure 18.29(b) is equipped with a two-octave piano-style keyboard (with black
and white keys) and 12 bass and chord buttons. The same tone is produced on
both compression and expansion cycles. There is no standard size for accordions.
More elaborate accordions have been constructed with melody keyboards cover-
ing up to four octaves, and some of the larger accordions contain as many as 120
bass buttons arranged in six rows rather than the two rows of six buttons each as
shown in the figure. The first and the second rows provide the bass notes while
the other four rows produce, in the following order: the major, minor, dominant-
seventh, and diminished-seventh chords. A medium-sized accordion with a piano-
style keyboard can cover in its melody section a frequency range from F3

to A6.
The mouth organ or harmonica, which comes in number of versions, is played

by a performer’s breath providing the air supply through both exhalation and
inhalation. The instrument consists of a set of tuned free reeds mounted on a wood,
metal, or plastic box, with channels leading from orifices to the reeds along one side
of the box. Each channel connects to two differently tuned reeds, one reed operating
under pressure (exhalation) and the other under a partial vacuum (inhalation). Each
reed behaves as a cantilever bar in operation. To play a melody the mouth covers
one or more holes, with the tip of the tongue providing some additional control.
Harmonicas fall into three principal categories: the simple harmonica (a single row
of 10 holes, 20 different notes), the concert harmonica (two rows, one row tuned
an octave higher than the other), and the chromatic harmonica. The chromatic
harmonica, although similar in appearance to the concert type, is really a set of
two harmonicas, one placed above the other. The bottom instrument is tuned one
semitone above the upper instrument. This instrument contains a slide which is
moved by a knob to the right. When the slide is in, the upper holes are closed and
the lower holes are open; the converse occurs when the slide is out. A fairly typical
simple 10-hole harmonica can cover 21/2 octaves from C3 to F5.

The reed organ pipe contains an air-actuated reed coupled to a conical pipe,
with the fundamental frequencies of the reed and the pipe itself fairly matching.
In some installations, a combination of a conical pipe and cylindrical pipe is used.
Because the pipe and the reed are intimately coupled, the resonant frequency is
established by the combination of these two components. The resonant frequency
can be changed by altering the resonant frequency of either the reed or the pipe.
A reed organ pipe is customarily tuned by changing the effective stiffness of the
reed by moving a tuning spring that is in contact with the reed. A cross-sectional
view of the organ pipe mechanism is shown in Figure 18.30. The organ may
also be tuned by changing the effective length of the pipe by a metal rollback
in the side of the pipe near the open end. Both the shape of the reed and that of
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Figure 18.30. Reed organ pipe and reed mechanism.

the pipe determine the timbre. Voicing is the process of selecting and adjusting
these components to yield the proper timbre. Reed organ pipes are generally de-
signed to imitate orchestral instruments such as the trumpet, tuba, oboe, clarinet,
the human voice, and so on. These pipes are classified as chorus and orchestral
reeds.

The clarinet consists of a single-mechanical reed coupled to a cylindrical tube
with a flared open end. Control over the effective length of the resonating air column
is provided by a number of holes that may be opened or closed by fingers, either
directly or through keys. Any change in the effective length of the air column
results in a change of the resonant frequency. The reed position in the bottom
of the mouthpiece functions in the manner described above for Figure 18.28.
The throttling action of the reed changes a steady air stream into a saw-toothed
pulsation that contains the fundamental and its harmonics. When sounded alone,
the reed produces a sound rich in harmonics. The quality of the tone is improved
when the reed is coupled to the cylinder air column. The clarinet produces a range
covering more than three octaves, from D3 to F6. The clarinet’s overall length
is about 63 cm. The bass clarinet is a larger instrument, being 94 cm in overall
length, which produces tones in a lower frequency range, from D2 to F5. This lower
frequency range is obtained by doubling the tube on itself.

The saxophone operates in a similar fashion to the clarinet. The principal differ-
ence in its construction is that the diameter of the tube at the reed end is smaller,
thus resulting in a lower acoustic impedance. Also, the coupling between the reed
and the pipe is not as intimate as in the case of the clarinet. The buildup of the reed
vibration is extremely quick, producing a sharp attack that is characteristic of the
saxophone. Saxophones come in various sizes, including soprano, alto, tenor, bari-
tone, and bass. The smallest of these, the soprano saxophone, employs a straight
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Figure 18.31. The bagpipe.

tube with a slightly flared open end; all the other saxophones use a curved mouth-
piece and an upturned bell at the other end. Each of these types of saxophones
covers a fundamental range of about two and a half octaves. The soprano produces
A 3 to E 6; the alto from D 3 to A 5; the tenor from A 2 to E 5; the baritone from
D 2 to A 4; and the bass from A 4 to D 4. Their overall lengths range from 40 cm
for the soprano version to nearly 100 cm for the bass saxophone.

The bagpipe of Figure 18.31, the instrument so symbolically evocative of
Scotland, contains one or more combinations of air-actuated reed coupled to a
resonating pipe. A leather bag serves as a reservoir and air supply for actuating
the reeds. Air is supplied to the bag by blowing with the breath. Because the reeds
are supplied with a steady stream of air, the reeds sound continuously without
interruption, distinguishing the bagpipe from other breath-blown instruments that
do not provide such steady sounds. There are usually two or three fixed-frequency
reed–pipe combinations that are called drones. In addition there is a variable pitch
reed–pipe combination, or the chanter. On the chanter pipe, eight fingerholes are
provided so that discrete frequencies can be achieved over the range of an octave.
The chanter supplies the melody, and the drones produce a harmonious steady
tone. The reed and pipe mechanism is similar to that of the reed–organ pipe.
However, in the modern version of the bagpipe, the reeds in the drone are of the
single-mechanical type and the reed in the chanter is a double-mechanical type.

Double mechanical-reed instruments use two mechanical reeds for throttling a
steady stream of air to produce a musical sound. All of these instruments couple
the double-mechanical reeds to a resonant air column. Such instruments include
the oboe, English horn, oboe d’amore, bassoon, and sarrusophone.

Figure 18.32 depicts the operational principal of the double reed. When the
reeds are in the normal position, i.e., they are slightly apart, air is forced through
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Figure 18.32. The action of a double reed. Air particle velocities are indicated by arrows.

the opening between the reeds. The high velocity of the air reduces the pres-
sure between the reeds, in accordance with the effect of Bernoulli’s principle.
This causes the two reeds to be forced closer to each other, thereby constrict-
ing the airflow. With the airflow now reduced by the constriction, the pressure
increases, causing the reeds to spring back toward their original position, but ow-
ing to their momentum, they moved beyond their original positions. The opening
is now at its largest, and the airflow is increased accordingly. The internal pres-
sure on these reeds are now quite small, so they return to their original position,
and the cycle begins again with this sequence of events repeating at the rate of
the resonant frequency. Thus, a steady air stream undergoes a throttling action
that generates a saw-toothed signal that contains the fundamental and all of its
harmonics.

The oboe consists of a double-mechanical reed such as that shown in Figure
18.32, coupled to a conical tube with a slight flared mouth. The effective length of
the resonating air column is controlled by the number of holes that are opened or
closed by the fingers either directly or through keys. The oboe covers three octaves
from B to G6; the overall length of this instrument is 62 cm. The English horn
resembles the oboe in most respects, especially in the key and fingering system,
with the principal difference being that the double-mechanical reed is coupled to
a tapered conical tube that terminates in a hollow spherical bulb with a relatively
small mouth opening, thus producing a unique timbre. The fundamental frequency
range of this 90-cm long instrument covers less than three octaves, from E3 to B 5.
Approximately 70 cm long, the oboe d’amore is a smaller twin of the English horn,
and it ranges over nearly three octaves from G#3 to C#6.

The bassoon is a noble-sounding instrument that consists of a double-mechanical
reed coupled to a conical tube that is doubled back on itself so that a lower frequency
range is provided without compromising the portability of the instrument itself.
There is no appreciable flare at the mouth. A set of holes on the side can be opened
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Figure 18.33. A contemporary organ console (from Olson, 1967).

or closed by fingers either directly or through the use of keys to determine the
effective length of the resonating air column. The overall length of the bassoon
is about 123 cm, but the doubled conical air column is about 245 cm long. The
bassoon covers roughly three octaves from E 1 to E 3. The contra bassoon can be
considered the bigger brother of the bassoon, but its tube is folded several times
to yield an air column as long as about 480 cm while keeping the overall length
of the instrument to a manageable 127 cm. The fundamental frequency range runs
from B0 to F3.

The sarrusophone, essentially a double-mechanical reed coupled to a folded
brass tube of conical bore with a flare at the open end, comes in several sizes
covering different fundamental ranges. The effective length of the air column is
varied by a number of holes that are opened and closed by cover valves operated
by keys. The most common type of sarrusophone is the contrabass type, whose
fundamental frequency range from D 1 to B3.

The modern organ illustrated in Figure 18.33 is really more than one type of
instrument. It is considered to be a combination mechanical-reed and air-reed
instrument. It consists of a large number of flue- and reed-type pipes controlled
directly by manual and pedal keyboards and less directly by stops, couplers, and
pistons. The organ console in Figure 18.33 is shown to contain three manuals, a
pedal keyboard, tablet couplers, thumb and toe pistons, and swell pedals. Organs
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Figure 18.34. Schematic of the elements of the modern organ (from Olson, 1967).

and organ consoles, it should be mentioned here, are not standardized. The organ
may be constructed with one or more manuals and with or without a pedal keyboard.
In a five-manual organ, the functions of the manuals are as follows: The first (or the
lowest) controls the pipes in the choir organ; the second controls the pipes of the
great organ; the third controls the pipes of the swell organ; the fourth controls
the pipes of the solo organ; and the fifth controls the pipes in the echo organ.
The pedals control the pipes in the bass organ. In a number or more elaborate
installations, other instruments have been added to pipes (e.g., gongs, cymbals,
gongs, drums, etc.). Yet other installations contain as many as seven manuals. The
typical pipe organ in use today has two to five manual keyboards and a pedal
keyboard.

It can be seen from the schematic of Figure 18.34 that the organ is a combination
of several organs, each organ having a different kind of pipes. We have earlier
described the flue organ pipe and the reed organ pipe. Pipes can be classified into
following basic groups: the diapasons, flutes, strings, and reeds. The more common
flue and reed pipes are illustrated in Figure 18.35.

In the evolution of the organ, it was found that the tones could be improved by
grouping a set of pipes to sound simultaneously by depressing a single key. Thus
each key can represent any number of pipes, and each combination of pipes is
called a stop, a term which is also applied to a knob along the sides of the console.
Each stop knob controls a specific group of pipes.
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Figure 18.35. Different types of organ pipes (from Olson, 1967).

The pedal organ features the largest flue and reed stops. The great organ, the
choir organ, and the swell organ feature decreasing steps of flue and reed stops.
The swell organ is placed in an enclosed space equipped with shutters in the wall
between the wall and the audience. The opening and closing of these shutters are
controlled by the swell pedals in the organ console. The solo organ, if there is one,
is also enclosed in a swell box.

Just above the top manual, a row of tilting tablets serve as couplers. This coupling
system allows the actuation of a mechanism associated with more than one key
by simply pressing one key. The different manuals can be interconnected by this
coupling arrangement; and the pedal keyboard, for example, can be tied to any
manual by this coupling procedure.

In the early organs, keys were connected directly to valves that controlled the
airflow to the pipes. This required considerable strength on the organist’s part to
press the keys. The action was improved later by the introduction of a pneumatic
system, in which the key operates a small pneumatic valve requiring a lighter force,
which in turn operates a valve connected with the pipes. But this resulted in slow
action owing to the slowness of the propagation rate of air impulses from the key to
the valves at the organ pipes. As a result the console had to be located very near the
pipes. Except for small organs, modern organs now use either electropneumatic or
electric action to actuate the pipes. In the electropneumatic action, pressing down
on the key energizes an electromagnet to move a set of valves in an air chamber,
causing bellows to expand and move a linkage that opens up a larger valve which
in turn lets in the air supply into the wind chest to activate the organ pipes. The
advantages of the electropneumatic system are: a light force is required to press
the key, the action is swift, the keys can be interconnected by merely flipping a
switch, and the console can be located almost any distance from the organ and even
moved about, because the wiring connecting the console to the different organs
can be grouped together inside a reasonably small, flexible cable. The all-electrical
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action essentially constitutes a servomechanism setup, where the key activates a
relay that opens the wind chest to the organ pipes.

Because of the large size and number of pipes, organs require large amounts
of air for actuating the pipes. The air pressure required is quite small, ranging
from about 1 kPa gauge pressure for the early hand-powered organs to as much as
12 kPa air gauge pressure in some modern units. The air supply for modern organs
is provided by an electric fan or an electrically driven centrifugal pump.

Lip-Reed Instruments
In these types of instruments, the lips serve as the reeds and the air supply is
provided by the lungs. The puckered upper and lower lips can be imagined as a
pair of double-mechanical reeds of Figure 18.33, with the operational principle
being virtually the same. The frequency of the pulses, which occur as a result
of the lips throttling the airflow, corresponds to the resonant frequency of the
lips combined with the associated instrument. Because the coupling between the
lips and the instrument’s mouthpiece is fairly loose, the fundamental resonant
frequency of the lips must correspond to that of the instrument. However, the
combined resonant frequency of the horn and the lips can be varied slightly up or
down by changing the tension of the lips, thus changing the resonant frequency
of the system. The modern lip–reed instruments are the bugle, trumpet, cornet,
trombone, French horn, and tuba—collectively referred to as the brasses.

The simplest of the brass instruments is the bugle, which consists of a cupped
mouthpiece attached to a coiled tube with a low rate of taper, terminating in a
bell-shaped mouth. The length of the air column is fixed; there are no valves,
and the number of notes that can be played is limited. The overall length of the
standard bugle is about 57 cm, and the notes it can play are C4, G4, C5, E5, G5, B 5,
and C6.

As it is equipped with three sets of keys that operate piston valves, the trum-
pet is a more versatile instrument than the bugle. The trumpet is constructed of a
coiled tube almost 3 m in length with a slight taper, terminating in a bell-shaped
mouth. The first third of the tube is almost circular, with the remainder slightly
conical except for the last 30 cm that flares into a bell-shaped mouth. Pushing
down on the keys of the piston valves adds to the effective length of the tube.
With three valves closed and opening them singly, opening in three different com-
binations of pairs, or with all three valves opened, it becomes possible to obtain
eight different lengths of the resonating tube. A tuning slide or bit is provided so
that the resonant frequencies can be matched with other instruments. The trum-
pet, which has an overall length of 57 cm, covers about three octaves, from E3

to B 5. A mute in the form of a pear-shaped piece of metal or plastic can be in-
serted into the bell in order to change the quality of the tone and attenuate the
output.

Only about 36 cm in overall length, the cornet is a smaller version of the
trumpet. In addition to its size, the cornet has a bore that is tapered rather than
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cylindrical. It covers the frequency range from G3 to B 5. The French horn, ar-
guably the most beautiful appearing brass instrument, consists of a mouthpiece
coupled to a slightly tapered coiled tube of 365 cm length, which terminates in a
large bell-shaped mouth. The modern version of the horn is equipped with three
sets of rotary valves controlled by three keys. This valve system provides eight
different lengths for the resonating tube, and hence a series of different resonant
frequencies corresponding to the notes of the musical scale. The large size of the
mouth of the French horn renders it possible for the player to inert his hand and
raise or lower the pitch or to produce a sound (e.g., muted) effect. The French
horn can sound over three octaves, from B1 to F5. Its overall length is nearly
58 cm.

The trombone and the bass trombone differ from the other brass instruments in
that they each feature a telescoping section of the tube that can be moved by the
performer to vary the length of the tube and hence the resonant frequency. The
trombones are the only instruments besides the violin family that can provide a
continuous glide through the musical scale. The pitch is determined by the position
of the slide as well as the performer’s lips and the applied lung pressure. As with the
case of performers of the violin family, the player must possess an accurate sense of
pitch and the ability to produce the correct note. The trombone’s U-shaped tube is
nearly 3 m long, with a slight conical taper that culminates in a bell-shaped mouth.
It is capable of covering nearly 21/2 octaves, from E2 to B4. The bass trombone is
larger, covering three octaves from A1 to G 4.

The tuba’s mouthpiece is attached to a coiled tube nearly 6 m in length that
gradually increases in its cross-sectional area until nearly the end when it termi-
nates in a large bell-shaped flare. Three piston valves are provided, each adding
a different length to the tubing. Thus, eight different lengths are provided, in the
same basic manner as the trumpet or cornet. Some versions of the tuba include a
fourth valve, with a corresponding increase in the number of different resonant fre-
quencies. Largest of the brass instruments, a typical tuba, measures approximately
1 m. The tuba covers three octaves from F1 to F4. Different versions of the tuba
exist, with a variety of sizes and forms. The sousaphone (named after band con-
ductor/composer John Sousa of the “March King” fame) is the largest of the tuba
family.

In concluding this section on wind instruments, it might also be mentioned that
the human voice also classifies wind instruments, i.e., it is a reed instrument in
which the vocal cords serve as the reeds. The mechanism of the voice consists
of three sections: (1) the lungs and associated muscles to serve as the air supply;
(2) the larynx bearing the vocal cords for converting the airflow into a periodic
modulation; and (3) the vocal cavities of the pharynx, mouth, and nose, all of
which help vary the tonal content of the output of the larynx. A sectional view
of the voice system in the human head is shown in Figure 18.36. The frequency
of the vibration is governed by the tension of the vocal cords, the inertance, and
the combined acoustical impedance of the vocal cords and the vocal cavities. The
vocal mechanism is a complex one, entailing a number of acoustical elements
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Figure 18.36. The human voice mechanism in a sectional view of the head.

that can be varied by the singer to yield a wide variety of tones, which differ in
harmonic content, quality, loudness, duration, growth, and decay. According to
Machlis,

the oldest and still the most popular of all (musical) instruments is the human voice. In no
other instrument is contact between the performer and medium so intimate. In none other
is expression so personal and direct. The voice is the ideal exponent of lyric melody and
has consistently been the model for those who made instruments as well as for those who
played them.

A human voice can range over two octaves, but variations do occur among
different individuals as to the range, to say nothing of the beauty or quality of
tones. It is a rare voice such as Yma Sumac’s that can cover four octaves or more.
An effortless coloratura such as Joan Sutherland, a powerful heldentenor such as
Lauritz Melchior, or a sonorous basso such as Alexander Kipnis or Martti Tevala
comes along once a generation. On the average, a soprano can range from C4 to
C6; an alto, from G3 to F5; a tenor, from D3 to C5; a baritone, from A2 to G4; and
the basso, from E2 to D4.
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18.11 Percussion Instruments

Percussion instruments are made to sound by striking or shaking. The vibration
system that is excited by an impact may be a bar, rod, plate, membrane, or a bell.
Two classes of percussion instruments exist: viz. definite pitch, in which the tone
has an identifiable pitch or fundamental frequency; and the indefinite pitch, in
which the musical sound does not have a definite pitch or fundamental frequency.
The former category includes the tuning fork, xylophone, celesta, glockenspiel,
bells, and chimes. Drums, the triangle, tambourine, castanets, and cymbals fall into
the latter category. The tuning fork, discussed in Chapter 5, is used as a standard
frequency sound source. The resonant frequency of a tuning fork is determined by
its dimensions and its material.

The xylophone consists of a number of metal or wood bars, having specific
resonant frequencies, mounted horizontally and supported on soft material at two
nodal points. The vibration of each bar is that of a free bar, with the resonant
frequency dependent on the dimensions of the bar. A pipe acts as a resonator
by being coupled to each bar to improve the coupling between the bar and the
air, thus yielding greater sound output. Felt-covered hammers are used to strike
the bars. Differential models of xylophones are available to provide fundamental
frequency ranges of two to four octaves, generally from C3 to E7. The marimba,
which has African and South American roots, is basically an enlarged version of
the xylophone that usually covers about five octaves, from F2 to F7.

The glockenspiel (also called orchestral bells) resembles a small xylophone
but small wooden hammers are used to strike the notes. The bell lyre is another
version of the glockenspiel. A set of steel bars is mounted on a lyre-shaped frame.
A ball-shaped hammer is used to strike the bars. The bell lyre is used in marching
bands as it is small enough to be hold almost vertically by one hand while the other
hand holds the hammer. The glockenspiel can be constructed to cover up to three
octaves. The frequency range usually falls between C3 and C6.

The celesta contains a series of resonant steel bars with specific resonant fre-
quencies. The bars are actuated by hammers linked to keys forming a keyboard.
Thus, the celesta resembles a small upright piano. The steel bars are suspended
above wood resonating boxes, which are designed to improve coupling of the bars
to the air, thus improving the sound output. Dampers are provided, and a single
pedal, called a sustaining pedal, removes the dampers so that the energy of the
vibrating bar may be dissipated over a longer period. The celesta is a four-octave
instrument that ranges from C4 to C8.

Chimes or tubular bells are a series of resonant brass tubes suspended verti-
cally from a wooden frame, and a foot pedal controls a damping bar. The tubular
bells, whose resonant frequencies correspond to the notes of the musical scale
and are played by being struck by a wooden mallet, range up to two octaves,
generally between G1 and G3. The tubular bells are intended as substitute for
real bells. Bells themselves also constitute musical instruments. They are actuated
through side-to-side movements by clappers that hang loosely inside the bell. The
fundamental frequency of a bell depends on the geometry of the bell, the wall
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thickness, and the density and moduli of the metal. A carillon is a set of fixed
bells tuned to a musical scale. A number of arrangements have been devised to
play the bells: the bells may be struck directly by hammers held in the hand of
the carillonneur, or they may be struck by a clapper through linkages to a key-
board that is played by a carillonneur. With a mechanical setup, fists are used with
considerable force to operate the keys. In electrified carillons, the clappers are
activated by solenoids activated by the keys of a keyboard. In this setup the force
required to move the keys are greatly decreased to a level no greater than that for
playing a piano or an organ. A carillon usually covers the range of three or more
octaves.

The kettledrum or timpani consists of a large hemispherical bowl over which
a specially treated leather skin is stretched. Several types of sticks are used to
strike the membrane, according to the percussion effect desired. These sticks may
have striking surfaces made of sponge, felt, rubber, or wood. The kettledrum may
be tuned and changed in its fundamental frequency when so desired by varying
the tension of the membrane through adjustment of head screws and by movement
of a tuning pedal. The kettledrum emits a low-frequency sound of a definite pitch.
The pedal provides a quick yet accurate variation of the pitch that a melody can
be played on the kettledrum. Two versions of the timpani are standard, the smaller
one having a diameter of 58.5 cm and the larger one, a diameter of about 76 cm.
The smaller unit covers the frequency range from B 2 to F3, and the larger from
F3 to C3.

An interesting development of rather recent past is that of the steel drum, which
is the principal instrument of Trinidad, where it originated, and of other Caribbean
nations. Steel drums developed in Trinidad in the 1940s because the use of “bamboo
tamboo” sticks, which supplied rhythmic cadences at the annual Carnival festiv-
ities, were proscribed after matters got out of hand and these sticks were used
as weapons in melees between rival bands and fights with the police. But these
musicians were determined to continue their musical ways, and their resource-
fulness turned them to buckets, garbage cans, brake drums, and whatever was
available. The first steel drums were rhythmic rather than melodic. With the avail-
ability of the 55-gallon steel drums used by the petroleum industry after World
War II, the continued development of tuned steel drums continued apace to the
point that they must now be considered rather sophisticated examples of musical
instruments and intricate workmanship. These instruments are now achieving ever-
greater popularity in North American and in Europe, to the point where an aspiring
musician can study steel drums in a well-developed curriculum at Northern Illinois
University.

A variety of steel drums or pans are available. Steel drums are generally fabri-
cated from 55-gallon oil drums. The drums in a steel band may consist of a variety
of drums that have been termed soprano, ping pong, double tenor, guitar, cello,
and bass. The soprano or ping pong can have anywhere from 26 to 36 different
notes, but a bass drum may have only three or four notes. Because of the relative
paucity of notes on a single drum, the bass drummer is likely to play on a half a
dozen drums in the same manner as a timpanist in a symphonic orchestra.
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Figure 18.37. Layout and tonal segmentation of different steel drums: (a) lead pan (so-
prano), (b) double tenor (alto), (c) double second (tenor), (d) cello, and (e) bass (from
Fletcher and Rossing, 1998 with acknowledgment to Clifford Alexis).

These drums are fabricated by first hammering the head of an oil barrel into the
shape of a shallow basin. A pattern of grooves is cut with a nail to delineate sections
of different notes. Each section is “ponged up” or shaped with a hammer. After
the drum is heat-tempered, each section is tuned by the adept use of a hammer.
Figure 18.37 shows the layout and the tonal segmentation of different types of
steel drums.

Indefinite pitch instruments include the triangle, which is a steel rod bent into
a triangular shape that is struck by a metal beater. Because the triangle under-
goes a complex vibration when struck, the fundamentals and the overture form
an indefinite noise mixture. The bass drum, a hollow cylinder of wood or metal
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covered at each end by a stretched membrane or parchment or skin, is struck with
a softheaded stick; its vibration is quite complex, owing to nodal contributions
by the air column and the stretched membrane. Thumbscrews supply the means
of adjusting the stretch of the drumskin. The bass drums are constructed in sizes
ranging from 61 cm to as much as 3 m, with approximately 78 cm being the most
common diameter. The military drum is a smaller rendition of the bass drum, being
about 40 cm in diameter and about 30 cm in depth. At nearly 36 cm in diameter,
the snare drum is even smaller than the military drum. Across its lower head, cords
of catgut are stretched so these cords vibrate when struck by the membrane. This
results in a sound output that is buzzing and rattling.

The tambourine consists of a hoop of wood or metal with a single membrane
stretched over one end. Smaller circular metal disks are inserted in pair in the
hoop and loosely strung on wires. During performance, the tambourine is held
in one hand and the membrane struck with the fingers or palms of the other
hand.

A cymbal is a brass circular disk that is concave at its center. Its vibration is that
of a circular plate supported at its center. Cymbals equipped with handles can be
hold, one in each hand, and struck together. A single cymbal can be supported in
a fixed horizontal position on a stand or on some other support and struck with a
drumstick. A sock cymbal consists of a pair of horizontally positioned cymbals,
one being fixed and the other being moved by a pedal. Cymbals are made in various
sizes, from as little as 5 cm in diameter to 51 cm.

Castanets, used to accentuate Spanish-style music, are hollow shells of hard
wood. These are hold in the hand and clapped together. They can also be mounted
on a handle in such a manner that shaking the handle clacks the castanets.

The gong is a round plate of hammered bronze, with the edges curved up so that
the shape takes on the appearance of a shallow pan. The gong is usually suspended
by strings attached to a frame. It is excited by striking with felt-covered hammer,
with the sound output resembling a heavy roar. The diameter of the gong ranges
from about 45 cm to 90 cm.

18.12 Electrical and Electronic Instruments

A tone can be generated by a number of electrical means. The means of producing a
tone can be achieved by interruption of an air stream (as with a siren that consists of
a rotating perforated wheel), an electrically driven diaphragm (as in the automotive
horn), and electronic alternator and loudspeaker combination (electric organs),
an electronic oscillator–amplifier–loudspeaker combination (the electric piano is
an example). The electric guitar is an adaptation, where an electromechanical
transducer is attached to the bridge of the instrument. The transducer converts
the mechanical vibrations into a correspondingly varying electrical signal that is
transmitted to an amplifier. The amplifier increases the strength of the signal and
sends it on to a loudspeaker that converts the electrical signal into the corresponding
acoustical output. A volume control in the amplifier or integrated into the guitar
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Figure 18.38. Schematic of a transistor oscillator network.

makes it possible to adjust the output sound level. The sound of the guitar resembles
that of the conventional instrument.

Generating music by electronic means has a history older than most people real-
ize. Early electronic instruments include the Theremin (1919), the Ondes Martenot
(1928), the Trautonium (1928), and the Hammond organ (1929).2 The early means
of electrically generating music were based on the technology that prevailed in the
recording and sound reproduction industry of the time. Electronics progressed
rapidly during World War II and even more rapidly with the development of tran-
sistors and eventually with the advent of microcircuitry.

Because of the rising costs of traditional pipe organs and the desire then pre-
vailing for creating sustained tones, much attention has been conferred on devel-
oping and marketing the electronic organ. Vacuum-tube oscillators and, later on,
solid state oscillators were used to generate the tones in an electronic organ. The
schematic of a transistor oscillator network is shown in Figure 18.38. Power from
the output network is fed back to the input network. Oscillations occur when more
power is developed in the output than is necessary for the loss in the input circuitry,
combined with appropriate phase relations between the current and voltages in the
input, feedback, and output networks. Under these conditions, the reactions con-
sist of regular surges of power at a frequency that depends on the constants of the
resonant elements in the input or output networks. The resonant elements include
quartz, crystal, tuning fork, inductance–capacitance, and so on. These electronic
systems are capable of simulating the wave shape of almost any musical instru-
ment. One type of electrical organ makes use of air-driven reeds and electrostatic
pickups. Most of the electronic organs consist of two manual keyboards and a

2 An interesting review of these instruments and their history may be found in texts by Rossing (1990)
and Strong and Plitnik (1983).
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pedal keyboard and incorporate a system of stops and couplers. Loudspeakers
may be housed in a separate cabinet; and the driving electronics housed in the
console.

The electronic organ has been displaced in the 1980s by the growing pop-
ularity of synthesizers. Modular synthesizers made their appearance in the
1960s in both analog and digital versions. The analog synthesizer consists of
a group of signal generating and signal processing modules operating on elec-
trical voltages. The modular approach to analog synthesis is embodied in three
fundamental voltage-controlled modules: (1) the voltage-controlled oscillator
(VCO), (2) voltage-controlled amplifier (VCA), and (3) voltage-controlled filter
(VCF).

The VCO is really a function generator that produces a periodic voltage signal
and is the initial source of pitched sounds. The frequency of the periodic signal
is determined by a control voltage. Usually when the control voltage increases by
one volt, the frequency doubles (i.e., it goes up one octave). The control mode is
therefore exponential, which fits beautifully into the scheme of things in music and
in electronics. Controllers can be fabricated in the form of keyboards, and musical
effects of modulation (trill, vibrato, or glissando) are independent of the DC value
of the control voltage. Switching keys of a melody require only the addition of a
constant to the series of control voltages representing the notes of a melody. The
exponential feature inherent in the voltage control is appropriate electronically,
given the fact that the collector current in a bipolar transistor is an exponential
function of the base-emitter voltage. In addition to being stable and accurate, the
VCO needs a subsequent filter to shape the waveforms for the desired tone color. A
high-purity sine wave output is normally needed, particularly if the VCO output is
processed by a nonlinear waveform shaper, distorter, or a ring modulator or an FM
synthesizer. Otherwise an excessively dense spectrum that is downright unmusical
can be created.

The voltage-controlled amplifier is a voltage amplifier with a gain that depends
linearly upon a control voltage. An exponential control is generally available, but
it is more usual for the amplifier gain to grow linearly with the control voltage with
a slope of unity gain for a 5-V control input and a maximum gain of 2. Ideally
the gain should be zero when the control voltage is zero or negative. It is the task
of the VCA to turn on tones. Since the oscillators run continuously, the VCA
bears the responsibility of shaping the amplitude envelope of the tone. Here the
control voltage comes from an envelope generator. When a note is begun from
a keyboard (or sequencer), the envelope generator begins a transient phase. The
envelope generator sustains an appropriate level for the duration of the tone and
ends the tone with an exponential decay. As with the tone control parameters on
a synthesizer, the performer can set the envelope transients, the sustain level, and
decay time by adjusting individual potentiometers on a modular analog instrument
and through programming on a digitally controlled keyboard. Special timbres can
be created by adding two sounds, one of them with a delayed onset. To achieve
this the output of two VCAs can be added, where one of them is controlled by
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a delayed envelope. A tremolo can be added by a VCA controlled by subsonic
periodic waveform.

A VCA can be utilized to multiply two separate audio signals, producing am-
plitude modulation, with one signal serving as the carrier and the other serving
as a modulator. The output consists of the spectral components of the carrier
plus sidebands. More commonly used than amplitude modulation is the balanced
modulation or ring modulation. While the VCA is a two quadrant multiplier (i.e.,
the control voltage must be positive for a nonzero output), the balanced modulator
is a four-quadrant multiplier.

As the terminology implies, the definitive frequency of a voltage-controlled
filter (VCF) is controlled by a control voltage. In a low-pass VCF, for example, the
cutoff frequency increases from a low value to a high value as the control voltage
increases. A scaling of 1 V per octave is the standard. There is a large number of
different filtering circuits available, but predominant design seems to be the state-
variable filter that is constructed from two integrators and a summer. This design
bears the advantage of incorporating (a) three simultaneous outputs (low-pass,
bandpass, high-pass), (b) a constant value of Q independent of band frequency,
(c) adjustability of Q through controlled feedback, and (d) stability of the sine
oscillation mode. This type of filter features asymptotic slopes of ±12 dB/octave
in the low-pass and high-pass outputs and ±6 dB/octave for the band-pass output.
A four-pole low-pass filter with an asymptotic slope of ±24 dB/octave is often
preferred by musicians to deal with the more subdued sounds, particularly in the
lower registers.

Voltage control is applied in filters to generate dynamic effects, particularly
musical attacks. As an example of this application, consider the fact that the
harmonics of a brass instrument entering the attack phase are in the order of
ascending frequencies (Risset and Mathews, 1965). This effect is electronically
simulated by raising the cutoff frequency of a low-pass VCF with an envelope
generator at the onset of the tone. On the other end of the tone, the decay of an
envelope generator is utilized to decrease the cutoff frequency of the low-pass
VCF to simulate the proclivity of high-frequency modes to become damped more
rapidly than the low-frequency modes in a free vibrator (such as a percussion
instrument).

A number of other musical effects can be generated. For example, in a delay-and-
add application for a digital delay line, specifically the generation of reverberation,
an input signal is passed through a delay line that is tapped at different delay
intervals. Signals at these taps are fed back into the input as a weighted sum.
This weight determines the reverberation time of the system. In the flanger use is
made of comb filtering. The flanger uses a single delay-and-add. The delay time is
slowly modulated so that the comb filtering changes with time, with typical delays
in the order of 2 ms. Chorusing, which is the attempt to make a single-voice sound
like a group of many, functions in the same manner, except several modulated
delay-and-add circuits are used to transmit to different channels, and the delays
are considerably longer, typically in the order of 10 ms.
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Figure 18.39. Arrangement of modules for an analog synthesizer. The signals from the
two keyboard-manipulated voltage-controlled amplifier (VCO) are summed into a voltage-
controlled amplifier (VCA) and then relayed to a voltage-controlled filter (VCF). Both VCA
and VCF are controlled by the envelope generators (EG). A third oscillator operating at
low frequency (LFO) is on hand for modulation of any voltage-controlled module.

In the early years of the synthesizer, control was a cumbersome matter, involving
patch cords for connecting analog synthesizers. The early digital synthesizers were
even more cumbersome, none of them operating in real time. In the early 1970s,
prepatched analog synthesizers were introduced, primarily for creating special
effects in a live performance. The setup of the modules is given in Figure 18.39.
In the mid 1970s, the modules of Figure 18.39 were combined into a single-
integrated chip. One such chip was placed under each key of the keyboard, so each
key essentially constituted the control for a miniature synthesizer. The PolyMoog
was the first and the last instrument to be constructed this way. Subsequent designs
now employ digital scanning keyboards and assign a specific sound synthesis chain
to each key. The number of chains (generally 8, 12, or 16) establishes the maximum
number of simultaneous notes.

The sequencer was introduced to provide additional automated control. The
earlier sequencers generated several channels of control voltages in repetitive
sequences. The analog sequencer could even replace a keyboard for generating
a repetitive bass line. The sequencers have evolved into small computers which
have almost unlimited musical capabilities. Thanks to computer memory, they
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can recall and reproduce the control sequences for multiple parameters for all
the voices in the entire performance. Data entry is achieved through the use of
an organ-type keyboard, and the programming allows for editing the data and
displaying or printing the data in the traditional musical notation.

18.13 The MIDI Interface for Synthesizers and
Digital Synthesis

With rapid advances in the development and manufacture of microprocessors and
equally rapid drop in the cost of these microprocessors, the digital control of syn-
thesizer functions became inevitable. In 1983 the manufacturers of commercial
synthesizers adopted the Musical Instrument Digital Interface (MIDI) standard,
which expands the range of control possibilities for the musical performer by the
adoption of an interface that makes it possible to transfer control data among dif-
ferent synthesizers or other processors as well as computers (International MIDI
Association, 1983). The interface is a unidirectional asynchronous serial line op-
erating at 31.25 kbaud (1 kbaud = 1000 bits/s). An MIDI word is defined as 10 bits
long, 8 data plus start and stop bits. To enable long interconnections, the interface
uses a 5-mA current loop. Repeaters with each MIDI-specification instrument al-
low for daisy chaining. Sixteen logical channels exist for data transmission, and
instruments may be set to obey data on one channel or data on all channels.

Some musical tradition remains in the way MIDI commands are defined to
emphasize the use of the keyboard in electronic instruments. Specific data words are
defined for key on/off, key velocity, key aftertouch, and for encoding the position
of modulation wheels (this device was originally introduced in the MiniMoog and
it remains a standard). The performers are free to use the parameters as they like,
and the MIDI has even been used to control stage lighting. Data of arbitrary length
can be transmitted by concaternating MIDI words. Owing to its high data rate and
flexible control structure, the MIDI control has proven to be very powerful and
well accepted in the industry and by performers of popular music.

With the affordability and availability of digital processors, it becomes inevitable
that digital oscillators can become precise enough to replace VCOs for improved
flexibility and stability. Moreover, a single digital oscillator can be constructed to
create several simultaneous voices.

A cost-effective digital technique is that of FM synthesis, which involves the
generation of a frequency-modulated waveform given by

x(t) = sin[ωct + β sin(ωmt)]

where ωc denotes the carrier frequency and ωm the modulating frequency; β is
the modulating index which is given by β = ω/ωm , with ω being the maxi-
mum frequency excursion. This FM algorithm provides for flexible addressing. A
spectrum of the FM signal contains a component at the carrier frequency and a
component that contains sidebands displaced in frequency by ±nωm , where n is
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the sideband order. Sidebands of order n have amplitudes that are proportional to
Bessel functions Jn(β). As the modulation index is increased, the bandwidth of
the signal increases. A dynamically varying spectrum is achieved by varying the
modulation index as the tone is initiated. When ωc and ωm are commensurate, the
spectrum may be harmonic; otherwise, it may be inharmonic.

The FM algorithm has been proven highly successful in creating both sustained
and percussive musical sounds, but the principal disadvantage of the FM technique
is that the control is unintuitive. Bessel functions are not monotonic functions of
their arguments, so it becomes difficult or almost impossible for the performer
sense what will happen if the modulation index is changed one way or the other.
The Yamaha musical instrument company installed FM oscillators on large-scale
integrated circuits in its DX series of instruments, the most popular electronic
instruments ever. These instruments contain six or four dynamically controlled
oscillators in a voice, together with possible feedback among the oscillators.

A more recent methodology of creating music electronically is that of physical
modeling (Computer Music Journal, 1992). A mathematical model is developed
for the production of a tone by a traditional instrument or by some other mechani-
cal device. The model may result in a set of coupled, usually nonlinear differential
equations that can be solved by computerized means. The solution to these equa-
tions is played through a digital analog computer. This is a most time consuming
process and has been applied commercially for only a few years. It is hoped with
this methodology that even greater subtlety can be captured in the reproduction of
actual instruments.

18.14 The Orchestra and the Band

The orchestra is a fairly full-fledged group of musicians playing on string, wind,
and percussion instruments under the direction of a conductor. An orchestra differs
from a band in that the main body of the music is generated by string instruments,
whereas the band is generally made up of musicians playing on wind and per-
cussion instruments. Orchestras differ according to the demands of the music, as
the requirements differ for playing symphonies and overtures, or providing ac-
companiment for operas, musicals, oratorios, or incidental music for theatrical
performances, or ballet or dance music.

Four groups usually constitute a symphony orchestra, namely, the strings, wood-
winds, brass, and percussion. Violins, viols, violoncellos, contrabasses, harps, and
(usually one) piano comprise the strings section. Woodwinds include the flutes,
piccolos, oboes, bassoons, English horns, contra bassoons, clarinets, and bass clar-
inets. Brass instruments include trumpets, trombones, French horns, and tubas. In
the percussion group there may be included timpani, bass, military and snare
drums, tambourines, gongs, celestas, glockenspiels, tubular chimes, xylophones,
castanets, and triangles. In order to achieve sufficient sound output for suitable
artistic effects in large halls, the orchestra may have to consist of 80–120 players.
An organ may be added to the performance where required. Some performances
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may require fewer players, and in some situations, a limited-size orchestra can
achieve a dramatic effect through the use of sound reinforcement systems. Figure
18.40(a) shows a plan view of the arrangement of the instruments of a symphony
orchestra and the placement of its conductor. Figure 18.40(b) illustrates the layout
of a smaller orchestra, and 18.40(c) that of a small dance band. An orchestra for
performances of popular and dance music may number anywhere from 5 to 25.

A band consists of musicians playing wind and percussion instruments. They
are generally more suited for outdoor performances, since the main body of the
tone is produced by the brass and woodwind sections, both of which can produce
considerable acoustic power in free space. Bands help to sustain unison in marching
groups and can whip up enthusiasm at athletic meets. A standard band generally
features a complete range of woodwind, brass, and percussion instruments. The
number of performers can vary from 25 to 50 or even more. The military band
resembles the standard band except that it may include a fife, drum, or bugle corps.
A concert band may include contrabasses, timpani, harps, and other instruments
that lack the portability for marching. There is virtually no difference between the
dance band and the dance orchestra. Table 18.4 shows the components of a typical
symphony orchestra and those of a standard band.

Table 18.4. The Elements of a Typical Orchestra and of a Typical Band.

Orchestraa Standard Bandb

Instruments Number of Players Instruments Number of Players

First violins 10 to 20 Flutes 4
Second violins 14 to 18 Piccolo 1
Violas 10 to 14 Clarinets 14
Violoncellos 8 to 12 Oboes 2
Contrabasses 8 to 10 Bassoons 2
Flutes 2 to 3 Sarrusophones 2
Piccolos 1 to 2 Saxophones 4
Oboes 3 Cornets 4
English horn 1 Trumpets 2
Bassoon 3 French horns 4
Contra bassoon 1 Trombones 4
Clarinets 3 Tubas 6
Bass Clarinet 1 Snare drum 1
Trumpets 4 Bass drum 1
Trombones 4 Percussion 1 to 5
French horns 4 to 12
Tuba 1
Timpani 1
Harp 1
Percussion 1 to 5

aIn addition, other instruments such as a piano or an organ may be included. Percus-
sion includes bass, snare and military drums, gongs, cymbals, tambourines, celestas,
glockenspiels, tubular chimes, xylophones, castanets, and triangles.
bPercussion includes triangles, bells, cymbals, castanets, and xylophones.
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Figure 18.41. The fundamental frequency ranges of various musical instruments, includ-
ing the human voice.

The frequency ranges of the fundamental frequencies of various musical instru-
ments, including the human singing voices, are displayed in Figure 18.41.
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Problems for Chapter 18

1. Why does a middle C from an oboe and a piano sound different, even though
it is the same note?

2. Although the piano is classified as a string instrument, in what way it acts as
a percussion instrument?

3. What is the difference in the manner a piano and a harpsichord sound a note?
4. What acoustical theory (e.g., vibrating bar) would you apply to the study of

(a) piano
(b) bass drum
(c) xylophone
(d) cello?
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5. Give examples of the use of the Helmholtz resonance principle in the design
of music instruments.

6. Why is it necessary to use rosin on bows used for playing a member of the
violin family?

7. Why does a cello produce lower notes than, say, a violin or a viola?
8. What part of the human ear can be compared to a music instrument?
9. Why does a grand piano sound “grander” than a spinet?

10. Give examples of tunable and nontunable music instruments.
11. Why does a concertmaster sound the A-note prior to the commencement of a

concert program?
12. What is the role of a conductor in directing an orchestra?
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Sound Reproduction

19.1 Historical Overview

Until 1877 when Thomas Edison (1847–1931) developed the phonograph, there
was no way to record and reproduce sounds. While working to improve the
efficiency of a telegraph transmitter, Edison noted that the noise emanating from
that type of machine resembled spoken words when operating at high speed.
This caused him to wonder if he could record a telephone message. He began
experimenting with the diaphragm of a telephone receiver by attaching a needle
to it. He reasoned that the needle could prick a paper tape to record a message.
He continued to experiment and he tried a stylus on a tinfoil cylinder, which to
his surprise, played back the short message he had recorded, “Mary had a little
lamb.” The word phonograph was Edison’s trade name for his device that played
cylinders rather than disks.

Edison’s phonograph was followed by Alexander Graham Bell’s (1847–1922)
gramophone that played a wax cylinder that could be replayed many times, but the
program content had to be recorded separately for each copy. No mass reproduction
of the same music or sounds was possible.

In 1877, a German immigrant Emile Berliner (1851–1929) working in
Washington, DC, invented a system of recording that could be used over and over
again. Berliner switched from a cylinder-type medium to a flat disk. He patented the
gramophone (the true precursor of the modern phonograph), enhanced by a spring
motor developed by Elridge Johnson (1867–1945), which allowed the turntable to
revolve at a steady speed without the need for hand cranking of the gramophone.
Berliner also invented the carbon microphone that became part of the first Bell
telephones and founded the Gramophone Company to mass-produce his sound
disks and his gramophone for playing them. He made two smart marketing moves:
he persuaded popular artists, among them Enrico Caruso and Dame Nellie Melba,
to record their music; and in 1908 he used Francis Barraud’s painting of “His
Master’s Voice” as the company logo.

Until the late 1920s, motion pictures were silent except for the music accom-
paniment provided by the theater management in the form of a piano player or
live orchestra. All this changed in 1926 when the Warner Brothers (Jack, Harry,

569
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Albert, and Sam) in collaboration with Western Electric introduced a new sound
on disk system that worked in synchronization with the film. In order to exhibit
this new technology, the Warner Brothers Studios released Don Juan that proved
to be a box office hit, but many studios still refused to adapt to talking picture
technology. However, in October 1927, the premiere of The Jazz Singer starring
Al Jolson really triggered the talking picture revolution. Even though The Jazz
Singer was not the first movie to use sound, it was the first film to use spoken
dialog and music as part of the action. The advent of cinema sound was furthered
by the introduction of photographic sound tracks that vary in transparency and
improvements in playback equipment.

The genesis of the tape recorder occurred when a German chemist Fritz Pfleumer
received a patent in Germany in 1928 for application of magnetic powders to strips
of paper or film. Three years later he and the German company AEG began to con-
struct the first magnetic tape recorder, and in 1935 the first public demonstration
of the BASF/AEG “Magnetophone” was given at the Berlin Radio Fair. The fol-
lowing year, the first BASF/AEG tape recording of a live concert was made, with
Sir Thomas Beecham conducting. In the United States, Marvin Camras developed
independently the wire recorder in 1939 at the Armour Foundation. The invention
was sold to the military during World War II, and wire recorders were popular with
amateurs until the late 1950s. In 1945, after the German surrender, U.S. Signal
Corps Captain John Mullin found Magnetophones at Radio Frankfurt and 100-m
reels of 6.5-mm ferric-coated BASF tape with 20-min capacity per reel. He mailed
home two machines with 50 reels of tape and worked on them to improve the
electronics. Alexander M. Poniatoff (1892–1980) learned about them and began
work on developing a U.S.-made magnetic tape recorder. In 1948, his first model,
the Ampex 200, was used to record a Bing Crosby radio show on 3M Scotch 111
gamma ferric oxide-coated acetate tape.

Since then, the magnetic tape recorder has evolved into other formats, such as
8-track tape (now defunct), DAT, and the cassette. While the cassette is still in
use, it has given way to the compact disk (CD) and, later on, the digital versatile
disk (originally called digital video disk and abbreviated as DVD). The CDs and
DVDs also come in recordable formats, thus enabling the average person who has
a personal computer and/or recording/playback equipment to operate a recording
studio in the comfort of his/her home.

The term high fidelity refers to sound recording and reproduction that result in
low harmonic and intermodulation distortions and a frequency response covering
most, if not all, of the entire audio range of 20 Hz–20 kHz. A monophonic, stereo,
or a multichannel system cannot be termed high fidelity unless it reproduces sound
faithfully. The high fidelity (or audiophile, using the more modern terminology)
industry got under way when Avery Fisher (1906–1994) introduced high-quality
equipment in the late 1930s. After World War II, the industry truly began to flour-
ish with Sidney Harmon (1920–) developing the first high-fidelity receiver; Sony
co-founders Akio Moria (1921–1999) and Masara Ibuka (1908–1997) introducing
consumer-type tape recorders, James B. Lansing (1902–1949) building quality
speaker systems, and Saul Marantz (1902–1997) hand constructing quality ampli-
fiers and preamplifiers (that remain classics to this day).
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In the following sections of this chapter, we outline the principles of sound
recording and playback, concluding with a prognosis of future developments.

19.2 Recording Equipment

Recording of sound occurs in different ways and it can be defined as the storing
of information of how the amplitude of sound varies with time. The stored infor-
mation can be retrieved by playback at a later time through control of a source
of sound waves. The twentieth century has seen the evolution of the phonograph
cylinder into the 78-rpm recordings which in turn gave way to the 45 rpm and
33-1/3 rpm vinyl disks. These mechanical types of recordings use wavy grooves
on a surface that guide a stylus to replicate the signals that were recorded. Reel-
to-reel tape recorders have been used since the 1940s to make recordings, and
many great performances have been archived on this medium. These master tapes
are used to make vinyl disks and eventually CDs. While tapes carry the advan-
tage of being relatively easy to edit, they do lack the random accessibility of any
type of disks. Tapes solely for playback are now principally in the compact cassette
format.

Magnetic Recording
Figure 19.1 shows a fundamental record-play system using magnetic recording.
A close-up of the interior construction of the magnetic head is also included in
the figure. Tape D is made of a smooth, durable plastic such as polyester (Mylar)
and is coated on one side with a magnetizable material, most commonly a dried
suspension of acicular gamma ferrite particles about 0.25 μm long in a lacquer
binder.1 The thickness of the magnetic layer is of the order of 12 μm or less. The
tape unreels from supply reel A and threads over a magnetic head B that supplies
a magnetic field at recording gap C. The magnetic field varies in its strength
according to the sound being recorded. The now magnetized tape is pulled past
the head by capstan roller E and pinch roller F and spooled onto a take-up reel G.
In rewinding the tape, the recording head is deenergized. For playback, the tape
leaves the supply reel, as before, but the winding on head B is connected to an
amplifier that, in turn, connects to a loudspeaker. The magnetized elements induce
a voltage in the head winding, which translates into a replication of the gap field
variations during recording. The recording may be erased by an additional head
H that produces a strong, steady AC field. It is not necessary to erase the tape if
it is being recorded over, because the erase head is automatically energized when
recording, thus removing previously recorded material.

1 After the tape has been coated and while the suspension is still damp, it is subjected to a magnetic field
that aligns the magnetic particles in order to increase recording signal strength and minimize noise.
Other alternative magnetic materials include chromium dioxide and cobalt-coated gamma ferrite. It
is obvious that tapes have to be manufactured under stringent clean-room conditions because the
slightest contaminants can cause impaired recordings.
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Figure 19.1. The elements of a magnetic tape recording and playback system, with details
of the interior construction of a magnetic head.

A magnetic head is designed to concentrate the magnetic field in the possible
smallest region of tape, thus giving a high-recording density of maximum number
of wavelengths possible. To achieve these high densities, the head gap must be
made very small, in the order of 1 or 2 μm, which yields low output voltage and
requires very smooth tape surface and good contact between the head and the
tape. The head cores are usually fabricated of Permalloy (80% Ni, 20% Fe) for
high permeability and low-magnetic retention. In more recent times ceramic-like
magnets have been used for better wear and they do not require lamination.
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Tape speeds have been standardized at 30, 15, 7.5, 3.75, and 1.875 in./s for
analog recording. All of these speeds are much lower than that required for digital
recording, which necessitates bandwidths in the megahertz range. Digital audio
recorders make use of the video recording techniques that entail rotating heads.
These heads scan the tape at 228 in./s while the tape itself moves at only 0.66 in./s.
The highest speed is used for master recordings, in situations where the high-
est quality is demanded in covering the 20 Hz–20 kHz range. Cassettes use the
1.875 in./s speed.

The Dolby r© systems for noise reduction employ circuitry that pre-emphasizes
high frequencies before they are recorded on tape in order to make them louder than
the tape hiss with which they compete. The circuit for recording tape is amplitude
sensitive with the result that only soft, high-frequency sounds are emphasized.
Emphasis of loud, high-frequency sounds might drive the tape into its distortion
levels. Upon playback, a matching de-emphasis circuit is employed to restore the
high frequencies to their proper balance with the other parts of the recorded signal.

Digital Recording
The capabilities of analog recording pale in comparison with the advantages of
digital recording. Zero wow and flutter, more than 90 dB signal-to-noise ratio,
and incredibly low-distortion levels are the most outstanding attributes of digital
recording. To achieve digital recording, the analog signal is sampled at regular
intervals. Sampling of the amplitude is done with almost absolute accuracy (one
part per 109 in a 96-dB signal-to-noise ratio system). The amplitude is recorded as
a number, say, 59,959,498. The sampling should be done at more than twice the
Nyquist number (the highest frequency in the audio signal). For a signal with a
maximum of 22,000 Hz, a rate of 44,000 samplings per second is quite practicable
(20,000 × 2 + 10%). Because the series of digital samples occur in the megahertz
range, they are recorded and played back on videotape recorders. The audio pro-
gram in digital form can be processed with digital features, error correctors, and
other techniques that yield results that cannot be achieved with analog means. The
numbers comprising the signal can be stored successively in buffers and read out
in perfect crystal-controlled time intervals, even if there exist erratic mechanical
fluctuations in the tape drive. Thus, wow and flutter are eliminated. The digital
signals are restored to analog format through digital/analog (D/A) converters.

Experiments on the digitization of sound were conducted during the late 1950s
and early 1960s for the purpose of computer analysis, speech synthesis, simu-
lation of music, and simulation of reverberation, mostly at the Bell Telephone
Laboratories in Murray Hill, New Jersey (Mathews et al., 1961). In the early
1970s, commercial digital recordings were commonly used by recording studios
for master recordings, but the results were distributed by analog means.

A significant breakthrough occurred in the early 1980s, when Sony Corporation
of Japan and Koninklijke Philips Electronics N.V. of the Netherlands came out with
the compact disk (CD) that quickly replaced the analog long-play (LP) record and
the cassette as the most common medium for playback of recorded music. Later
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on, machines for digital recording on cassette videotape and then the rotary-head
digital audio tape (R-DAT) came in the market. In the past few years, the digital
compact cassette (DCC developed by Philips-Matsushita) and the mini-disk (MD)
by Sony arrived on the recording scene, but they have not gained much in the way
of general acceptance.

The DVD is a multimedia device for playback through video monitors as well as
through audio channels. A DVD player can also function as an audio-only playback
unit for compact disks, but CD players cannot play the audio portion of DVDs. A
standard CD has a capacity of about 74 min of standard CD audio music. There
are extended CDs that can actually exceed this limit and pack more than 80 min
on a disk, but these are nonstandard. Regular CD-ROM media hold about 650 MB
of data, but the actual storage capacity depends on the particular CD format used.
The DVD uses smaller tracks, 0.74 μm versus 1.6 μm for the CD. Thus, DVD
technology writes in smaller “pits” to the recordable media than is the case with
CD. Smaller pits require that the drive’s laser produce a smaller scanning spot.
This is achieved by reducing the wavelength of the laser from 780 nm infrared
light used in standard CD drives to 625 nm–650 nm red light. This helps to yield
a storage capacity of 4.7 GB. Smaller data pits allow more pits per data track.
The minimum pit length of a single-layer DVD-RAM is 0.4 μm as compared to
0.834 μm for a CD.

The various DVD formats are as follows:

1. DVD-R: The most universal of recordable DVD formats used by DVD burners
and many DVRs (digital video records). DVD-R is a write-once format, much
like CD-R, and disks made in this format can be played in most current DVD
players.

2. DVD-RW: Recordable and rewriteable format (like CD-RW). Disks are playable
in most DVD players, provided they are recorded in the straight video mode
and finalized.

3. DVD+RW: Recordable and rewriteable format. This format is claimed to pro-
vide a greater degree of compatibility in current DVD technology than DVD-
RW.

4. DVD+R: A record-once format that is claimed to be easier to use than DVD-R
while still playable in most DVD players.

5. DVD-RAM: Recordable and rewriteable format that is not compatible with
current DVD technology.

6. DVD-Audio: Intended to play in audio playback players (such as in-car players),
it can offer slideshows and texts that can be displayed. The bit rate of this format
is 9.6 Mb/s as compared to 6.14 Mb/s of a video DVD. DVD Audio titles being
released include a DVD-Video compatible zone using Dolby or DTS coding.
This means that the DVD-Audio is playable in tens of millions existing DVD
players, but not with the maximum quality that a DVD-Audio player affords.

There are three optical formats that offer more than 8.5 GB storage. These are
Plasmon’s UDO (intended for business data storage), HD-DVD, and Blu-ray. All
three systems use blue laser light that affords a narrower beam than red laser
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Figure 19.2. Data layers in 0.7 GB CD disk, 4.7 GB DVD disk, and 25 GB Blu-ray disk.
Note the pit lengths generally decrease with increasing disk capacities.

light, hence yielding smaller data areas and more densely packed data delivering
high capacity. The Blu-ray is a Sony development that holds 25 GB in single-
layer format, but will have two layers and a double-sided recording holding as
much as 100 GB. Such capacities can hold high-definition movies and in the
audio mode could presumably easily contain the entire Wagner’s Ring Cycle. It
needs a hard coating to protect it and requires a special player. The HD-DVD,
also intended for playback of high-definition movies, features a 20-GB capacity
but could possibly be expanded to 50 GB via multiple layers. The HD-DVD does
not require a protective cartridge or coating but it also does require a special
player. Figure 19.2 compares the data layers of the 0.7-GB CD, the 4.7-GB DVD,
and the 25-GB Blu-ray disks. As of this writing, there is a formidable conflict
raging as to which of these two high-definition formats will gain ascendancy. Some
movie studios and developers (NEC and Toshiba) have advocated HD-DVD; other
studios, major computers manufacturers (Dell and Hewlett Packard), and the Blu-
ray Disc Founders (Sony, Philips, LG, Matsushita, Pioneer, Samsung, Sharp, and
Thomson) are boosting Blu-ray.

Voice Recognition
Voice or speech recognition is the ability of a machine or device to receive and
interpret dictation or to comprehend and carry out oral commands. In use with
computers, analog audio must be converted into digital signals through an analog-
to-digital (A/D) converter. In order that it can decipher the signal, a computer must
have a digital database, or vocabulary, of words or syllables, and a rapid means
of comparing this data with signals in the format of speech patterns stored in the
hard drive and loaded into memory when the program is operating. A comparator
compares these stored patterns against the output of the A/D converter. Thus, the
program’s vocabulary constitutes a recording of sorts.
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It is fairly obvious that the size of a voice-recognition program’s effective vo-
cabulary and its speed of execution directly relates to the random access memory
(RAM) capacity of the computer in which it is installed. A voice-recognition pro-
gram runs many times quicker if the entire vocabulary can be loaded into the RAM
instead of searching the hard drive for some of the matches. Processing speed is
also critical, because it affects how rapidly the computer can search the RAM for
matches.

In the present state of the art, all voice-recognition programs make errors. Back-
ground noise, such as barking dogs, loud conversation, and noisy children, can
produce false input. There is also a problem with words that sound alike but are
spelled differently and have different meanings—for example, “know” and “no”
or “dear” and “deer.” This problem may someday be solved by using stored con-
textual information, but this requires more RAM and even faster processors than
are currently available in personal computers.

Voice recognition programs are now applied to dictation in conjunction with
word processing programs and in voice-response customer servicing on the tele-
phone.

19.3 Playback Audio Equipment

Figure 19.3 shows a schematic of a fairly complete playback system for multi-
channel sound reproduction, in this case a “5.1 surround sound” system. Whether
the system is monophonic (single-channel), stereo (two-channel), or multichannel
(more than two channels2), there are three stages to sound reproduction: the first
stage consists of the source or sources of program material; the second stage is the
preamplification and amplification. The third stage consists of converting the elec-
trical signals into acoustic signals, and this occurs in loudspeakers or headphones.

Two-channel (stereo) setups reproduce the spatiality of the original program.
When properly recorded and reproduced, the strings located on one side of the
orchestra get reproduced more strongly in the same side of loudspeaker than in the
loudspeaker on the other side, giving the listener the illusion of strings’ location.
Multichanneling is intended to reproduce not only the spatiality of the program but
also provide some degree of the acoustic ambience of the hall where the program
was recorded or to reproduce the effects of multichannel “surround sound.” The
acoustics of the listening room, of course, affects the reproduced sound, which
may even assume additional characteristics that may not be so desirable.

2 A 5.1-multichannel system consists of right, left, and a center-channel speaker in the front and a right-
and a left-rear speakers, plus a subwoofer (the “.1” of the 5.1 designation) that theoretically could
be placed anywhere in the room. A 7.1-channel system contains the five sets of speakers and the
subwoofer of the 5.1-system plus two more sets of speakers placed to the right and left in the middle
of the room. In either case, additional amplifiers are required for each of the additional speakers.
A multichannel system also would normally incorporate an audio encoding/decoding system, such
as the Dolby Digital r©, Dolby Digital EX r©, or Dolby Digital Surround EX r© to deliver discrete
multichannel audio in an optimal fashion to the appropriate channels.
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Figure 19.3. Playback system for multichannel sound reproduction.

The sources constituting the first stage can include one or more of the following:
microphone, AM/FM and/or satellite radio tuner, phonograph (consisting of a
turntable, arm, and cartridge3), reel-to-reel or cassette player, compact disk (CD)
player, digital versatile disk (DVD) player, and the audio output of a television
receiver. The second stage consists of a preamplifier that provides the means to
select signal sources, the proper equalization for program sources, and means of
controlling the volume of the program material. After the initial preamplification
stage, the program material is amplified in the amplifier. An amplifier may be
multichanneled in that there is a separate amplifier for each channel, and a number
of these amplifiers may be mounted on a single chassis.4 An integrated amplifier

3 Magnetic cartridges convert stylus movements into electrical signals. Ceramic cartridges are essen-
tially piezoelectric converters that yield stronger electrical signals that need less preamplification but
do not have the range and subtlety of magnetic cartridges.

4 In extremely elaborate (and expensive!) systems, an electronic active crossover system may be inserted
between the preamplifier and the amplifier, and the customary passive crossover system built inside
the loudspeaker system is bypassed. Each channel’s input into the electronic crossover separates into
appropriate frequency bands, which are fed into separate amplifiers. Each of the amplifiers links
directly to the individual drivers. A single channel would require three amplifiers, one to feed the
woofer, another to feed the midrange, and the third to feed the tweeter.
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Figure 19.4. Elements of an electrodynamic speaker. (Courtesy of JBL Professional.)

combines on a single chassis the preamplifier (which acts as a controller) and
the amplifier. A stand-alone amplifier is referred to as a power amplifier and it
functions in conjunction with a separate preamplifier. A chassis that combines a
radio tuner with a preamplifier and a power amplifier is called a receiver. This type
of construction makes for more economical production, with a single-power supply
serving all of these sub-components, and conservation of rack or shelf space; its
principal disadvantage is potentially increased heat output from the electronics
and the lack of flexibility in upgrading individual sub-components.

The third stage consists of loudspeakers and or headphones. A tremendous va-
riety of loudspeakers are available in the market. The most common type is the
electrodynamic speaker, which can range from a single-cone type to more elab-
orate multidriver units consisting of woofers to reproduce low-frequency sounds,
midrange-drivers to handle the frequencies between the low frequencies produced
by the woofers and the high frequencies produced by tweeters. A two-way loud-
speaker system divides its program material between a woofer and a tweeter. A
three-way loudspeaker system incorporates mid-range drivers, and four and five-
way units have also been constructed. In order that the individual drivers receive
the proper frequencies to the exclusion of the program contents outside of their
respective optimal operating ranges, special types of bandpass filters, or crossover
networks, are employed to separate out the high frequencies from the signals being
fed into the woofers, to band-pass the mid-frequencies into the mid-range drives,
and to channel only the high-frequency portion of the signals into the tweeters.
Because much of the acoustical energy is contained within the low-frequency por-
tion of the signals, passage of unfiltered signals into the tweeters can destroy these
drivers.

Figure 19.4 shows the construction of an electrodynamic driver. Three separate
but interrelated subsystems constitute the driver. The motor system consists of
the magnet, pole piece, front plate, and voice coil. The diaphragm, generally a
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cone and a dust cap or a one-piece dome, constitutes the second subsystem; the
suspension system, which includes the spider and the surround, constitutes the
remaining subsystem.

In the motor assembly, the back and front plates and the pole pieces are made
from a highly permeable material, such as iron, which provides a path for the mag-
netic field of the ring-shaped magnet that is usually constructed of ceramic–ferrite
material. The magnetic circuit is completed at the gap, with a strong magnetic
field existing in the air space between the pole piece and the front plate. The coil,
which connects to a pair of input terminals, is wound around a thin cylinder that
is attached to the speaker cone that, in turn, is mounted at its outer edge through
a flexible surround to the frame. A spider, essentially a movable membrane also
attached to the frame, positions centrally the diaphragm at its inner edge and the
voice coil. The signal containing the program material feeds into the voice coil,
which generates a change in the magnetic field imposed by the permanent magnet
surrounding the coil. If an alternating current is fed into the coil, the flow of the
current in one direction will cause the voice coil to move in one direction, and the
reverse flow will cause the coil to move in the opposite direction. The cone under
the impetus of the moving voice coil acts as a piston in moving the air in front
of it.

The ideal cone would act as a perfectly rigid piston pushing against the air. The
transfer of the motion from the piston to the air is bound in terms of frequency by
resonance frequency of the cone at the low end (here the ability to transfer energy
to the air is limited by mechanical constraints) and by the radiation impedance at
the upper limit. This upper frequency limit occurs from the fact that it is a function
of both the nature of radiation impedance of the air and the radius of the radi-
ating surface. Smaller radiating surfaces can reproduce higher frequencies more
effectively than larger surfaces, which accounts for the smaller sizes of tweeters.
Real-world cones, however, are not perfectly rigid and will flex depending on the
traits of the materials they are constructed from. Cone flexure has a critical effect
on the high-frequency efficiency, the sound–pressure level output, and driver–polar
response. Driver materials may differ in degrees of stiffness and transmit vibrations
at different speeds internally, but they tend to produce the same sort of flexures
or modes. In Chapter 6, these modes have been discussed for circular membranes
fixed at their outer edges.

The most important function of the speaker enclosure is to control transmission
of the driver’s rear-radiated sound energy in order to avoid its mutual cancellation
with forward-radiated energy at low frequencies. The enclosure also acoustically
“loads” the driver by providing a suitable acoustic impedance to match the char-
acteristics of the driver and the requirements of the speaker system with regard to
low frequency and large-signal performance. The enclosure must be made suffi-
ciently rigid so that the cabinet vibrations and resonances do not add appreciably
to the program material. Two major classes of electrodynamic-driver enclosures
are (1) the infinite baffle/closed box in which the sole radiation source is the driver
diaphragm and (2) the bass reflex that is vented to augment the driver’s radiation
at low frequencies. The bass reflex may be a vented system that incorporates a
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tuned aperture of a specified cross-sectional area and port length in which the
enclosed air mass resonates with the enclosure’s air spring. This causes a woofer’s
back wave to communicate with the external acoustic space with the enclosure
effectively acting as a Helmholtz resonator.

Another version of the bass reflex system is the port/passive radiator (PR). The
vent is replaced with an acoustically driven diaphragm (aptly called a drone cone).
Another type of enclosure is the transmission line (TL) that effectively functions
as a low-pass filter with a 90◦ phase shift, absorbing all of the rear wave energy
of the woofer except for frequencies below 75 Hz. The TL enclosure provides a
folded path or a labyrinth equal in length to the 25% of wavelength at or just above
the resonance of the woofer. Damping material such as Dacron r©, fiber wool,
or fiberglass fills much of the labyrinth. The TL enclosures generally provide
excellent, clean bass response from relatively compact floor-standing cabinets.
The principal disadvantage of TL is the complexity of the cabinet structure.

Other types of speaker systems are available in the market. Among these are the
electrostatic speakers, the ribbon-type speaker system, and there are others that
consist of hybrids, e.g., a system that combines the electrodynamic drivers with
an electrostatic or ribbon tweeter. A ribbon type of drive essentially consists of a
voice coil patterned (like the conductive pattern on a printed circuit board) onto a
magnetizable diaphragm (i.e., the “ribbon”) made of strong, flexible materials such
as Mylar. The diaphragm is suspended in the front of a flat magnet that matches
the area of the diaphragm. A varying signal sent into the coil causes a change in
the magnetic field that causes the ribbon to move with respect to the magnet, thus
causing sound to be radiated. If the magnet is perforated in one way or the other,
the ribbon acts as a dipole sound generator.

In the electrostatic speaker (which is similar operationally to the condenser
microphone but functioning in reverse), a voltage is maintained between a thin
diaphragm and another surface. In effect the two thinly separated surfaces are
acting as a large condenser, with the varying voltages fed to one of the elements,
causing the diaphragm to move. Because of the small excursions of the diaphragm,
the electrostatic driver does not function well in the low-frequency range but
it is capable of providing excellent quality high-frequency signals. The highly
capacitive loading of the electrostatic speaker may be problematic for some power
amplifiers that are usually designed to handle primarily resistive impedances.

Headphones are essentially miniaturized speakers mounted in earcups, which
are in turn attached to headbands that serve the purpose of holding these drivers
against the ears. There are also a number of headphone models that use electrostatic
elements either by themselves or as supplemental components to electrodynamic
elements.

19.4 The Iosono System

On the basis of research conducted for more than 15 years at the Technical Univer-
sity in Delft, the Netherlands, Karlheinz Brandenburg, the director of Fraunhofer
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Institute of Digital Media in Germany who is known as the “father of MP3 de-
scribed in the next section, developed a spatial sound technology called Iosono r©.
It is intended to carry sound reproduction beyond the 5.1- and 7.1-channel systems
and is based on the principle that sound waves can be reproduced using secondary
sources at the perimeter of the original sound field. This process is called wave
field synthesis (WFS).

In the Iosono system, speaker arrays ring the listening area and function in a
coordinated, phased fashion to reproduce each individual sound wave. An example
of an acoustical illusion that can be created is that of a helicopter that slowly
approaches the audience, flies through the middle of the theater, and disappears
into the distance. The audience hears the helicopter noise that would be generated
if the helicopter were actually flying this path. It is also claimed for this system,
aimed at cinemas and eventually the home theater, that the whole room can act as
a listening “sweet spot.”

An Iosono system consists of a continuous ring of speakers configured in panels
of 8 two-way speakers, mounted on the peripheral walls of the space and connected
via fiber-optic cables to a central Iosono processing unit. The number of speaker
panels used depends on the size of the space. In February 2003, a 100-seat movie
theater in Ilmenau, Germany, received the first commercial Iosono Cinema system.
The installation used 198 speaker systems. Because of the fact that commercial
movie sound has yet to be mixed, the Iosono system is also capable of playback of
other formats, such as 5.1, DTS, SDDS as well as stereo. However, the audience
noticed the enlargement of “sweet spot” and was treated to a 90-s trailer that
demonstrated the effect of a full Iosono system.

19.5 Portable Audio Playback Equipment

In this section reference is made to handheld devices, not to playback units that
are transportable but too large to be held conveniently. The first units of this type
was the Sony Walkman r©, a cassette player, which was to be joined by competing
models, and subsequently the Sony Discman r© that played compact disks. The
newer units we describe here can download music from the Internet as well as
from other sources and the storage is usually done on rewriteable nonvolatile
memories.

MP3
MP3, developed by Germany’s Frauenhofer research institute, denotes MPEG
Audio Layer 3. It is an audio compression technology that constitutes part of the
MPEG-1 and MPEG-2 specifications. The company Thomson Media patented this
technology in the United States and in Germany.

Uncompressed audio, such as that found on audio compact disks store more
data than human hearing can process. Music on CDs has a bandwidth of 1.4 MB/s.
This means that 1 min of music on a CD takes up to 10 MB of data. Through the
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use of MP3 compression, this bitstream is greatly reduced by a factor of 8–12. A
typical MP3 file will require 0.828 MB/s, and hence 1 min of music is reduced
from 10 MB to about only 1 MB. Even greater compression is possible for use on
the Internet, for example, but at the expense of a decrease in sound quality.

MP3 uses two compression techniques to achieve size reduction from uncom-
pressed audio: one lossy and the other lossless.

1. The process begins by breaking the signal into smaller components called
frames, each frame typically lasting a fraction of a second. The signal is ana-
lyzed to determine its spectral energy distribution. Because different portions
of the frequency spectrum are most efficiently encoded via slight variant of
the same algorithm, the signal can be broken into sub-bands, which can be
processed independently for optimal results.

2. The encoding bitrate comes into play, and the maximum number of bits that can
be allocated to each frame is calculated. For example, if the encoding is set at
128 kbps, there is an upper limit on how much data can be stored in each frame.
This step establishes how much available audio data will be stored and how
much will be discarded. This constitutes a lossy phase of the MP3 procedure.

3. The frequency spread for each frame is compared to mathematical models
of human psychoacoustics, which are stored in the codec5 as a reference table.
From these models, it can be determined which frequencies need to be rendered
accurately, because they are most perceptible to humans, and which ones can
be dropped or allocated fewer bits, owing to the fact that they are less likely to
be perceived by human hearing. This stage is also a lossy procedure.

4. The bitstream is run through the process of Huffman coding that compresses
redundant information throughout the sample. The Huffman coding does not
work on the basis of a psychoacoustic model but achieves additional compres-
sion through more traditional means so that even less space is required for
storage. The action is quite lossless, similar to the “zipping” and “unzipping”
of files on a computer.

5. The collection of frames is now assembled into a serial bitstream, with header
information preceding each data frame. (The header contains extra information
about the file to come, such as the name of the artist, the track tile, the name
of the album from which the recording came from, the recording year, genre,
and personal comments that may have been added—this is referred to as an
ID3 tag).

iPod
The iPod r© is Apple Computer’s multiuse record/playback ultraportable unit that
makes use of a mini disk drive to store data. It plays music and other audio that

5 The word “codec,” a shortening of the words compress and decompress, refers to any of a class of
processes that allow for the systematic compression and decompression of data. Various codecs are
fundamental to many formats and transmission methods, for example, image and video compression
formats. Here we are concerned with the audio MP3 codec.
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has undergone MP3, AAC, or Apple Lossless compression programs. One version
weighs less than 160 g and it is available with a choice of 20 GB or 40 GB storage,
resulting in a capability of storing as many as 10,000 songs. Even more compact
versions with less storage and other models with more storage are emerging from
Apple, and competitive units are being issued by other manufacturers. The iPod can
also be used to record meetings, enter voice memos, and its speed can be adjusted
to accommodate audio books. Synchronization with a home computer for down-
or uploading data can be achieved via FireWire r© or USB 2.0 cables. The iPod can
also be used as a portable hard drive, which would allow the user to carry computer
files from one place to another. It can even used to store photographs, function as
an organizer with contact listings, calendars, and to-do lists; and, with the use of
adapters, can be played through home and auto sound systems.

19.6 The Future of Sound Reproduction

There is no question that nanotechnology, still in its infancy, will result in more
compact recording media, more powerful electronic processing units, and more
realistic audiovisual imaging. Digitization of acoustic information will be refined
to an even greater extent.

Loudspeakers have been the weak link in the audiophile chain of playback of
recorded sound. Amplifiers and preamplifiers have reached the point of diminishing
returns with respect to low distortions and noise. The principal deviation from the
ideal sound reproduction occurs in transducers, hence it is the loudspeaker that is
the component that needs the most improvement. It is apparent that new technology
will be needed to develop new types of transducers, most likely resulting from a
collaboration of the best minds in the fields of acoustics, materials science, solid
state physics, electronic and mechanical sciences, and even nanotechnology. Not
only loudspeaker distortion would be reduced to theoretical minimum (Raichel,
1979), but also the sound sourcing would be considerably more sharply focused to
enhance the listener’s feeling of actually “being there” at the concert venue where
the music was recorded.
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Problems for Chapter 19

1. Why was the cassette tape overtaken by the compact disk in popularity?
2. What are the principal advantages and disadvantages of data compression in

sound recordings?
3. What are the advantages and disadvantages of having, say, a two-way versus

a three-way versus a four-way speaker system?
4. What are the dangers of using high-powered audio amplifiers?
5. What are the key factors in determining the quality of a playback system?
6. Why would a reputable recording studio use higher speeds for taping rather

than presumably more economical slower speeds?
7. Design your “dream” audio system on the basis of your market research.

Explain the reasons for your choice of specific components.
8. Research loudspeaker systems in the market. What specifications would you

look for in making your selection?
9. Why would an MP3 or an iPod system be objectionable to an audiophile for

use in an audio system?
10. How is computer technology is being used in the recording stage and playback

stage?
11. How does room acoustics affect playback of audio material? What are the

incipient problems and how would you deal with them?



20
Vibration and Vibration Control

20.1 Introduction

Noise often results from vibration. Many sources of vibration exist and they include
impact processes, such as blasting, pile driving, hammering, and die stamping; ma-
chinery such as motors, engines, fans, blowers, and pumps; turbulence in fluids
systems; and transportation vehicles. Attenuation of vibration generally cuts down
on the noise level and in many cases lengthens the service life of the machinery it-
self. Damping, correction of imbalances, and configuration of flow paths constitute
the principal measures of cutting down on the deleterious effects of vibration.

20.2 Modeling Vibration Systems

We commence with a basic one-degree-of-freedom system of Figure 20.1, which
consists of a mass, a spring, and a damper (also referred to as a dashpot). The
system has only one degree of freedom because it is constrained to move only
in the x-direction. Summing up all the forces acting on the mass and applying
Newton’s second law, we obtain

m
d2x

dt2
+ C

dx

dt
+ kx = f (t) (20.1)

where

m = mass

t = time

C = coefficient of damping

k = linear elastic constant

Damping occurs from energy dissipation due to hysteresis, sliding friction, fluid
viscosity, and other causes. The damping force may be proportional to the velocity
(as stated in the above equation) or it may even be proportional to some other power
of velocity. Sliding friction is often represented as a constant force in a direction

585
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Figure 20.1. Model of a vibrating system with one degree of freedom.

opposing the velocity. Viscous damping proportional to and opposite in direction
to that of the velocity serves as a reasonable model in many situations. Moreover,
this assumption is quite amenable to mathematical treatment. When f (t) is set to
zero, Equation (20.1) describes the free, viscous-damped, one-degree-of-freedom
system,

m
d2x

dt2
+ C

dx

dt
+ kx = 0 (20.2)

We shall employ Laplace transforms to treat Equation (20.2). Dividing
Equation (20.2) by mass m and assuming for the moment that the initial conditions
are zero, we can write Equation (20.2) using the Laplace transform variable s, as

s2 X (s) + C

m
s X (s) + k

m
X (s) = sx(0) + ẋ(0) + C

m
x(0)

or (
s2 + C

m
s + k

m

)
X (s) =

(
s + C

m

)
x(0) + ẋ(0) (20.3)

Here ẋ ≡ dx/dt . Setting the parenthesized term on the left-hand side of
Equation (20.3) to zero yields

s2 + C

m
s + k

m
= 0

which can be rewritten in the form

s2 + 2ξωns + ω2
n = 0 (20.4)
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Figure 20.2. Root locations and nomenclature for a second-order dynamic system. The
s-plane to the right shows the domain of the roots as a function of the damping ratio ξ .

where

2ξωn = C

m
ω2

n = k

m
(20.5)

Equation (20.4) is the characteristic equation of which roots essentially determine
the response of the system [i.e., the position of the mass as a function of time or
x(t)]. Solving for the roots of Equation (20.4) yields

s1, s2 = −2ξωn ± √
(2ξ 2ωn)2 − 4ω2

n

2
(20.6)

These roots can assumed complex values and so can be plotted on a s-plane,
where s = σ + iω and ω = 2π f . The general plot is shown in the complex plane
of Figure 20.2(a). For this plot it is assumed that the system is stable and the value
of ξ falls between zero and unity. The term ξ is the damping ratio and ωn is the
undamped natural frequency. In Figure 20.2(a) it is noted that ξ = cos θ . Both
ξ and ωn constitute the key factors that determine the roots of the characteristic
equations and hence the response of the system. The following four cases of
damping are of interest:

Case 1: ξ < 1 (Underdamped system)
The roots are s1, s2 = −ξωn ± iω

√
1 − ξ 2 and the system response is

given by

x(t) = Ae−ξωn t cos (ωn

√
1 − ξ 2 t + θ )

Case 2: ξ > 1 (Overdamped system)
The roots are s1, s2 = −ξωn ± iω

√
ξ 2 − 1 and the system response is

given by

x(t) = Ae
−
(
ξωn+ωn

√
ξ 2−1

)
t + Be

−
(
ξωn−ωn

√
ξ 2−1

)
t
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Case 3: ξ = 1 (Critically damped system)
The roots are s1, s2 = −ωn and system response is given by

x(t) = Ate−ωn t + Be−ωn t

Case 4: ξ = 0 (Undamped system)
The roots are s1, s2 = ±iωn and the system response is given by

x(t) = A cos (ωnt + θ)

Figure 20.2(b) shows the domains of the roots in the s plane as a function of the
damping ratio ξ for a constant value of ωn .

In order for us to appreciate the influence of system damping, consider the sys-
tem of Figure 20.1 which is subjected to an initial displacement x0 and which
has no external forcing function acting on it. The dependency of the response of
the system on the root locations is shown in Figure 20.3 for ωn held constant. In

Figure 20.3. System responses showing the influence of root location in a second-order
dynamic system.
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Figure 20.3(a) the system is very sluggish and returns to the equilibrium position
very slowly. In Figure 20.3(b), the system response is rapid, but it overshoots the
equilibrium position and eventually the oscillation dies out due to the effect of
damping. Figure 20.3(c) represents the critically damped system that promptly
returns to the equilibrium position with no overshoot. This represents the divid-
ing line between the overdamped system (Case 2) and the underdamped system
(Case 1). The roots for the underdamped system occur in complex-conjugate pairs,
the roots for the overdamped system are real and unequal, and the roots for the
critically damped system are real and equal. Figures 20.3(b) and 20.3(d) show, re-
spectively, the difference between a lightly damped system and a heavily damped
system. The response of the more heavily damped system dies out more quickly.

If the roots lie on the iω axis as shown in Figure 20.3(d), no damping occurs
and the system will oscillate forever. If any roots appear on the right half of the
s plane, then the response will increase monotonically with time and the system
will become unstable, as shown in Figure 20.3(f). Thus the iω axis represents the
line of demarcation between stability and instability.

From Equation (20.4) the natural frequency of the system is

ωn =
√

k

m
(20.7)

and the damping ratio is

ξ = C

2
√

km
(20.8)

When ξ = 1, critical damping occurs. We set C = Cc for this value of ξ = 1. Then

ξ = 1 = Cc

2
√

km

from which we obtain

Cc = 2
√

km (20.9)

as the critical damping factor. The damping ratio is often written as

ξ = C

Cc
(20.10)

Example Problem 1
The system of Figure 20.1 has the following parameters: the weight W of mass m
is 28.5 N, C = 0.0650 N s/cm, k = 0.422 N/cm. Determine the undamped natural
frequency of the system, its damping ratio, and the type of response the system
would have if the mass is to be initially displaced and released.
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Solution
The mass is found from

m = W

g
= 28.5 N

9.807 m/s2 = 2.91 kg

Then from Equation (20.7)

ωn =
√

42.2 N/m

2.91 kg
= 3.81 rad/s

From Equation (20.8)

ξ = C

2
√

km
= 6.50 N s/m

2
√

(42.2 N/m)(2.91 kg)
= 0.294

Since the damping ratio is less than unity, the response will be underdamped. The
system response is that of the form shown in Figure 20.3(b).

Example Problem 2
For the system of Example Problem 1, find the amount of additional damping
needed to have the system become critically damped.

Solution
From Equation (20.9), the condition for a critically damped system is

Cc = 2
√

km = 2
√

(42.2 N/m)(2.91 kg) = 22.13 N s/m,= 0.2213 N s/cm

The additional damping required is

C = 0.2213 − 0.0650 = 0.1563 N s/cm

With this additional damping, Equation (20.2) becomes

ẍ(t) + 22.13

2.91
ẋ(t) + 42.2

2.91
x(t) = 0

The characteristic equation in the Laplace transform variable form becomes

s2 + 22.13

2.91
s + 42.2

2.91
= 0

or

(s + 3.81)2 = 0

which demonstrates that Case 3 of Figure 20.3 exists.
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20.3 General Solution for the One-Degree Model
of Simple System

An initial displacement is introduced to the model system of Figure 20.1, and it
is desired to determine the response of this system. The differential equation in
standard mathematical shorthand notation is

ẍ(t) + 2ξωn ẋ(t) + ω2
n x(t) = 0 (20.11)

which undergoes a Laplacean transformation into

s2 X (s) − sx(0) − ẋ(0) + 2ξωn [s X (s) − x(0)] + ω2
n X (s) = 0

Let the initial displacement be represented by x(0) = x0 and the initial velocity
ẋ(0) = 0. The preceding equation reduces to

X (s) = x0
s + 2ξωn

s2 + 2ξωns + ω2
n

(20.12)

The graphical residue technique, described by Example Problem 4 in Appendix
C, can be used to find the inverse transform for Equation (20.12) and hence the
solution of Equation (20.11):

x(t) = x0√
1 − ξ 2

e−ξωn t cos
(
ωn

√
1 − ξ 2 t − π

2
+ cos−1 ξ

)
which reduces to

x(t) = x0√
1 − ξ 2

e−ξωn t sin
(
ωn

√
1 − ξ 2 t + θ

)
(20.13)

from the trigonometric relationship cos (ϕ − π/2) = sinϕ and by setting

θ = cos−1 ξ (20.14)

Example Problem 3
Consider the system of Figure 20.1 which is initially displaced and then suddenly
released. Its resultant motion is described by

x(t) = 3.0e−3.43t sin (11.4t + 60◦)

Find the system’s damping ratio, natural frequency, and the initial displacement.

Solution
Applying Equations (20.13) and (20.14),

θ = 60◦ = cos−1 ξ, ξ = 0.500, and ξωn = 3.43

Hence ωn = 6.86. The initial condition is established from

3.0 = x0√
1 − ξ 2

= x0√
1 − (0.500)2

= 1.155x0

x0 = 2.597
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Figure 20.4. Response of a second-order system that is underdamped.

Because ξ < 1, this system is underdamped, and details of the response are shown
in Figure 20.4. It is noted in the figure that because x1 > x0, i.e., a slope of x exists
initially, an initial velocity is present. The actual damping is ξωn , and the damped
period is defined as

τd = 2π

ωn

√
1 − ξ 2

(20.15)

In Figure 20.4, it is evident that the decay rate e−ξωn t of the free oscillation depends
on the system damping. The greater the damping, the faster is the rate of decay.

Let us now establish the relationship between the rates of decay and damping.
First, the time response at two distinct points, each of which is a quarter period
from the crossover points in the first two lobes, must be determined. These points
are the points where the sine function equals unity and not the peak points of the
damped response in Figure 20.4. From Equations (20.4) and (20.13), it is noted
that

x1 = x0√
1 − ξ 2

e−ξωn t1 sin
(
ωn

√
1 − ξ 2t1 + θ

)
(20.16)

and

x2 = x0√
1 − ξ 2

e−ξωn (t1+τd ) sin
(
ωn

√
1 − ξ 2(t1 + τd ) + θ

)
(20.17)

Taking the ratio of the two amplitudes represented by Equations (20.16) and (20.17)
and noting that in this case the sine functions equal unity, we obtain

x1

x2
= e−ξωn t1

e−ξωn (t1+τd )
= eξωnτd
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The logarithmic decrement δ is defined at the natural logarithm of the ratio of
two points such as x1 and x2. Invoking Equation (20.14) and this definition for
logarithmic decrement, we can derive

δ = ln

(
x1

x2

)
= 2πξ√

1 − ξ 2
(20.18)

Thus, the logarithmic decrement δ is expressed in terms of the damping ration ξ
of the system.

A negative value of the response function can also be used to find the logarithmic
decrement, but in this case τd should be replaced by τd/2, because a half period is
used in this evaluation. For this situation,

δ = 2 ln

(
x1

x3

)

The values of the response function at any two points can be used to find the two
unknowns ξ and ωn . It is also important to realize that the ratio of the points in the
response curve, e.g., x1/x2, x2/x3, or x3/x4, will be identical only in the presence
of viscous damping.

20.4 Forced Vibration

Forced vibration occurs when f (t) �= 0 in Equation (20.1). The forcing function
can be a harmonic excitation, an example of which is the imbalance in rotating
machinery such as a motor. Or it can be an impulse type of excitation, such as that
produced by a hammer or it can be simply the weight of the moving part itself.

Harmonic Excitation
A harmonic forcing function can be represented by F0 sin ωt. The differential
equation for the model of Figure 20.1 assumes the following form:

mẍ + Cẋ + kx = F0 sinωt (20.19)

With the assumption of zero initial conditions, the Laplacian transform of
Equation (20.18) yields

(
ms2 + Cs + k

)
X (s) = F0

(
ω

s2 + ω2

)
(20.20)

and solving for X (s)

X (s) = F0

ms2 + Cs + k

(
ω

s2 + ω2

)
(20.21)

As a rule, the solution x(t) will consist of two parts, viz. the complementary
solution and a particular solution. The former corresponds to the transient part of
the total solution and the latter to the steady-state part. The transient portion of the
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solution is in the form of Equation (20.13) and it is determined by the residues of
the complex poles, wherein the poles constitute the solution of

ms2 + Cs + k = 0

The steady-state solution of Equation (20.19) is a sinusoidal oscillation expressed
as

x(t) = x(ω) sin (ωt − φ) (20.22)

and this solution is determined by the residues at the complex poles s = s = ±iω.
While the exact solution can be derived by using the residue method, the solu-
tion of Equation (20.19) can be readily obtained through the standard differential
methods. The advantage of the Laplace transform method that it facilitates finding
the frequency and stability information.

Through Equations (20.21) and (20.22), the magnitude of the steady-state os-
cillation can be determined from

X (s) = F0

ms2 + Cs + k
(20.23)

From Equation (20.23), the magnitude of the oscillation can be determined as a
function of frequency. Because s = σ + iω andω = 2π f, substituting s = iω into
Equation (20.23) yields

x(iω) = F0

−mω2 + iωC + k

The denominator is a complex number, so the magnitude of this number is equal
to √

(k − mω2)2 + (ωC)2

The magnitude of the oscillation as a function of frequency is

x(ω) = F0√
(k − mω2)2 + (Cω)2

= F0/k√
[1 − (m/k)ω2]2 + (Cω/k)2

(20.24)

From the definitions of Equations (20.7) through (20.10), Equation (20.24) can be
expressed as

X (ω)

F0/k
= 1√

[1 − (ω/ωn)2]2 + [2ξ (ω/ωn)]2
(20.25)

The magnitude is now a function of only two quantities, the ratio (ω/ωn) and the
damping ratio ξ . The phase angle φ is also a function of these two parameters and
it is given by

tanφ = 2ξ (ω/ωn)

1 − (ω/ωn)2
(20.26)

The system undergoes a resonance when the excitation frequency f = ω/2π
equals the natural frequency of the dynamic system fn = ωn/2π . The damping
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Table 20.1. System Response as a Function of Frequency.

Frequency Response Controlling Parameter

ω2 	 ω2
n x(ω) = F0

k
Stiffness controlled

ω2  ω2
n x(ω) = F0

mω2
Mass controlled

ω2 = ω2
n x(ω) = F0

Cω
Damping controlled

ratio ξ affects the magnitude of the oscillation peak at resonance and the sharpness
of this resonant peak.

In considering the system response as a function of frequency, we observe
that the response varies with the frequency as shown in Table 20.1. The relation-
ships listed in the table show that each parameter listed—the stiffness, the mass,
and damping—effectively controls the response only within a limited region. For
example, the damping is primarily effective at resonance. The selection of any
vibratory corrective measure depends on whether the excitation frequency is less
than, greater than, or equal to the resonant frequency of the system.

The effect of the amplitude by stiffness, mass, or damping is exemplified by the
magnification factor MF, defined as

MF = x(ω)

F0/k
= 1√

[1 − (ω/ωn)2]2 + [2ξ (ω/wn)]2
(20.27)

At resonance ω = ωn , and therefore

(MF)resonance = 1

2ξ
(20.28)

A measure of the shape of the resonance peak is given by the bandwidth at the
half-power points, as shown in Figure 20.5. These points are the two points, one to
the right and one to the left of the peak, which have a magnitude equal to (1/

√
2)

of the value of the peak. The square root occurs because power is proportional to
the square of the magnitude.

Let us set h ≡ ωn/ω. At half-power points, Equation (20.27) becomes

1

2
√

2ξ
= 1√

(1 − h2)2 + (2ξh)2

Solving the preceding equation algebraically for h2 results in

h2 = 1 − 2ξ ± 2ξ
√

1 + ξ 2

We also assume small values of damping (i.e., ξ 	 1) and neglect second-order
terms. Then the following result occurs:

h2 = 1 ± 2ξ
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Figure 20.5. Principal features of a resonance peak.

Then

h1 =
(
ω

ωn

)2

= 1 − 2ξ, h2 =
(
ω

ωn

)2

= 1 + 2ξ

Hence

h2 − h1 = 4ξ

We approximate

ω2
2 − ω2

1

ω2
n

≈ 2(ω2 − ω1)

ωn

The bandwidth bw is given by

bw = (ω2 − ω1)

ωn
= ω

ω
= 2ξ (20.29)

The reciprocal of the bandwidth is the quality factor Q, expressed as

Q = ωn

ω
= 1

2ξ
(20.30)

When a frequency response of system is plotted in the format of Figure 20.5,
this figure in conjunction with Equation (20.30) can provide the basis for finding
the equivalent viscous damping of the system.
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Excitation by Impulse
Impulse occurs very commonly as a cause of vibration excitation in the industrial
environment. An impulse force is one that acts for a very short time. A hammer
is an example that provides an impulse force. Such a force can be represented by
the Dirac delta function or distribution that has the following properties: consider
a pulse that starts at time t = ε and has width a and height 1/a. Let a approach
zero, so that the pulse essentially approaches zero width and infinite height so that∫ ∞

0
δ(t − ε) dt = 1 0 < ε < α (20.31)

Here δ(t − ε) is the unit impulse function at t = ε. Equation (20.31) states that the
area or strength of the impulse is unity. If we specify a pulse of width a and height
A/a, then the impulse function Aδ(t − ε) is of strength A at t = ε.

A system subjected to impulse force of strength A has a response determined
by the following equation:

mẍ + Cẋ + kx = Aδ(t) (20.32)

The Laplacian L[Aδ(t − ε)] is equal to A; and so if the initial conditions are zero,
then Equation (20.32) transforms to

X (s) = A

ms2 + Cs + k

If the system is damped slightly, then through the use of techniques described in
Appendix C, the response can be calculated to yield

x(t) = A

kωn

√
1 − ξ 2

e−ξωn t sinωn

√
1 − ξ 2 t

where ωn and ξ are the natural frequency and damping ratio, respectively, as
defined previously.

Example Problem 4
Consider the system of Figure 20.1 in which the weight W = 11.5 N, k =
9.45 N/cm, and C = 0.092 N/cm/s. The maximum value of the harmonic force
exciting the system is 14.25 N (or F = 14.25 sinωt). Find the amplitude at reso-
nance (which represents the maximum amplitude of the steady-state motion of the
mass for small damping ratios).

Solution
From Equation (20.8)

ξ = C

2
√

km
= 9.2 N/m/s

2
√

(945 N/m)(11.5 N/9.807 m/s2)
= 0.138
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From Equation (20.27)

x

F0/k
= 1

2ξ

Hence at resonance, the amplitude at resonance is

xres = 14.25 N/945 N/m

0.276
= 0.0546 m = 5.46 cm

Static Deflection
In Figure 20.1 the deadweight W constitutes a static load that causes a deflection
δst that is given by

δst = W

k
= mg

k
(20.33)

where g represents the gravitational constant. Because the natural frequency of the
system is found from

fn = 1

2π

√
k

m
(20.34)

we can combine Equations (20.33) and (20.34) to obtain the relationship between
static deflection and natural frequency as follows:

fn = 1

2π

√
g

δst
(20.35)

Example Problem 5
A large machine weighs 875 N and the static deflection of the springs supporting
the machine is 0.83 cm. Find the undamped natural frequency.

Solution
From Equation (20.35)

fn = 1

2π

√
980.7 cm/s2

0.83 cm
= 5.47 Hz

20.5 Vibration Control

Transmissibility
In the case of a forcing function being harmonic in nature, two cases of vibration
transmission can occur. One case occurs when force is transmitted to the supporting
structure, and the opposite case occurs when the motion of the supporting structure
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Figure 20.6. A spring-damper system that is subjected to force excitation.

is transmitted to the machine. In Figure 20.6, f (t) = F0 sin ωt represents the
harmonic force imparted to the system and fT (t) is the force transmitted through
the spring/damper system to the supporting structure. The force sent through the
spring and damper to the supporting structure is given by

fT (t) = kx + Cẋ

The magnitude of this force is a function of the frequency:

FT =
√

[kx(ω)]2 + [CωX (ω)]2 = kx(ω)

√
1 +

(cω

k

)2
(20.36)

Inserting Equation (20.24) into Equation (20.36) results in

FT =
F0

√
1 + (

Cω
k

)2

√(
1 − mω2

k

)2
+ (

Cω
k

)2
(20.37)

Applying the definitions for ωn and ξ , and defining transmissibility T as the ratio
of the amplitude of the force transmitted to the supporting structure to that of the
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Figure 20.7. A spring-damper system that is subjected to motion excitation.

exciting force, we now have

T = FT

F0
=

√
1 +

(
2ξω

/
ωn

)2

√[
1 −

(
ω
ωn

)2
]2

+
(

2ξ ω
ωn

)2

(20.38)

Motion Excitation
As the corollary to the force excitation model of Figure 20.6, the system for motion
excitation is given in Figure 20.7. Variable x represents the motion of the dynamic
system and variable y represents the harmonic displacement of the supporting
base. The dynamics of this system is characterized by the following equation:

mẍ + C(ẋ − ẏ) + k(x − y) = 0 (20.39)

The ratio of the magnitudes of the two displacements as a function of frequency
denotes the transmissibility given by

T = x

y
=

√
k2 + (Cω)2√

(k − mω2)2 + (Cω2)2
=

√
1 +

(
2ξ ω

ωn

)2

√[
1 −

(
ω
ωn

)2
]2

+
(

2ξ ω
ωn

)2

(20.40)

The right-hand side of Equation (20.40), which was expressed in terms of ωn

and ξ , is identical to the transmissibility of Equation (20.38). This equality indi-
cates that the methodologies employed to protect the supporting structure under
force excitation are also applicable to insulating the dynamic system from motion
excitation.

Equations (20.38) and (20.40) are used to plot Figure 20.8 in order to illustrate
the interrelation between the damping ratio ξ , the ratio of disturbing frequency to
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Figure 20.8. Plot of transmissibility versus frequency ration f/ fn as a function of the
damping ratio of a linear system with one degree of freedom.

the natural frequency ω/ωn , and transmissibility T . If the ratio ω/ωn <
√

2, then
transmissibility T > 1, which means that the input disturbance is amplified, not
decreased. In the region ω/ωn >

√
2, T decreases with increasing ξ . At resonance

condition ω/ωn,= 1, transmissibility can be quite large. The region ω/ωn > 2 is
the only domain where isolation is possible, and there T (which is less than unity)
decreases with decreasing ξ , and this indicates that better isolation can be achieved
with very little or no damping.

The curves of Figure 20.8 thus demonstrate the effectiveness of an isolator in
mitigating vibration. It is also apparent that isolators should be selected to avoid
exciting the natural frequencies of the system, and that damping is important in
the range of resonance, when the system is operating near resonance or merely
passing through resonance during startup. From scrutiny of the isolation region it is
noted that the larger the ratio ω/ωn (or the smaller the value of ωn), the smaller the
transmissibility will be. From the relation of Equation (20.7),ωn can be made quite
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Figure 20.9. Isolation efficiency [(1 − T) × 100] versus natural frequency fn of a linear
single-degree-of-freedom system with zero damping ratio ξ .

small by selecting soft springs, which, in conjunction with light damping, provides
good isolation. The natural frequency can also be reduced by increasing the mass
but this also increases the dead weight of the dynamic system, thus imposing a
greater load on the supporting structure.

A measure of the effectiveness of isolation as a function of frequency can be
gained by the parameter percent isolation (%I ) which is defined by

%I = 100(1 − T )

where T is the transmissibility which is ≤ 1. The isolation efficiency is usually plot-
ted with the disturbing frequency and natural frequencies as shown in Figure 20.9
for a damping ratio ξ of zero.

Example Problem 6
A machine weighs 208.5 N and it is supported on a spring having a spring constant
of 935.23 N/cm. A rotating mass within the machine generates a disturbing force
of 51.23 N at 4,800 rpm, owing to imbalance of the rotating mass. Determine the
force transmitted to the mounting base for ξ = 0.12.
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Solution
The static deflection of the spring is first obtained:

δst = W

k
= 208.5 N

935.23 N/cm
= 0.223 cm

which, according to Equation (20.35), gives us the natural frequency of the system

fn = 1

2π

√
980.7 cm/s2

0.223 cm
= 10.6 Hz

The disturbing frequency generated by the imbalance is 4800/60 = 80 Hz. It
follows that

ω

ωn
= f

fn
= 80

10.6
= 7.58

From Equation (20.40) or Figure 20.8 we find

T =

√
1 +

(
2ξ ω

ωn

)2

√[
1 −

(
ω
ωn

)2
]2

+
(

2ξ ω
ωn

)2

=
√

1 + (2 × 0.12 × 7.58)2√[
1 − (7.58)2

]2 + (2 × 0.12 × 7.58)2

= 2.076√
3187.33 + 3.509

= 2.076

56.49
= 0.0367

The force transmitted to the mounting structure is

FT = (0.0367)(51.23 N) = 1.88 N

20.6 Techniques for Vibration Control

Modification of Source
It is often possible to mitigate vibration by modifying the source of the vibration.
For example, the vibrating structure may be made more rigid, closer tolerances of
machining can eliminate or lessen imbalance, or the system mass and stiffness can
be adjusted so that the resonant frequencies of the system do not coincide with the
forcing frequency (this procedure is called detuning), or it may be possible to cut
down on the number of coupled resonators between the vibrational source and the
component of interest (this procedure is called decoupling).

Isolation
There are three principal types of isolators, viz. (1) metal springs, (2) elastomeric
pads, and (3) resilient pads. Metal springs are generally the best for low-frequency
isolation and they possess the advantage of being impervious to the effects of
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temperature, humidity, corrosion, presence of solvents and they allow maximum
deflections. But springs have almost no damping and hence can lead to very high
transmissibility at resonance. But dampers can be included in parallel with springs
to minimize resonance effects.

Elastomeric mounts are generally constructed of either natural rubber or syn-
thetic rubber materials such as neoprene. Synthetic rubber is generally far more
impervious to environmental effects than natural rubber. These types of mounts are
generally used to isolate relatively small electrical and mechanical devices from
relatively high-forcing frequencies. Elastomeric compounds inherently contain
damping. Rubber can be used in either tension, compression or shear modes, but it
is generally used in compression or shear and hardly ever used in tension modes.

Isolation or resilient pads include a variety of materials such as cork, felt, fiber-
glass, and special plastics. These items can be purchased in sheets and cut into
gaskets to fit the particular application. Also, they can be stacked to provide dif-
ferent degrees of isolation. Cork is available in squares 1 to 2.5 cm thick. Cork
can withstand corrosion and solvents, but felts being made of organic materials
cannot be utilized in an environment where solvents are present. Cork and felt
have damping ratios that typically range from ξ = 0.05 to 0.06.

Inertia Blocks
Certain very large machines such as reciprocating compressors generate large
inertia forces that result in unacceptably large motion that can cause the machine to
function improperly. One means of limiting this motion is to mount the equipment
on an inertia base, which consists of heavy steel or concrete mass. This mass limits
the motion by the dint of its heaviness overcoming the inertia forces produced
by the mounted equipment. Also low natural frequency isolation needs a large
deflection isolator such as a soft spring. But the use of soft springs can lead to
rocking motions that cannot be tolerated. Hence, an inertia block mounted on the
appropriate isolators can serve to effectively limit the motion as well as provide
the required isolation. Inertia blocks also help to lower the center of gravity and
thus provide an additional degree of stability. The introduction of additional mass
through inertia blocks decreases vibrational amplitudes and minimizes rocking.
Alignment errors can be minimized because of the greater stiffness of the base,
and moreover, these blocks can serve as a noise barrier between the floor on which
they are mounted and the mounted equipment itself.

Vibration Absorbers
In order to better understand its operation, let us consider the vibration absorber
model of Figure 20.10. The components of the vibration absorber are m2 and k2.
The applicable equations of motion for the system are

m1 ẍ1 + k1x1 + k2(x1 − x2) = f

m2 ẍ2 + k2(x2 − x1) = 0
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Figure 20.10. The analytical model for a vibration absorber.

The frequency response can be gotten from the following transformed equations:

−m1ω
2 X1 + (k1 + k2)X1 − k2 X2 = F0

−k2 X1 + (−m2ω
2 + k2)X2 = 0

Rearranging these last two equations:

(−m1ω
2 + k1 + k2)X1 − k2 X2 = 0 (20.41)

−k2 X1 + (−m2ω
2 + k2)X2 = 0 (20.42)

The two simultaneous equations may now be written in the matrix format as
follows: [−m1ω

2 + k1 + k2 −k2

−k2 −m2ω
2 + k2

] [
X1

X2

]
=

[
F0

0

]
(20.43)

Now consider what happens to Equations (20.41)–(20.43) when the forcing fre-
quency ω equals the natural frequency ω2 = (k2/m2)1/2 of the vibration absorber.
This condition leads to

X1 = 0

X2 = − F0

k2
(20.44)
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From the Equation set (20.44) it can be deduced that when the natural frequency
of the vibrating absorber is tuned to the vibrational forcing frequency, the motion
of the principal mass m1 is ideally zero and the spring force of the absorber is
at all times equal and opposite to the applied force F0. It follows that no net
force is transmitted to the supporting structure. Because the natural frequency
must be tuned to the vibration forcing frequency, the absorber is customarily used
for constant speed machinery. Even though this isolation feature is useful over a
broad band of frequencies, absorption is useful principally for very narrow-band
or single-frequency control.

Active Systems
Active isolation and absorption systems normally incorporate a feedback control,
which may be electromagnetic, electronic, fluidic, pneumatic, mechanical, or a
combination thereof. Because the cost of such systems is quite high, they are used
mainly in precision instruments such as electronic microscopes, lasers, stabilized
platforms, and other devices where a high degree of isolation is required. Active
control is also applied where a high degree of isolation is required, for example, in
the case of an air-conditioning system that is mounted on the top floor of a building
above work areas and offices. Because the cost of computerization is falling con-
tinuously, active control is becoming a more viable option in many applications
(including automotive suspensions), particularly for isolating very low-frequency
vibration (<1 Hz) and also for tracking changes in natural frequencies due to
shifting modes of operation.

Damping
Of the elements of vibration models, damping constitutes the most difficult of
parameters to deal with, but it does provide an important means of cutting down
vibration. Damping reduces the transmission of vibration through a structure,
decreases amplitudes of resonance, and it attenuates free vibration and vibrations
caused by impact. The reduction of vibrational energy in structures as the result
of damping lessens the amount of noise radiated by the structural areas.

A measure of damping is that of the system loss factor, denoted by ηs and defined
as the ratio of damping energy loss per radian to the peak potential energy. Let us
assume an oscillation represented by

x(t) = A sin (ωt + φ)

Then the velocity is

ẋ(t) = Aω cos (ωt + φ)

The damping force is given by Cẋ(t); and the amount of energy dissipated through
a spatial increment dx is Cẋ(t) dx. Because ẋ = dx/dt , we write

Cẋ(t) dx = Cẋ2(t) dt = 1

ω
Cẋ2(t)d(ωt)
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Then the energy dissipated in a cycle is obtained from

C

ω

∫ 2π

0
ẋ2(t) d(ωt) = C A2ω

∫ 2π

0
cos2(ωt + φ) d(ωt) = πC A2ω

The energy dissipated per radian is CA2ω/2, and the peak potential energy is
k A2/2. Therefore, the system loss factor is

ηs = C A2ω/2

k A2/2
= Cω

k
(20.45)

Introducing Equations (20.8) and (20.9), Equation (20.45) becomes

ηs = 2ξ
ω

ωn
(20.46)

At resonance, ηs assumes the value of 2ξ . This indicates that systems with
large loss factors are highly damped. For small values of damping, applying
Equations (20.18), (20.28), and (20.29):

ηS = 2ξ = δ

π
= 1

(MF)resonance

In the analysis of structural damping, complex stiffness and complex moduli
are principal parameters. We recall that the steady-state oscillation is described by
the following expression:

(−ω2m + iωC + k)X = F0

which can be rewritten as

(−ω2m + k∗)X = F0

where

k∗ = k + iωC

The imaginary stiffness is the damping. Employing Equation (20.45), we can
express the complex stiffness as

k∗ = k(1 + iηs)

In an analogous manner, the complex Young’s modulus E for damping material
can be expressed as

E∗ = E(1 + iηM )

where E is the real part of the Young’s modulus of the damping material and ηM

is the loss factor of the damping material.1

The loss factors and complex moduli vary with frequency and temperature. It has
been assumed that the damping force is proportional to velocity and independent
of amplitude, but there are situations where the damping of the materials depends

1 ηs is the loss factor of the system structure and damping material.
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Figure 20.11. Sound transmission characteristics: (a) incident wave resolving into a re-
flected wave and a transmitted wave and (b) transmission loss in a structure as a function
of frequency.

mainly on vibration amplitude, so the assumption of viscous damping must be
applied judiciously.

Damping converts mechanical energy into thermal energy; and while there are
a number of mechanisms for such energy conversion, we describe here those
that are the most useful ones. Damping materials also reduce sound transmission.
When a sound wave strikes a structure, causing its surface to vibrate, the vibrat-
ing surface produces a reflected wave and a transmitted wave [Figure 20.11(a)].
The transmission loss through the structure varies with frequency as shown in
Figure 20.11(b) for a given temperature. The region of damping control nestles
between the low-frequency region where stiffness reigns as the controlling param-
eter and the higher-frequency region where mass predominates as the controlling
parameter. Between these two regions, many natural vibratory modes of the struc-
ture exist, and this region is the only one where transmission loss depends greatly
upon resonance conditions. Here structural damping is the controlling parameter.

Internal Damping
A material with very high-damping internal properties could be utilized to eliminate
noise emanating from a structure. Ferromagnetic materials and certain magnesium
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and cobalt alloys exhibit such properties but these materials are generally too costly
to use as structural materials and they may not meet the strength criteria.

Damping Mechanisms
Figure 20.12 shows three types of damping mechanisms, namely, the tuned damper,
free viscoelastic layer, and constrained viscoelastic layer.

The tuned damper of Figure 20.12(a) consists of a mass attached to a point
of vibration through a spring and dashpot or a viscoelastic spring. This device is
not very useful because it functions well at only a single frequency or in a very
narrow frequency band. Moreover, any change in temperature is likely to change
the tuning frequency of the damper.

The other two mechanisms of Figure 20.12 entail adding viscoelastic layers to
a structure that is to be damped. When a structure consisting of different layer
of materials undergoes bending, the layers will extend or deform in shear. The
resultant deformation causes energy dissipation, a phenomenon that constitutes
the basis for the two viscoelastic mechanisms.

In the mechanism of Figure 20.12(b), a layer of free (i.e., uncovered) viscoelastic
layer is bonded to the main structure. The damping material thickness should be

Figure 20.12. Different types of damping mechanisms: (a) tuned damper, (b) free vis-
coelastic layer, and (c) constrained viscoelastic layer.



610 20. Vibration and Vibration Control

about one-third the thickness of the structure or wall thickness. One thick layer on
one side of the structure is generally more effective than two lesser layers on either
side of the structure. This technique, which entails extensional damping, results in
an economical, highly damped structure that is easy to fabricate.

The mechanism of Figure 20.12(c) is essentially a sandwich arrangement, where
a viscoelastic layer is added to the structure. The covered (hence, constrained) vis-
coelastic layer provides high extensional damping, but the entire structure becomes
harder and more expensive to assemble.

In order to be effective, the damping action must store a major portion of the
energy present in the entire system. Damping is best applied to points where
stretching or bending is the maximum, because these are the locations of maximal
energy storage.

Viscoelastic layer techniques can be employed in a large variety of applications
ranging from walls, enclosures, barriers, conveyers, chutes, racks, and hoppers to
the most specialized, technologically sophisticated electronic instruments.

20.7 Finite Element Analysis

We have used relatively simple mathematical models to deal with vibration, but
the analysis of plates, shells, and other continuous systems can be difficult to
analyze without the aid of computers. Experimental modal analysis can provide
the needed information, but this requires that a real structure be constructed and
instrumented to yield the desired data. Finite-element analysis (FEA), however,
allows the problem to be represented with some detail and permits the designer to
optimize a design by investigating the effects of minor changes in the model upon
the static and dynamic states of the structure being evaluated. FEA is also used not
only to determine the statics and dynamics of beams, plates, shells, trusses, and
other solid bodies but also to treat problems involving fluids, including airborne
noise propagation. A number of FEA programs can predict stresses and strains,
temperature distribution stemming from heat and mass transfer as well as vibra-
tory states. Transient states are amenable to treatment by FEA. Since FEA is a
powerful analytical tool, it no longer became necessary to fabricate a series of
actual structures before freezing a design. The most prominent programs contain-
ing general codes for vibrational analysis include NASTRAN, developed by the
U.S. National Aeronautics and Space Administration and now in public domain;
MSC-NASTRAN r©, a proprietary code developed from NASTRAN coding avail-
able from MacNeal-Schwindler Corp.; and ANSYS r©, another proprietary code
that is available from Swanson Analysis System, Inc.

A structure undergoing analysis is modeled by subdividing it into various types
of finite elements from the finite-element library. The library may include more than
100 element types, including beam elements, triangular and rectangular plate and
shell elements, conical shell elements, and mass, damping, and stiffness elements.
The preprocessing stage in FEA entails the creation of a finite-element mesh to
depict the structure being evaluated. The elements may be automatically sized
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by proportional spacing so that the mesh is denser in areas of greater concern
(particularly where sudden changes or discontinuities in geometry can lead to
higher values of stresses or steeper temperature gradients). Constraints and forcing
functions are specified. The input data are converted into matrix format by the FEA
code. The form of matrix equation is

ma + Cv + kx = F

where

m,C, and k = the mass, damping, and stiffness matrices, respectively, for

the finite element representation of the structure being analyzed

a, v, and x = the acceleration, velocity, and displacement vectors, respectively

F = the forcing function vector

The matrices are manipulated to determine natural frequencies, frequencies,
mode shapes, response amplitudes, and/or dynamic stresses due to harmonic, ran-
dom, or transient forcing functions. In the postprocessing phase, the FEA program
arranges the output in a convenient format for engineering evaluation. The de-
formed structure can be graphically portrayed as an overlay over the undeformed
mesh diagram. In order to show the difference, mode shapes or displacement am-
plitudes are exaggerated in the display. In almost all situations, a great deal of
engineering time must be spent in defining even a simple problem by modeling
it and setting up a mesh. But once a solution is obtained, redesign to improve
vibrational characteristics can be done quickly and effectively by modifying the
stored data. FEA software can be installed and used on personal computers, but for
more elaborate designs it may be necessary to use minicomputers or mainframes in
order to deal with much larger matrices (cf. Brooks, 1986; Hughes, 1987; Grandin,
1986; Huebner and Thornton, 1982).

20.8 Vibration Measurements

Vibration displacement and vibrational velocity can be measured but the most
common measurements of vibration are those of acceleration. The basic trans-
ducer used to measure vibration and shock is the accelerometer. Most of the other
components in vibration measurement systems are similar to those used to mea-
sure airborne sound (cf. Chapter 9). Many instruments such as the fast Fourier
transform (FFT) analyzers are designed to be used for both acoustic and vibration
applications.

Accelerometers
Accelerometers are usually mounted directly on a vibrating body, using a threaded
stud, adhesive, or wax. Other versions mount the accelerometer in a probe that
is held against a vibrating body. A typical accelerometer houses one or more
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piezoelectric elements against which rest a mass that is preloaded by a stiff spring.
When an accelerometer becomes subject to acceleration imparted by the vibration
being measured, the mass exerts a force on the piezoelectric element that is pro-
portional to the acceleration. The charge developed in the piezoelectric element
is, in turn, proportional to the force. The accelerometer may be designed so that
the piezoelectric element is stressed in compression or in shear. The piezoelectric
elements are usually quartz crystals or specially processed ceramic materials.

There is more than one type of sensitivity of interest in accelerometer specifica-
tions. The charge sensitivity, measured in picocoulombs/g, and voltage sensitivity,
measured in terms of mV/g, are important, depending whether the accelerometer is
used with charge measuring or voltage measuring equipment. Also, the transverse
sensitivity, which is the sensitivity to acceleration in a plane normal to the axis to
the principal accelerometer axis should be a low value, preferably less than 3% of
the main axis sensitivity at low frequencies.

The preamplifier, which constitutes the second stage in signal processing, serves
two purposes: one is to amplify the vibration pickup signal that is generally quite
weak and the other purpose is to serve as an impedance transformer between the
accelerometer and the subsequent chain of equipment. A preamplifier may be de-
signed to function as a voltage amplifier in which case the output voltage is directly
proportional to the input voltage or it may function as a charge amplifier in which
case the output voltage is proportional to the input charge. Each type of ampli-
fier has its own advantages and disadvantages. When a charge amplifier is used,
changes in cable length (which modifies the cable capacitance) have negligible
effects on the measurements. When a voltage amplifier is employed, the system
will be extremely sensitive to changes in cable capacitance. Because the input re-
sistance of a voltage amplifier cannot be disregarded, the extremely low-frequency
response of the system may be affected. But voltage amplifiers are usually less
expensive and may be more reliable because they contain fewer components.

20.9 Random Vibrations

Most of the vibration problems discussed earlier in this chapter are deterministic,
i.e., the forcing function can be described as a function of time. An example of
a deterministic problem is the imbalance of a shaft operating at a known speed.
Random vibrations, on the other hand, result from excitation that can be only
described statistically. Structural excitation of an aircraft fuselage due to jet engine
noise or turbulent flow is considered to be a random process. Both frequency and
amplitude vary and they do not establish a deterministic pattern.

Probability Density
Because the amplitude or acceleration of random vibration cannot be determined
as a function of time, it is described in terms of its probability density. One
model widely used is the Gaussian distribution or normal probability density curve
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expressed as follows in normalized form:

p(x) = 1

σ
√

2π
e−0.5x2/σ 2

(20.47)

and the probability of the value of x falling between a and b is

P(a < x < b) =
∫ b

a
p(x) dx (20.48)

where

p(x) = the probability density of the function

x = the amount the function differs from the mean

σ = the standard deviation

P = the probability of x falling within a particular range

It is apparent that the total area under the probability density curve must be unity:

P(−∞ < x < ∞) =
∫ +∞

−∞
p(x) dx = 1

Root-Mean-Square Value and Autocorrelation
The time-average root-mean-square of a function is defined by

xrms =
√

lim
T →∞

(
1

T

∫ T

0
x2(t) dt

)
(20.49)

where

xrms = the root-mean-square of function x

T = the time interval

The temporal autocorrelation function describes, on the average, the way in which
the instantaneous value of a function depends on previous values. It is given by

R(τ ) = lim
T →∞

(
1

T

∫ T

0
x(t)x(t + τ ) dt

)
(20.50)

where

R(τ ) = autocorrelation function

τ = the time interval between measurements

t = time
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Ergodic Processes
A function may vary in such a manner that there is no narrow time interval that can
be truly representative of the function. However, if the time interval is sufficiently
long and the probability distribution functions are independent of the time interval
during which they were measured, the function then represents a stationary pro-
cess. This means that the root-mean-square value measured during one interval
should be equal to the root-mean-square value measured during a later interval.
The autocorrelation function will also be unaffected by a time shift. If root-mean-
square values and the autocorrelation functions of a number of ensembles of data
are equal to the temporal values, then the process may be considered ergodic as
well as stationary.

Spectral Density
The power spectral density, also known as the root-mean-square spectral density,
can be determined from the autocorrelation function as follows:

S(ω) =
∫ +∞
−∞ R(τ )e−iωτdτ

2π
(20.51)

where

S(ω) = root-mean-square spectral density, in g2/(rad/s) or (m/s2)2/(rad/s)

ω = radial frequency, rad/s

Equation (20.51) is used in analytical studies. The inverse relationship is

R(τ ) =
∫ +∞

−∞
S(ω)eiωτdω

Vibration measurements obtained from an FFT analyzer or another spectral
instrument may be expressed in dB re 1 g or dB re 1 m/s2, within each frequency
band. These values may be converted to root-mean-square spectral density W ( f )
(usually expressed in g2/Hz or some other engineering units), where W ( f ) and
S(ω) are related by

W ( f ) = 4π S(ω)

where

W ( f ) = spectral density, units2/Hz), defined for positive frequencies only

f = frequency, Hz

S(ω) = spectral density, units2/(rad/s), defined for both positive and

negative frequencies (a mathematical artifice)
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If the vibration measurements are sufficiently representative and the process is
stationary, the root-mean-square value is then given by

x2
rms = lim

T →∞

(
1

T

∫ T

0
x2(t) dt

)
=

∫ ∞

0
W ( f ) df = R(0)

where

x2
rms = root-mean-square value, g2

R(0) = the autocorrelation function for τ = 0

White Noise
White noise is a random signal which has a constant root-mean-square spectral
density for all frequencies from zero to infinity, i.e.,

Wwhite( f ) = W0 for 0 < f < ∞
This idealization cannot be achieved physically, since it would amount to requiring
an infinite amount of power. More realistically, band-limited white noise can be
achieved and it is a random signal having a constant spectral density over a specified
range:

Wwhite( f ) = W0 f1 < f < f2

White noise generators are produced to generate signals with random vibration
in amplitude and frequency, with relatively constant spectral density over various
frequency ranges.
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Problems for Chapter 20

1. In the spring-dashpot system of Figure 20.1, weight W = 50 N, spring constant
k = 0.30 N/cm, and damping ratio ξ = 0.35. Find the natural frequency and
the viscous damping of the system.

2. Establish the characteristic equation for the spring-dashpot system of
Problem 1 and determine the additional viscous damping needed to yield
a critically damped system.

3. In the system of Problem 1, the mass is displaced 15 cm and then suddenly
released. Set up the equation for the system response, which describes the
position of the mass as a function of time.

4. Consider a spring-dashpot system that has the following parameters: W =
40 N, C = 0, and k = 0.39 N/cm. If the mass is initially displaced and released,
how will the system response?

5. In a spring-dashpot system, W = 40 N, C = 0.10 N/cm/s, and a forcing func-
tion 4.0 sin ωnt drives the system. What kind of system response will occur
as a function of time?

6. In a spring-damper system of Figure 20.1, W = 250 N, C = 0.13 N/cm/s,
and k = 32 N/cm. How much does the spring deflect under the dead weight
load of the mass? What is the natural frequency of the system? If the system
undergoes a forced harmonic oscillation described by F = F0 sin 12t , which
one of the system parameters effectively controls the response of the system?

7. A mass is supported by four identical springs, each having a spring constant
of 2.6 N/cm. If the spring deflects 1.5 cm, what is the weight of the mass being
supported?

8. Consider the system described in the last problem. It is forced with a sinusoidal
signal with a frequency twice that of its natural frequency. Find the degree of
vibration isolation that will be obtained.

9. A mechanical system is being designed for installation in a plant. It bears
the following parameters: W = 2000 N and k = 3.65 N/cm. If the forcing
frequency = 12 rad/s, how much damping can the system tolerate if the iso-
lation must exceed 90%?

10. In a spacecreaft, delicate electronic sensors have to be isolated from a panel
that vibrates at 50 rad/s. It is required that at least 90% vibration isolation
can be achieved by using springs to protect the equipment. Assume that the
damping ratio ξ = 0. What static deflection is required?



21
Nonlinear Acoustics

21.1 Introduction

In most of the preceding chapters we have dealt with acoustics in terms of the linear
wave equation. The amplitude of the sound was considered to be virtually infinitesi-
mal, thus paving the path to relatively convenient mathematical analyses. When the
wave amplitude becomes sufficiently large, nonlinear effects occur and the linear
wave equation no longer meets the situation. Waveform deformation occurs with
possible formation of shock waves, increased absorption, nonlinear interaction (as
opposed to superposition) between combined sound waves, amplitude-dependent
directivity of rays, onset of cavitation, and sonoluminescence.

The realm of nonlinear acoustics produced by intense sound levels encompasses
a variety of practical cases: mufflers for internal combustion engines, thermoacous-
tic heat engines, shock waves from supersonic aircraft and spacecraft, underwater
sonar, formation of bubbles, cavitation, acoustic compression and energy losses
attributable to viscous and thermal boundary layers, sonoluminescence, and sono-
chemistry. Velocity dispersion also affects the resonance frequencies of rigid wall
cavities and the harmonic spectrum of standing waves.

Even in cases of relatively small signals, matters are not always so linear as
they appear. Executing a perturbation procedure on the wave equation to consider
second- and third-order effects may bring out rheological characteristics (i.e., the
non-Newtonian behavior of fluid viscosity) of a fluid medium that can be indicative
of its physical and chemical state (Raichel and Kapfer, 1973; Takabayashi and
Raichel, 1998).

Obviously not all aspects of nonlinear acoustics can be covered in a single
chapter, but in the following sections we will attempt to highlight some of the
major facets of the finite-amplitude category of acoustics.

21.2 Wave Distortions

Consider a plane wave propagating in the x-direction in a frictionless fluid.
If the amplitude is sufficiently small, the wave phenomenon can be described

617
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by

∇2φ = 1

c2
0

∂2φ

∂t2

where φ is the velocity potential, t is the time, and c0 is the small signal sound
speed listed in Tables A, B, and C of Appendix A. In linear acoustics a sound wave
ordinarily propagates through a medium without changing its shape, because each
part on the wave travels with the same speed c0 = dx/dt .

In the case of the finite wave, the propagation speed varies from point to point.
The variation occurs because a propagating wave engenders a longitudinal velocity
field u in the fluid medium through which it travels. The motion of the fluid adds
to the propagation speed with respect to a fixed location:

dx

dt
= c + u (21.1)

where c represents the speed of sound with respect to the moving fluid (and it is
not the same as c0). To understand this situation better, consider a fluid that is a gas
for which the speed varies as

√
T [cf. Equation (2.2)]. The sound speed becomes

a bit higher when the acoustic pressure p is positive (i.e., during the compression
phase that increases with the temperature) and a bit lower when p is negative (i.e.,
during the expansion phase that lowers the temperature). Then

c = c0 + γ − 1

2
u (21.2)

where γ is the ratio of specific heats of the gas. Combining Equations (21.1) and
(21.2) results in

dx

dt
= c0 + βu (21.3)

where β, the coefficient of nonlinearity is given by

β = γ + 1

2

From Equation (21.3) we observe that the propagation speed depends on the par-
ticle velocity, as the result of the convective effect of the moving fluid and the
nonlinearity of the traveling wave. Even in nonlinear acoustics, the particle ve-
locity u is normally much smaller than c0. The impact of the varying propagation
speed is accumulative and leads to appreciable distortion that becomes even greater
with increasingly stronger waves.

Nonlinearity of the pressure–density relation is considerably more prominent
in liquids and solids than for gases. In the case of liquids the coefficient of the
first-order nonlinear term in the pressure–density relation is B/2A, where B/A is
termed the parameter of nonlinearity. In this case, the analog of Equation (21.1)
for liquids is given by

β = 1 + B

2A
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u(x,t )

t = 0 t = t1 t = t2

x

c0t 1 c0(t2-t1)

(a)

(b)

u(x,t )

t

x = 0 x = x1 x = x2 x = x3

Figure 21.1. Cumulative distortion as seen from the viewpoints of (a) initial-value prob-
lem, u as a function of x with increasing time t , and (b) signaling problem, u as a function
of x with increasing x , from the signaling location x = 0.

Nonlinear acoustics covers a considerable variety of topics. Problems arising
from nonlinearity fall into two categories: (1) source problems, where the time
variation of an acoustic field variable (e.g., pressure or particle velocity) is spec-
ified at a single location and (2) initial value problems where the spatial varia-
tion of the field is specified for a specific time. Figure 21.1 illustrates the cumu-
lative distortion by linear convection as seen from the viewpoints of (a) initial
value problems, with u as a function of x at increasing times t , and (b) signaling
problems, where u is a function of t at increasing ranges x , from the signaling
location.

21.3 Progressive Waves in Fluids

When a single wave moves through a fluid, we have a case of a progressive wave
field. The governing second-order wave equation

∂2u

∂x2
= 1

c2
0

∂2u

∂t2
(21.4)



620 21. Nonlinear Acoustics

may be integrated at once to yield

∂u

∂x
= 1

c0

∂u

∂t
(21.5)

which is a first-order differential equation whose solution is u = f (t − x/c).1

Of the two types of problem approaches mentioned in the preceding section,
most of the acoustic problems entail radiation, so source problems receive more
emphasis in this chapter.

Plane Waves
The model equation for a source-generated finite plane wave in a lossless fluid is

∂u

∂x
= β

c2
0

u
∂u

∂t
(21.6)

Consider a sinusoidal source excitation governed by u = U0 sinωt at x = 0. The
solution to Equation (21.6) is the Fubini solution

u = U0

∑
n

2

nσ
Jn(nσ ) sin nωt (21.7)

where

σ = βεκx = x

x̄
or x̄ = 1

βεκx

Here x̄ is the shock formation distance, ε = U0/c0, and κ = ω/c0 is the wave
number. The size of σ , the so-called dimensionless distortion range, indicates a
measure of the amount of distortion that has occurred. The value of σ = 1 indicates
shock formation.

Other One-Dimensional Waves and Ray Theory
In one-dimensional progressive waves that are not planar, geometric spreading
slows down the rate of distortion and is described mathematically by an extra term
in the model equation (21.6). If the wave is spherical or cylindrical, model equation
(21.6) becomes

∂u

∂r
+ a

r
= β

c2
0

u
∂u

r
(21.8)

1 We can simplify Equation (21.5) by transforming coordinates x , t to x , τ , where τ = x − c0/t, the
retarded time. Then Equation (21.5) becomes

∂u

∂x
= 0

which provides the building block on which most model equations for more complex progressive
waves are based.
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where r represents the radial coordinate. The retarded time is now

τ = t − (r − r0)

c0

where r0 is a reference distance, which could be the radius of the source, and a
has a value of unity for spherical waves, 1/2 for cylindrical waves, and 0 for plane
waves (in which case r is replaced by x). Introducing the coordinate stretching
function

z = r0 ln
r

r0
(spherical waves)

= 2(
√

rr0 − r0) (cylindrical waves)

and the spreading compensation function

w =
(

r

r0

)a

u (21.9)

into Equation (21.8) results in this equation being reduced to the plane wave form

∂w

∂z
= β

c2
0

w
∂w

∂τ

Thus, plane wave solutions may be extended to spherical and cylindrical waves
by replacing u and xwith w and z, respectively. The Fubini solution for spherical
waves has the same form as that of Equation (21.7).

One-dimensional propagation is applicable to ducts of slowly varying cross
section, such as horns or ray tubes. In such cases, the spreading compensation
function is

w =
√

A

A0
u

Dissipative Function: Burgers Equation
Equation (21.8) can be useful for a good variety of finite-amplitude problems, but
the distortion nearly always leads to the formation of shocks that are naturally
dissipative. The losses must now be taken into account. The first truly successful
model was developed by Burgers (1948) originally to model turbulence, but it
also turned out to be an excellent approximation of the equation describing finite-
amplitude plane waves of traveling in a thermoviscous fluid. In the form usable
for source problems, the Burgers equation is

∂u

∂x
− β

c2
0

u
∂u

∂r
= δ

2c3
0

∂2u

∂t2
(21.10)
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where

δ = υ[ν + (γ − 1) Pr] = diffusivity of sound

υ = μ/ρ = kinematic viscosity

μ = shear viscosity coefficient

ρ0 = static density

ν = 4

3
+ μB

μ
= viscosity number

μB = bulk viscosity number

Pr = cpμ

kr
= Prandtl number, a property of the fluid

cp = specific heat at constant pressure of the fluid

kr = thermal conductivity of the fluid

On comparing Equations (21.8) and (21.10) we observe that the former equation
does not have a dissipation term and it is often called a lossless Burgers equation.

The Burgers equation is exactly integrable (Cole and Hopf), which renders it
a very useful model. Applications of the Burgers equation have been made to
sinusoidal source excitations. Although it is exact, the extraction of the solution
is quite complicated (Hopf, 1950; Blackstock, 1964). For distances larger than
3x̄(σ > 3), it reduces to the Fay solution (Fay, 1931)

u = u0
2

%

∑ sin nωτ

sinh
n(1 + σ )

%

(21.11)

where % = βεκ/α = 1/(α x̄) that characterizes the importance of nonlinear dis-
tortion to the absorption process and α = δω2/2c3

0 represents the small signal
absorption at source frequency.

In addition to one-dimensional sound waves in thermoviscous fluids, the Burgers
equation can also be applied to spherical and cylindrical waves, with the model
equation (21.8) now including the right-hand side of Equation (21.10), i.e.,

∂u

∂r
+ u

r
− βu

c2
0

∂u

∂r
= δ

2c2
0

∂2u

∂t2
(21.12)

But Equation (21.12) is not exactly integrable (i.e., no exact solution is known)
and numerical methods of solution would therefore be required.

Shock Waves
Sounds from impulsive sources strong enough to result in shock waves include
blast waves from explosions, thunder from lightning, aircraft sonic booms, ballistic
missiles, and N-waves from spark sources.

The basic equations describing shock-wave propagation incorporate conserva-
tion of mass, Newton’s second law, conservation of energy, and an equation of
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state relating pressure to density. These equations are

∂ρ

∂t
+ ∇ · (ρu) = 0 (21.13)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p (21.14)

ρ
∂

∂t

(
1

2
u2 + e

)
+ u · ∇

(
1

2
u2 + e

)
= 0 (21.15)

and

p = p(ρ, T ) (21.16)

where ρ is the fluid density, u is the particle velocity, T is the temperature, p is
the pressure, and e is the internal energy. We have noted in Chapter 2 how these
equations were linearized to derive the basic acoustic equation. When Equations
(21.13)–(21.16) are solved for a frictionless fluid, the solutions yield multivalued
waveforms. But with increasing amplitude, attenuation mechanisms, such as vis-
cosity and heat conduction, assume increasingly greater roles, especially in the
case of large pressure gradients which leads to small but finite times rise of the
pressure waveform.

For sufficiently strong waves, shock waves or flow discontinuities occur, and
Equations (21.13)–(21.15) no longer apply. The governing equations across the
shocks are the Rankine-Hugoniot equations:

[ρ(u − ush)]+ = [ρ(u − ush)]− (21.17)

[ρu(u − ush) + p]+ = [ρu(u − ush) + p]− (21.18)[
p

(
1

2
u2 + e

)
(u − ush) + pu

]
+

=
[

p

(
1

2
u2 + e

)
(u − ush) + pu

]
−
(21.19)

Here e represents the internal energy per unit mass. The subscript “−” denotes
the variable just behind the shock, and the subscript “+” denotes the variable
immediately in front of the shock. Equations (21.17), (21.18), and (21.19) express
the conservation of mass, Newton’s second law, and work–energy conservation,
respectively.

In many situations, we can consider the air or gas surrounding an explosion or
energy release to be a polytropic gas with a constant ratio of specific heats. The
shock relations for a polytropic gas are expressed in terms of shock strength z
defined by

z = (p− − p+)

p+
(21.20)

and the Mach number M of the shock relative to the flow ahead:

M = (ush − u+)

c+
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The shock relations are as follows:

M = u− − u+
c+

= z

γ

√{
1 +

(
(γ + 1)

2γ

)
z

}

ρ−
ρ+

=
1 + γ + 1

2γ
z

1 + γ − 1

2γ
z

c−
c+

=

√√√√√√√
1 + z

{
1 +

(
γ − 1

2γ

)
z

}

1 +
[(
γ + 1

2γ

)
z

]

The simplest model of an explosion is that of a point blast and the exact solution
of this problem has been developed by von Neumann (1963), Taylor (1950), and
Sedov (1961). The explosion is depicted as an energy release E concentrated at a
point in space with ambient density ρ0. The relations between the position of the
shock r (t) and overpressure in terms of E , ρ0, and r are

r (t) = k

(
E

ρ0

)1/5

t2/5 (21.21)

p = 8

25

k2ρ0

γ + 1

(
E

ρ0

)2/5

t−6/5

or equivalently,

p = 8

25

k5

γ + 1
Er−3 (21.22)

The decay of a strong spherical shock with r−3 constitutes a general behavior of
the strong shock region. The dimensionless constant k is established by requiring
conservation of energy and is a function only of the ratio γ of specific heats. This
necessitates that

E =
∫ r (t)

0

(
p

γ − 1
+ ρu2

2

)
4πr2dr (21.23)

remains constant.
Equation (21.23) has been evaluated numerically by Taylor and analytically

by Sedov and von Neumann. For γ = 1.4 at standard atmosphere, the pressure
equation (21.22) becomes

p = 0.155E

r3
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Analytical studies have been made of cylindrical explosions and line source
energy releases (Lin, 1954; Plooster, 1970, 1971). Lin was working on the problem
of shock generation by meteors or missiles, whereas Plooster was studying the
development and decay of cylindrical shocks with more realistic initial energy
distributions and atmospheres. A strong shock estimate of the decay of cylindrical
waves from an instantaneous line source in air (γ = 1.4) at standard pressure is
given by

p = 0.216E

r2

Thus, a cylindrical decay proportional to r–2 is characteristic of cylindrical strong
shocks.

Nonlinearity in Solids
The propagation of ultrasonic waves of finite amplitudes in a crystal of cubic
symmetry can be analyzed with a nonlinear differential equation similar to that
used for fluids.

The propagation of a finite-amplitude ultrasonic wave in any direction in an
isotropic solid is given by

ρ0
∂2ξ

∂t2
= κ2

∂2ξ

∂a2
+ (3κ2 + k3)

∂2ξ

∂a2

∂ξ

∂a
(21.24)

where ξ is the particle displacement and a is the distance measured in the direction
of propagation. κ2 and κ3 represent elastic constants that depend on the direction
of propagation in the solid.

The solution of the nonlinear equation (21.24) is made by assuming that the wave
is initially sinusoidal at a = 0, with ξ = A1 sin (ka – ωt). On this assumption we
can obtain a perturbation solution in the form

ξ = A1 sin(ka − ωt) + βA2
2k2a

4
cos 2(ka − ωt) + · · · . (21.25)

where β is the nonlinear parameter. The negative ratio of the coefficient of the
nonlinear term in Equation (21.24)

2β = −
(

3 + κ3

k2

)

is the quantity to be determined from measurement. From 2β we can establish κ3

since κ2 = ρc2
0 is known.

Equation (21.25) indicates that an initially sinusoidal ultrasonic wave generates
a second harmonic as it propagates. In order to measure the nonlinear parameter
2β, the absolute value of the fundamental displacement amplitude A1 needs to be
measured and also that of the second harmonic

A2 = βA2
1k2a

4
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But the propagation constant k = 2 π /λ= ω/c2
0 is known and sample length a can

be measured. We can then write

2β = 8A2c2
0

A2
1ω

2a

and determine 2β directly. A2 is usually plotted as a function of A2
1, and the slope

is then evaluated to yield 2β.
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Problems for Chapter 21

1. What is the change in timing for a sound traveling at c0 = 1100 m/s from a
spherical source of radius 1 m at 25 cm away from the source center due to
nonlinearity?

2. What is the coordinate stretching function z for (1) a spherical wave and (2) a
cylindrical wave?

3. What is the spreading compensation function for a divergent nozzle in terms of
percentage of particle velocity u for a throat diameter of 2.5 cm at a location
where the diameter is 5.6 cm?

4. Why is it necessary to resort to Rankine-Hugoniot relations instead of the
customary fluid mechanics equations in flows entailing shock waves?



Appendix A
Physical Properties of Matter

A.1. Solids

Young’s Shear Characteristic
Density, ρ Modulus, E Modulus, Poisson’s Speed, c Impedance, ρ0c

Solid (kg/m3) (GPa) G (GPa) Ratio, ν (m/s) (106 Pa·s/m)

Aluminum 2700 71 24 0.33 5150 13.9
Brass 8500 104 38 0.37 3500 29.8
Copper 8900 122 44 0.35 3700 33.0
Iron (cast) 7700 105 44 0.28 3700 28.5
Lead 11,300 16.5 5.5 0.44 1200 13.6
Nickel 8800 210 80 0.31 4900 43.0
Silver 11,300 78 28 0.37 2700 28.4
Steel 7700 195 83 0.28 5050 39.0
Glass (Pyrex) 2300 62 25 0.24 5200 12.0
Quartz (X-cut) 2650 79 39 0.33 5450 14.5
Lucite 1200 4 1.4 0.4 1800 2.15
Concrete 2600 — — — — —
Ice 920 — — — — —
Cork 240 — — — — —
Wood, oak 720 — — — — —
Wood, pine 450 — 1 0.4 1450 1.6
Hard rubber 1100 2.3 — 0.5 70 0.065
Soft rubber 950 0.005 — — — —
Rubber, ρ–c 1000 — — — — —

629
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A.3. Gases (at 1 atmosphere pressure, 101.3 kPa)

Characteristic Coefficient
Ratio of Impedance, of Shear

Temperature Density, ρ0 Specific Speed ρ0/c Viscosity η
Gas (◦C) (kg/m3) Heats, γ (m/s) (Pa·s/m) (Pa·s)

Air 0 1.293 1.402 331.6 428 0.000017
Air 20 1.21 1.402 343 415 0.0000181
Hydrogen 0 0.09 1.41 1269.5 114 0.0000088
CO2 (low frequency) 0 1.98 1.304 258 512 0.0000145
CO2 (high frequency) 0 1.98 1.40 268.6 532 0.0000145
Oxygen 0 1.43 1.40 317.2 453 0.00002
Steam 100 0.6 1.324 404.8 242 0.000013

A.4. Conversion Factors

Conversely,
To Convert Into Multiply by Multiply by

atm (atmosphere) mmHg at 0◦C 760 1.316 × 10−3

lb/in.2 14.70 6.805 × 10−2

N/m2 (Pa) 1.0132 × 105 9.872 × 10−6

kg/m2 1.033 × 104 9.681 × 10−5

◦C (Celsius) ◦F (fahrenheit) [(◦C × 9)/5] + 32 (◦F − 32) × 5/9
cm (centimeter) in. (inch) 0.3937 2.540

ft (foot) 3.281 × 10−2 30.48
m (meter) 10−2 102

cm2 (square centimeter) in.2 0.1550 6.452
ft2 1.0764 × 10−3 929
m2 10−4 104

cm3 (cubic centimeter) in.3 0.06102 16.387
ft3 3.531 × 10−5 2.832 × 104

m3 10−6 106

dyne lb (force) 2.248 × 10−6 4.448 × 105

N (newton) 10−5 105

dynes/cm2 lb/ft2 (force) 2.090 × 10−3 478.5
N/m2 (Pa) 10−1 10

ft (foot) in. (inch) 12 0.08333
cm (centimeter) 30.48 3.281 × 10−2

m (meter) 0.3048 3.281
ft2 (square foot) in.2 144 6.945 × 10−3

cm2 9.290 × 102 0.010764
m2 9.290 × 10−2 10.764

ft3 (cubic foot) in.2 1728 5.787 × 10−4

cm3 2.832 × 104 3.531 × 10−5

m3 2.832 × 10−2 35.31
hp (horsepower) W (watt) 745.7 1.341 × 10−3

in. (inch) ft (foot) 0.0833 12
cm (centimeter) 2.540 0.3937
m (meter) 0.0254 39.37

(continued)
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A.4. (Continued)

Conversely,
To Convert Into Multiply by Multiply by

in.2 (square inch) ft2 6.945 × 10−3 144
cm2 6.452 0.1550
m2 6.452 × 10−4 1550

in.3 (cubic inch) ft3 5.787 × 10−4 1.728 × 103

cm3 16.387 6.102 × 10−2

m3 1.639 × 10−5 6.102 × 104

kg (kilogram) lb (weight) 2.2046 0.4536
slug 0.06852 14.594
g (gram) 103 10−3

kg/m2 lb/in.2 (weight) 1.422 × 10−3 703.0
lb/ft2 (weight) 0.2048 4.882
g/cm2 10−1 10

m (meter) in. (inch) 39.371 2.540 × 10−2

ft (foot) 3.2808 0.30481
cm (centimeter) 102 10−2

m2 (square meter) in.2 1550 6.452 × 10−4

ft2 10.764 9.290 × 10−2

cm2 104 10−4

m3 (cubic meter) in.3 6.102 × 104 1.639 × 10−5

ft3 35.31 2.832 × 10−2

cm3 106 10−6

microbar (dynes/cm2) lb/in.2 1.4513 × 10−5 6.890 × 104

lb/ft2 2.090 × 10−3 478.5
N/m2 (Pa) 10−1 10

Np (neper) dB (decibel) 8.686 0.1151
N (newton) lb (force) 0.2248 4.448

dynes 105 10−5

N/m2 (pascal, Pa) lb/in.2 (force) 1.4513 × 10−2 6.890 × 103

lb/ft2 (force) 2.090 × 10−2 47.85
dynes/cm2 10 10−1

lb (force) (pound) N (newton) 4.448 0.2248
lb (weight) (pound) slug 0.03108 32.17

kg (kilogram) 0.4536 2.2046
lb/in.2 (weight) lb/ft2 (weight) 144 6.945 × 10−3

kg/m2 703 1.422 × 10−3

lb/in.2 (force) lb/ft2 (force) 144 6.945 × 10−3

N/m2 (Pa) 6894 1.4506 × 10−4

lb/ft2 (weight) lb/in.2 (weight) 6.945 × 10−3 144
g/cm2 0.4882 2.0482
kg/m2 4.882 0.2048

lb/ft2 (force) lb/in.2 (force) 6.945 × 10−3 144
N/m2 (Pa) 47.85 2.090 × 10−2

Slugs lb (weight) 32.17 3.108 × 10−2

kg (kilogram) 14.594 6.852 × 10−2

W (watt) hp (horsepower) 1.341 × 10−3 745.7



Appendix B
Bessel Functions

B.1 The Bessel Differential Equation

The Bessel differential equation of order n, expressed as[
x2 d2

dx2
+ x

d

dx
+ (x2 − n2)

]
f (x) = 0

carries the solutions consisting of (1) the Bessel functions of the first kind Jn(x) for
all x , and (2) the Bessel functions of the second kind Yn(x) (also called Neuman
functions), and the Bessel functions of the third kind H (1)

n (x) and H (2)
n (x) for all x

greater than zero.

B.2 Relationships Between Solutions

H (1)
n = Jn + iYn

H (2)
n = Jn − iYn

J−n = (−1)n Jn

Y−n = (−1)nYn

B.3 Series Expansions for J0 and J1

J0 = 1 − x2

22
+ x4

22 · 42
− x6

22 · 42 · 62
+ · · ·

J1 = x

2
− 2x3

2 · 42
+ 3x5

2 · 42 · 62
+ · · ·

633
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B.4 Approximations for Small Argument x < 1

J0 → 1 − x2

4

J1 → x

2
− x3

16

Y0 → 2

π
ln x

Y1 → − 2

π

1

x

B.5 Approximations for Large Arguments x > 2π

Jn →
√

2

πx
cos

(
x − nπ

2
− π

4

)

Yn →
√

2

πx
sin

(
x − nπ

2
− π

4

)

H (1)
n →

√
2

πx
ei(x− nπ

2 − π
4 )

H (2)
n →

√
2

πx
e−i(x− nπ

2 − π
4 )

B.6 Recursion Relations

The relations listed below hold true for C being any of the Bessel functions of the
first, second, or third kind or for linear combinations of these functions.

Cn+1 + Cn−1 = 2n

x
Cn

dC0

dx
= −C1

dCn

dx
= 1

2
(Cn−1 − Cn+1)

d

dx

(
xnCn

) = xnCn−1

d

dx

(
1

xn

)
= − 1

xn
Cn+1
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B.7 Modified Bessel Functions

In(x) = i−n Jn(i x)

I0(x) = J0(i x) = 1 + x2

22
+ x4

22 · 42
+ x6

22 · 42 · 62
+ · · ·∫

x I0(x)dx = x I1(x)

∫
I1(x)dx = I0(x)

I0(x) − I2(x) = 2

x
I1(x)

B.8 Tables of Bessel Functions, Zeros, and Inflection Points

B.1. Bessel Functions or Order 0, 1, and 2

x J0(x) J1(x) J2(x) I0(x) I1(x) I2(x)

0.0 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.2 0.9900 0.0995 0.0050 0.0100 0.1005 0.0050
0.4 0.9604 0.1960 0.0197 0.0404 0.2040 0.0203
0.6 0.9120 0.2867 0.0437 1.0921 0.3137 0.0464
0.8 0.8463 0.3688 0.0758 1.1665 0.4329 0.0843

1.0 0.7652 0.4401 0.1149 1.2661 0.5652 0.1358
1.2 0.6711 0.4983 0.1593 1.3937 0.7147 0.2026
1.4 0.5669 0.5419 0.2074 1.5534 0.8861 0.2876
1.6 0.4554 0.5699 0.2570 1.7500 1.0848 0.3940
1.8 0.3400 0.5815 0.3061 1.9895 1.3172 0.5260

2.0 0.2239 0.5767 0.3528 2.2796 1.5906 0.6890
2.2 0.1104 0.5560 0.3951 2.6292 1.9141 0.8891
2.4 +0.0025 0.5202 0.4310 3.0492 2.2981 1.1111
2.6 −0.0968 0.4708 0.4590 3.5532 2.7554 1.4338
2.8 −0.1850 0.4097 0.4777 4.1575 3.3011 1.7994

3.0 −0.2601 0.3391 0.4861 4.8808 3.9534 2.2452
3.2 −0.3202 0.2613 0.4835 5.7472 4.7343 2.7884
3.4 −0.3643 0.1792 0.4697 6.7848 5.6701 3.4495
3.6 −0.3918 0.0955 0.4448 8.0278 6.7926 4.2538
3.8 −0.4026 +0.0128 0.4093 9.5169 8.1405 5.2323

4.0 −0.3971 −0.0660 0.3641 11.302 9.7594 6.4224
4.2 −0.3766 −0.1386 0.3105 13.443 11.705 7.8683
4.4 −0.3423 −0.2028 0.2501 16.010 14.046 9.6259
4.6 −0.2961 −0.2566 0.1846 19.097 16.863 11.761
4.8 −0.2404 −0.2985 0.1161 22.794 20.253 14.355

5.0 −0.1776 −0.3276 +0.0466 27.240 24.335 17.505
5.2 −0.1103 −0.3432 −0.0217 32.584 29.254 21.332
5.4 −0.0412 −0.3453 −0.0867 39.010 35.181 25.980
5.6 +0.0270 −0.3343 −0.1464 46.738 42.327 31.621
5.8 0.0917 −0.3110 −0.1989 56.039 50.945 38.472

(Continued)
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B.1. (Continued)

x J0(x) J1(x) J2(x) I0(x) I1(x) I2(x)

6.0 0.1507 −0.2767 −0.2429 67.235 61.341 46.788
6.2 0.2017 −0.2329 −0.2769 80.717 73.888 56.882
6.4 0.2433 −0.1816 −0.3001 96.963 89.025 69.143
6.6 0.2740 −0.1250 −0.3119 116.54 107.31 84.021
6.8 0.2931 −0.0652 −0.3123 140.14 129.38 102.08

7.0 0.3001 −0.0047 −0.3014 168.59 156.04 124.01
7.2 0.2951 +0.0543 −0.2800 202.92 188.25 150.63
7.4 0.2786 0.1096 −0.2487 244.34 227.17 182.94
7.6 0.2516 0.1592 −0.2097 294.33 274.22 222.17
7.8 0.2154 0.2014 −0.1638 354.68 331.10 269.79

8.0 0.1716 0.2346 −0.1130 427.57 399.87 327.60

B.2. Zeros of Jm : Jm( jmn) = 0.

jmn

n

m 0 1 2 3 4 5

0 — 2.40 5.52 8.65 11.79 14.93
1 0 3.83 7.02 10.17 13.32 16.47
2 0 5.14 8.42 11.62 14.80 17.96
3 0 6.38 9.76 13.02 16.22 19.41
4 0 7.59 11.06 14.37 17.62 20.83
5 0 8.77 12.34 15.70 18.98 22.22

B.3. Inflection Points of Jm : (d Jm/dx) j ′
mn

= 0.

j ′
mn

n

m 1 2 3 4 5

0 0 3.83 7.02 10.17 13.32
1 1.84 5.33 8.54 11.71 14.86
2 3.05 6.71 9.97 13.17 16.35
3 4.20 8.02 11.35 14.59 17.79
4 5.32 9.28 12.68 15.96 19.20
5 6.41 10.52 13.99 17.31 20.58



Appendix C
Using Laplace Transforms to Solve
Differential Equations

C.1 Introduction

Not only all aspects of the of Laplace transforms will be presented, but also enough
of the characteristics will be presented, discussed here to help the reader under-
stand and appreciate the elegance and powerfulness of the procedures that can
be effectively applied to solve linear differential equations. The essential idea of
Laplace transforms is that they are used to convert a differential equation into an
algebraic one in order to solve the differential equation.

Let f (t) be a function of t for t > 0. Its Laplace transform is defined as

F(s) =
∫ ∞

0
f (t)e−st dt = L[ f (t), s] (C.1)

where s is a complex variable which can be expressed as

s = α + iβ (C.2)

The function f (t) is Laplace transformable for α > 0 if

lim
T →∞

∫ T

0
| f (t)|e−αt dt < ∞

If f (t) = A (a constant), for t > 0, the Laplace transform of the constant A is

L[A] =
∫ ∞

0
Ae−st dt = −1

s
e−st

∣∣∞
0 = A

s
= F(s)

We therefore have the Laplace transform pair

f (t) = A ⇔ F(s) = A

s

If f (t) = e−at for t > 0, then the Laplace transform of this exponential function
is

Le−at =
∫ ∞

0
e−at e−st dt =

∫ ∞

0
e−(s+a)t = A

s + a

637
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and hence

f (t) = e−at ⇔ F(s) = 1

s + a

C.2 Laplace Transforms of Derivatives

Consider a function f (t) and its derivative df (t)/dt that are both Laplace trans-
formable. If the function f (t) has the Laplace transform F(s), then

Ld f (t)

dt
= s F(s) − f (0+) (C.3)

Equation (C.3) is readily proven by using integration by parts, i.e.,

F(s) =
∫ ∞

0
f (t)e−st dt

Set

u = f (t), du = d f (t)

dt
dt

dv = e−st dt, v = −1

s
e−st

It then follows that

F(s) = uv|∞0 −
∫ ∞

0
vdu = −1

s
f (t)e−st

∣∣∣∣
∞

0

+ 1

s

∫ ∞

0

d f (t)

dt
e−st dt

= f (0+)

s
+ 1

s

∫ ∞

0

d f (t)

dt
e−st dt

or ∫ ∞

0

d f (t)

dt
e−st dt = s F(s) − f (0+)

The term f (0+) represents the value of f (t) as t → 0 from the positive side. In a
similar manner, it can be demonstrated that

Ld2 f (t)

dt2
= s2 F(s) − s f (0+) − f (0+) (C.4)

C.3 Solving Differential Equations

We discuss here a differential equation that is of greatest interest in treatment of
vibration problems:

mẍ(t) + Cẋ(t) + kx(t) = f (t) (C.5)
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which also can be expressed as

ẍ + 2ξωn ẋ(t) + ω2
n x(t) = fα(t) (C.6)

We now apply Equations (C.3) and (C.4)–(C.6) to obtain

s2 X (s) − sx(0+) − ẋ(0+) + 2ξωn[s X (s) − x(0+)] + ω2
n X (s) = Fα(s)

Solving for X (s):

X (s) = Fα(x) + x(0+)(s + 2ξωn) + ẋ(0+)

s2 + 2ξωns + ω2
n

(C.7)

Equation (C.7) can be written in the form

X (s) = A(s)

B(s)
(C.8)

Equation (C.7) and its variation (C.6) have been derived from a second-order
equation, and the techniques we describe below are valid for any order function.

For equations with simple roots, we can write Equation (C.8) in the form

X (s) = A(s)

B(s)
= A(s)

(s + a1)(s + a2) · · · (s + an)
(C.9)

It is assumed that B(s) is of higher order than A(s) throughout the discussion below.
We can expand Equation (C.9) through the use of partial fraction expansions, which
will result in

X (s) = C1

s + a1
+ C2

s + a2
+ · · · + Cn

s + an
(C.10)

where

Ck = lim
s→−ak

(s + ak)
A(s)

B(s)
(C.11)

Example Problem 1
Find the inverse Laplace transform of the function

X (s) = 13(s + 3)

s(s + 1)(s + 2)

Solution
The roots of the numerator (for example, s = −3) are called zeros of the function.
The roots of the denominator (viz., 0, −1, −2) are called poles. A partial fraction
expansion of the poles is written as follows:

13(s + 3)

s(s + 1)(s + 2)
= 13

(
C1

s
+ C2

s + 1
+ C3

s + 2

)
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The residues C1, C2, and C3 are obtained from Equation (C.11) as follows:

C1 = lim
s→0

s + 3

(s + 1)(s + 2)
= 3

(1)(2)
= 3

2

C2 = lim
s→−1

s + 3

s(s + 2)
= 2

(−1)(1)
= −2

C3 = lim
s→−2

s + 3

s(s + 1)
= 1

(−2)(−1)
= 1

2

Hence

X (s) = 13

(
3/2

s
+ −2

s + 1
+ 1/2

s + 2

)

Applying the transform pairs we derived in Section C.2,

x(t) = 13

(
3

2
− 2e−t + 1

2
e−2t

)

When we know the form of the inverse transform above we can derive the residue
graphically by inspection. The method for doing this is simply divide the product
of all vectors from the zeros to the pole whose residue is being determined by the
product of the vectors from all the other poles to the pole under consideration. This
technique is shown in Figure C.1. In Figure C.1(a), C1 is derived as

C1 = 3 � 0◦

(2 � 0◦)(1 � 0◦)
= 3/2

In Figure C.1(b), we get

C2 = 2� 0◦

(1 � 0◦)(1� 180◦)
= 2

(1)(−1)
= −2

and from Figure C.1(c):

C3 = 1� 0◦

(1 � 180◦)(2 � 180◦)
= 1

(−1)(−2)
= 1/2

Note that the numbers obtained from the use of the graphical residue technique
are the same as those derived from Equation (C.11). The sign of the residue can be
readily established by simply counting the number of poles and zeros to the right
in the s plane of the pole whose residue is being determined. If the number is even,
the sign of the residue is positive; and if the number is odd, the sign is negative.

Example Problem 2
Consider the function

X (s) = 8(s + 2)(s + 4)

s(s + 1)(s + 3)

Find the inverse Laplace transform.
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(a)

(b)

(c)

Figure C.1. Example of the graphical residue technique.

Solution
Use the pole-zero pattern of Figure C.2 to apply the graphical technique. The
inverse transform can be written down by inspection as

x(t) = 8

[
(2)(4)

(1)(3)
− (1)(3)

(1)(2)
e−t − (1)(1)

(2)(3)
e−3t

]
= 8

[
8

3
− 3

2
e−t − 1

6
e−3t

]

C.4 Equations with Multiple-Order Roots

Consider a function X (s) that has multiple-order roots of the form

X (s) = A(s)

B(s)
= A(s)

(s + a1)m(s + a2) · · · (s + an)



642 Appendix C. Using Laplace Transforms to Solve Differential Equations

Figure C.2. Pole-zero pattern for Example Problem 2.

The partial fraction expansion of the function must be of the format

A(s)

B(s)
= C11

(s + a1)m
+ C12

(s + a1)m−1
+ · · · C1m

s + a1
+ C2

s + a2
+ · · · + Cn

s + an

The residues C2, C3, . . . , Cn are determined in the same manner as was described
in the preceding section but the coefficients C11, C12, . . . , C1m require special
treatment. They are evaluated from the following expression:

C1 j = 1

( j − 1)!

d j−1

ds j−1
(s + a1)m A(s)

B(s)
(C.12)

which is evaluated at s = −a1. Then the inverse Laplace is obtained from the
transform relation:

L−1

[
1

(s + a) j

]
= t j+1

( j − 1)!
e−at (C.13)

The following example problem will demonstrate the procedure.

Example Problem 3
Find the inverse Laplace transform for

X (s) = s + 1

(s + 2)2(s + 3)
= C11

(s + 2)2
+ C12

s + 2
+ C2

s + 3
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Solution
Use Equation (C.11) to obtain

C11 = s + 1

s + 3

∣∣∣∣
s=−2

= −1, C2 = s + 1

(s + 2)2

∣∣∣∣
s=−3

= −2

Equation (C.12) is now applied to obtain the coefficient C12:

C12 = 1

(2 − 1)!

d2−1

ds2−1

(
s + 1

s + 3

)
= d

ds

(
s + 1

s + 3

)
=

(
1

s + 3
− s + 1

(s + 3)2

)∣∣∣∣
s=−2

= 2

which now results in

X (s) = −1

(s + 2)2
+ 2

s + 2
− 2

s + 3

The inverse Laplace transform now becomes

x(t) = −te−2t + 2e−2t − 2e−3t

C.5 Equations with Complex Roots

Let us consider the case of finding the inverse Laplace transform of a function of
the form

X (s) = (s + b1)(s + b2)

[(s + α)2 + β2](s + a1)(s + a2)(s + a3)

We could evaluate the inverse transform using a partial fraction expansion, but this
can be quite a complicated procedure especially where complex roots are entailed.
In order to deal with this problem, it is preferable to use the relation between the
transform pairs

as + b

(s + α)2 + β2
⇔ 2Me−αt cos(βt + φ)

where M and φ are unknowns that depend on a and b.
In order to demonstrate that M andφ can be evaluated by the graphical approach,

suppose that the above function has the pole-zero pattern of Figure C.3(a). Only the
residues of the complex poles at –α ± iβ will be determined. Using the graphical
approach for simple roots, we get from using Figure C.3(b):

X (s) =
(z1eiθ2 )(z2eiθ6 )

(P1eiθ1 )(P2eiθ3 )(P3eiθ4 )(P4eiθ5 )
s + α − iβ

+
(z1e−iθ2 )(z2e−iθ6 )

(P1e−iθ1 )(P2e−iθ3 )(P3e−iθ4 )(P4e−iθ5 )
s + α + iβ

+ additional terms (C.14)
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(a)

(b)

Figure C.3. Graphical residue approach for complex roots.

We observe that the coefficient of the second term, which represents the residue
at s = −α – iβ is the complex conjugate of the coefficient of the first term that is
the residue at s = –α + iβ. Equation (C.14) can be expressed as

X (s) = Meiφ

s + α − iβ
+ Me−iφ

s + α + iβ
+ additonal terms

where

M = z1z2

P1 P2 P3 P4
, φ = θ2 + θ6 − (θ1 + θ3 + θ4 + θ5)
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Then

x(t) = M(e−αt+iβt+iφ + e−iαt−iβt−iφ) + addtional terms

= Me−αt (ei(βt+iφ) + e−i(βt+φ)) + additonal terms

= 2Me−αt (ei(βt+iφ) + e−i(βt+φ))

2
+ additonal terms

= 2Me−αt cos(βt + φ) + additional terms

Here M and φ can be determined graphically using Figure C.3. The use of the
graphical residue technique for equations with complex roots is extremely powerful
since the inverse transform can be determined by inspection.

Example Problem 4
Given

X (s) = s + 2

s(s2 + 4s + 5)

find the inverse Laplace transform.

Solution
Figure C.4 shows the function. The residue at the pole at the origin is found by
using Figure C.4(b), and the complex poles are derived by using Figure B.4(c).
The ensuing function is

x(t) = 2√
5
√

5
+ 2 × 1

2
√

5
e−2t cos(t + φ)

wherein

φ = (90◦) − (90◦ + θ)

θ = (
π − tan−1 1

2

)

Example Problem 5
From vibration theory X (s) [cf. Equation (20.12)] is of the form

X (s) = x0
s + 2ξωn

s2 + 2ξωns + ω2
n

= x0(s + 2ξωn)

(s + ξωn + iωn

√
1 − ξ 2)(s + ξωn − iωn

√
1 − ξ 2)

Determine the inverse transform.



(a)

(b)

(c)

Figure C.4. Pole-zero diagrams for Example Problem 3.

Figure C.5. Pole-zero diagram for Example Problem 4.
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Solution
From Figure C.5 the inverse transform can be evaluated to yield

x(t) = x0

[
ωn

ωn

√
1 − ξ 2

e−ζωn t cos
(
ωn

√
1 − ξ 2t + φ

)]

where

φ = θ − π/2

θ = cos−1 ξ

and we now have

x(t) = x0√
1 − ξ 2

e−2ωn t cos
(
ωn

√
1 − ξ 2t − π/2 + cos−1 ξ

)
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A-scan, 473
A-weighting, 52–54
Absorbent effects, growth of sound with,

251–252
Absorption

in seawater, parametric variation of, 419–421
spherical spreading combined with, 421

Absorption coefficients, sound, 249, 251
Absorption losses, 416
Academy of Music, Philadelphia, 266
Accelerometers, 611–612
Accordion, 541, 542–543
Acoustic analogues, 151–168
Acoustic barriers, 310–314
Acoustic element, lumped, 145
Acoustic energy, 248–249
Acoustic energy density, 258
Acoustic equations, derivation of, 25–29
Acoustic filters, 158–165
Acoustic hemostasis, 504
Acoustic impedance, 151

distributed, 154–155
lumped, 152–154

Acoustic lenses, 494–495
Acoustic measurements, 173–209
Acoustic microscope, 42–43
Acoustic ohm, 152
Acoustic propagation constant, 499
Acoustic reflex, 219
Acoustical instruments, characteristics of,

173–174
Acoustical shadow, 44–45
Acoustical surgery, 504
Acoustics, 2–3, 13

architectural, 243–278
of enclosed spaces, 243–278
fundamentals of, 13–28
future of, 10–11

history of, 1–11
importance of, 15
musical, 509
nonlinear, 617–626
term, 4
underwater, 409–439

Active isolation and absorption systems, 606
Active noise control, 404–405
Addition method for measuring sound power

level, 207–208
Adiabatic process, 120
Adiabatic relaxation time, 425
Aeolian tones, 386
Afternoon effect, 423
Air compressor noise, 370–371
Air-reed instruments, 537
Air shroud silencer nozzles, 394–395
Aircraft noise, rating of, 332–335
Aliasing, 195
Alpha factor, 341
Alternation method for measuring sound power

level, 207
Alto clef, 512
Amplitude modulation (AM), 208
Analogues, acoustic, 151–154
Angular frequency, 13
Annoyance, 319
ANSYS finite element program , 610
Antinodes, 77
Antiresonance, 134
Arau, Higini, 266
Architectural acoustics, 243–278
Aristotle, 2–3
Array gain, 426
Articulation index, 227–230
Associated liquids, 451
Audio range of frequencies, 45–47
Audiometer, 222

649
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Auditoriums, design of, 261–278
outdoor, 271–276

Augmented reality system, 505
Autocorrelation, mean-square value and, 613
Autocorrelation function (ACF), 276
Avogadro’s number, 19
Axial flow fans, 360–361
Azimuthal nodal circles, 117

B-scan, 474
B-weighting, 52–54
Bacon, Sir Francis, vii
Bagpipe, 545
Balance noise criterion (NCB) curves, 327–328
Ball bearing noise, 379–382
Band, 562–563, 564
Band pass filters, 162–164

noise measurement and, 189–193
Band shells, design of, 271–276
Bandwidth, 46
Banjo, 525, 527
Barrier insertion loss, approximations for,

315–316
Barriers, 310–316

in free fields, 314–315
walls and enclosures and, 281–316

Bars, vibrating, see Vibrating bars
Bass drum, 555–556
Bass trombone, 551
Bassoon, 546–547
Bats, 238, 443–444
B.C.S. theory, 457, 458
Beat frequency, 35–36, 60
Bell lyre, 553
Belt drive noise, 385
Bekésy, Georg von, 9
Bell Telephone Laboratories, 8, 9, 245
Benaroya Hall, 270–271
Beranek, Leo L., 9
Bernoulli’s principle, 541n
Bessel functions, 116, 633–636

modified, 126n, 635
Beyer, Robert T., 9
Bible, 1
Blade frequency, 361
Blade rate component, 370–371
Blower noise, 359–366
Blu-ray, 574, 575
Boethius, Sverinus, 2
Bolt, Richard H, 9.
Boltzmann constant, 19
Boom cars, 344, 348–349
Boston Symphony Hall, 263–264

Botta, Mario, 268
Boundaries, reflection of waves at, 74–75
Bowed-string instruments, 529–533
Boyle, Robert, 4
Brasses, 550–551
Bugle, 550
Bulk viscosity, 419
Burgers equation, 621–622

C-scan, 476
C-weighting, 52–54
Calliope, 538
Carillon, 554
Carnegie Hall, 266
Castanets, 556
Catgut Acoustical Society, 533–534
Cavitation, 451–453
Cavitation noise, 452
Cavitation threshold intensity, 452–453
Celesta, 553
Cembalo, 527
Central Artery Tunnel Project (CA/T),

351–352
Central hearing loss, 221
Centrifugal fans, 359–361
Ceramic microphones, 174–175
Cetaceans, 444
Chain drive noise, 382–395
Characteristic mechanical impedance, 133
Charge sensitivity, 612
Chilowsky, Constantin, 7
Chimes, 514
Chladni, Ernst F. F., 4–5
Chorusing, 559
Chrysippus, 2
Clamped-free bar, 106, 107
Clarinet, 544
Clavichord, 527
Closed-ended pipes, resonances in, 132–134
Cochlea, 215–219
Cochlear microphonic effect, 219
Coincidence effect, 286–287
Collision number, 446
Color schlieren photography, 496
Community noise, evaluation of, 344–345
Community response, 319
Composite noise rating (CNR), 333
Compressive forces, 91
Computers, integration of measurement

functions in, 208–209
Concert halls, design of, 261–271
Condenser microphones, 175–176
Conductive hearing loss, 221
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Conservation
of energy, 25
of mass, 20–22
of momentum, 22–25

Construction noise, general, 350–352
Contact ratio (CR) for gears, 376–377
Continuity equation, 21

expansion of, 26
Contra bassoon, 547
Contrast agents, 501–502
Cooley-Tukey algorithm, 195
Cornet, 550, 551
Correlated sound waves, 58–60
Corti, organ of, 217–218
Council of European Communities, 346
Coupled quantum particles, 456–458
Creep, 261
Crescendo, 520
Crest factor capability, 174
Critical frequency, 286–288
Crossover networks, 578
Crum, Lawrence A., 10
Cylindrical spreading, 417
Curie, Pierre, 7, 459
Curie, Paul-Jacques, 7, 459
Cymbal, 556

Damping, 585–586, 606–610
internal, 608–609

Damping factor, 123–124
Damping materials, 609
Damping mechanisms, 609–610
Damping ratio, 587
Dashpot, 585
Data acquisition systems, 208
Data windows, 196–198
Day-night average sound levels, yearly, 338
Day-night equivalent sound pressure level, 57,

329–331
da Vinci, Leonardo, 3
Dead rooms, decay of sound in, 254–256
Dead spots, 262
Deafness, sensorineural, 221
Decibels, 47–49

averaging, 49–52
Decoupling, 603
Decrescendo, 580
Deep sound channel, 424
Deep sound-channel axis, 414
Delay lines, ultrasonic, 484
Detection threshold, 430
Detuning, 603
Diagnostic uses of ultrasound, 498–503

Diatomic molecules, 445
Diffraction, 44–45
Diffuse fields, 178, 244
Digital recording, 573–575
Direct drive hearing system (DDHS), 236–237
Directional characteristic, 200
Directivity factor, 258
Discord, harmony and, 520–521
Discrete Fourier transform (DFT), 194
Displacement amplitudes, 16
Dissipative function, 621–622
Dissipative mufflers and silencers, 398, 403–404
Distortion products, 219
Distributed acoustic impedance, 154–155
Doppler effect, 39–40
Dosimeters, 187–189
Dorothy Chandler Pavilion, 264
Double bass, 528–533
Double mechanical-reed instruments, 545–550
Double-panel partitions, 289–292
Drug therapy, 237
Ducted source systems, 165–168
Ducts, gaseous flows in, 396–398
Dulcimer, 536
Duple meter, 517
DVD formats, 574–575
Dynamic microphones, 174
Dynamic range, 174

Ear, human, 213–217
Ear sensitivity, 222–225
Eardrum, 214–215
Early decay time (EDT10), 258
Eastman Theater, 264
Echo, 40, 267, 409
Echolocation, 238
Echo-ranging (active) sonar, 410
Echocardiography, 499
Echoencephalography, ultrasonic, 500
Effective perceived noise level (EPNL), 324–325
Eigenstates, 454
Einstein, Albert, 454
Ekos device, 505
Elastomeric mounts, 604
Electret microphones, 174–175
Electric acoustic guitar, 556
Electric guitar, 556
Electric motor noise, 366
Electrical and electronic instruments, 521, 522,

556–561
Electromechanical coupling factor, 465
Electron-acoustic image converters, 492–494
Electronic organ, 556–559
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Electrostatic speakers, 580
Electrostrictive effect, 461–462
Electrostrictive materials, 425
Elevation dimension, 470
Empirical dosage response relationship, 345
Emulsification and flow enhancement, 491
Enclosed spaces, acoustics of, 243–271
Enclosures, 305–309

small, 309–310
walls and barriers and, 281–316

Energy, conservation of, 25
Energy density, 65–67

instantaneous, 66
Energy flux density, 411

of waves, 434
Environmental noise, 319

performance indices for, 55–57
Environmental Protection Agency (EPA), 320
Equal energy hypothesis, 345
Equal noisiness contours, 323
Equivalent simple piston, 120
Equivalent sound levels, 56–57, 329–330, 335
Ergodic processes, 614
Euler, Leonhard, 6, 521
European Union (EU), 350–351
Eustachian tube, 214–215
Evanescent mode, 141
Evoked otoacoustic emission, 219
Excessive loudness, 261
Exchange rate, 188n
Excitation

harmonic, 593–596
by impulse, 597–598
motion, 600–603

Extracorporeal shock wave lithotripsy, 503–504
Eyring equation, 255

Fan laws, 365–366
Fan noise, 359–366

characteristics of, 361–362
Far field effect, 62
Fast Fourier transform (FFT) technique,

194–196
Federal Aviation Administration (FAA), 320
Federal Highway Administration (FHWA),

335–339
Federal Interagency Committee on Noise

(FICON), 346
Fermat, Pierre de, 5
Ferroelectrics, 461
Field incidence mass law, 284–285
Filter networks, 162–165
Filter response, 189

Filters, acoustic, 158–165
Finite element analysis (FEA), 610–611
Finite roadway segment adjustment, 342
Finite strings, 83–84
Fire sensing, ultrasonic, 487–488
First harmonic, 76
Fixed-fixed bar, 92, 93
Flageolet, 539
Flanking, 294
Flared pipes, 135
Flat notes, 512
Flaw detection, ultrasonic methods for, 481–483
Fletcher, Harvey, 8–9
Flowmeter, ultrasonic, 486–487
Fluid flow equations, 19–20
Fluids, thermodynamic states of, 18–19
Flute, 539–540
Flutter echo, 261
Fohi, 2
Forced vibrations, 593–598

in finite strings, 83–84
in infinite strings, 81–83
in membranes, 122–125
in plates, 128

Forward propagating plane waves, 31–33
Forward scanning, 482
Fourier series, 34
Fourier’s theorem, 79
Free-field microphones, 178
Free fields, 244

barriers in, 314–315
Free-fixed bar, 95
Free-free bar, 93–94, 105–108
Freely vibrating circular membranes, 115–120
French horn, 550, 551
Frequency, 13–15

angular, 13
beat, 60

Frequency modulation (FM), 208
Frequency ranges of musical instruments, 565
Frequency response, 173
Frequency-weighting, 52–55
Fresnel, Augustin Jean, 6
Full anechoic chambers, 65, 202–203, 245
Functional hearing loss, 221
Fundamental mode, 76

Gabor, Dennis, 496
Galileo Galilei, 3
Gas-jet noise, 385–398

control of, 393–398
Gaseous flows in pipes or ducts, 396–398
Gassendi, Pierre, 3
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Gear enclosures, 378
Gear noise, 371–378
Gear-tooth error, 373
Gear train noise, 374–376
Gears, helical, 377
Gehry, Frank, 273
Gene therapy, 236
Glissando, 525
Glockenspiel, 553
Gong, 556
Gradient operator, 21–22
Grazing incidence, 178
Grimaldi, Franciscus Mario, 4
Grösser Musikvereinsaal, 263
Group speed, 143
Guitar, 526

Hair cells, 217
Half-power point, 191
Hanning window, 197
Harmonic excitation, 593–596
Harmonica, 541, 543
Harmonics, 76
Harmonium, 542
Harmony, discord and, 520–521
Harp, 524–525
Harpsichord, 527
Harris, Cyril M., 8, 270
Hausksbee, Francis, 4
HD-DVD, 574–575
Headphones, 580
Hearing aids, 231–233

analog, 232
digital, 233
implantable, 233
programmable, 233

Hearing
characteristics of, 222–227
human, 213–217
in animals, 237–239
mechanism of, 217–220
physiology of, 213–239

Hearing loss, 220–221
Helical gears, 377
Helmholtz equation, 113
Helmholtz, F. L., 6
Helmholtz resonator, 145–148
Hemianechoic chamber, 65
Hemispherical wave, 65
Hemostasis, acoustic, 504
Hertz (unit), 15
High-fidelity reproduction, 10, 570
High-pass filters, 161–162

Highway construction noise, 350–352
Highway traffic noise, 335–344
Hollywood Bowl, 271–272
Holography, ultrasonic, 496–497
Hoods, 306–309
Hooke, Robert, 4, 5
Hooke’s law, 91
Human hearing, 213–217
Human voice, 551–552
Humidity, reverberation time and, 256–258
Hunt, Fredrick V., vii
Hutchins, Carleen, 9, 531
Huygens, Christian, 5
Huygens’ principle, 38–39
Hydrophone arrays, 425–426
Hydrophones, 424

Imaging processes, ultrasonic, 492–497
Impedance, 82

acoustic, see Acoustic impedance
Impedance tube, 137
Impingement noise, 395
Impulse, excitation by, 597–598
In-line silencers, 397
Indoor noise criteria, 325–328
Industrial applications of ultrasound, 449–497
Industrial noise sources, 357–405
Inertia blocks, 604
Infinite cylindrical pipes, 131–132
Infinite strings, forced vibrations in, 81–83
Infrasound, 15
Ingard, Karl Uno, 9
Inner ear, 215
Insertion loss, 167
Instantaneous energy density, 66
Intensity, sound, 60–62
Interference patterns, standing wave, 40
Interferometers, 483–484
Internal damping, 608–609
Inverse square law, 64
iPod, 582–583
Isolators, 603–604
Isono system, 580–581

Jacobs device, 493–494
Joule, James P., 7
Journal bearing noise, 378–379

Kármán vortex street, 386
Kennedy Center for the Performing Arts,

2568–270
Kettledrum, 554

membrane theory and, 120–122
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Key notation, 518
Kinetic energy density, 65–66
Kircher, Athenasius, 4
Kleinhaus Music Hall, 264
Kneser liquids, 451
Knudsen, Vern O., 8
Kryter, Karl D., 9

La Scala Opera House, 264–266
Ladder-type acoustic filters, 164–165
Lagging pipes, 398
Laminar flow, 367
Langevin, Paul, 7
Latching overload indicator, 187
Leakage, 196
Leger lines, 510, 511
Leibniz, Gottfried Wilhelm, 5
Lighthill, Sir James, 9
Lighthill’s parameter, 388
Linear-array transducer specification, 472
Lin-hun, 2
Lindsay, R/ Bruce, 9
Lip-reed instruments, 550–552
Liquid crystal imaging, 496
Listening spaces, sound fields of,

subjective preferences in, 276–278
Lithotripsy, extracorporeal shock wave, 503–504
Live rooms, sound intensity growth in, 247–249
Longitudinal wave equation

derivation of, 89–92
solutions of, 92–93

Longitudinal waves, 31, 89
Loops, 77
Lord Rayleigh (see Strutt, John William)
Loudness, 18, 52, 225, 323
Loudness notation, 518, 519
Loudspeakers, 578–580
Low-pass filters, 159–160
Lumped acoustic element, 145
Lumped acoustic impedance, 152–153
Lute, 523, 524
Lyre, 523, 524

Machinery noise control, 357–405
Machining, ultrasonic, 488
Magnetic recorders, 208
Magnetic recording, 571–573
Magnetic resonance imaging (MRI), 505
Magnetostriction, 466
Magnetostrictive materials, 425
Magnetostrictive strain coefficient, 468
Magnetostrictive stress constant, 468
Magnetostrictive transducers, 466–468

Magnification factor, 595
Major keys, 518, 519
Mandolin, 526
Marimba, 553
Masking, 226–227
Mass, conservation of, 20–22
Mass concentrated vibrating bars, 95–97
Mass control case, 283–284
Mass flux, 20–21
Mass law, field incidence, 284–245
Mean-square value, autocorrelation and, 613
Measure, in music, 513
Measurement error, noise, 199–200
Mechanical drive element noise, 382–385
Mechanical impedance, 82

characteristic, 133
Mechanical reed instruments, 541–542
Mechanical stress measurements, 485–486
Median noise level, 332
Medical uses of ultrasound, 497–506
Membrane theory, kettledrum and, 120–122
Membranes, 111–125

forced vibrations of, 122–125
freely vibrating circular, 115–120
rectangular, 113–115
wave equation for, 111–113

Mersenne, Marin, 3
Meshing frequencies of gears, 372–373
Metals, ultrasonic working of, 488–490
Metronome, 516
Microphone sensitivity, 170–171
Microphones, 171–181

selection and position of, 177–181
Millikan, Robert, 8–9
Millington-Sette theory, 256
Minimum audible field (MAF), 222–225
Minimum audible pressure (MAP), 223–225
Minnesota Orchestra Hall, 267–268
Minor keys, 518, 519
Mixed hearing loss, 221
Mixed layer, 423
Momentum, conservation of, 22–25
Monopoles, 62–64
Morse, Philip M., 9
Motion excitation, 600–604
Motion sensing, ultrasonic, 484–488
Mouth organ, 541, 543
MP3, 581
MSC-NASTRAN finite element program, 610
Muffler system descriptors, 167–168
Mufflers and silencers, 398–404

dissipative, 398–399, 403–404
reactive, 399–404
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Multichannel sound systems, 576–577
Multijet diffuser, 394
Music, 509

musical instruments and, 509–565
pitch for, 2

Musical acoustics, 509
Musical Instrument Digital Interface

(MIDI), 561–562
Musical instruments, 1–2, 521–565

electrical and electronic instruments, 521,
522, 556–561

frequency ranges of, 565
music and, 509–565
percussion instruments, 521, 522, 553–556
strings, 521, 522, 522–536
wind instruments, 521, 522, 536–552

Musical notation, 510–513
Musical notes, duration of, 513–516
Musical staff, 510, 511

Narrow band analyzers, 192
NASTRAN finite element program, 610
National Environmental Policy Act of 1969, 319
Near field effect, 62
Nematic crystals, 496
Neutral axis, 100
Newton, Isaac, 5
Nobel Prize, 6, 9, 10, 213, 496
Nodes, 77

true, 106
Noise, 15

environmental, performance indices for,
55–57

perception of, 323–325
vibration and, 585
white, 228, 615

Noise and number index (NNI), 334–335
Noise bandwidth factor (NBF), 197
Noise barriers, 310–316
Noise control

active, 404–405
criteria and regulations for, 319–352

Noise Control Act of 1972, 320–321
Noise criteria, indoor, 325–329
Noise criterion curves, 325–326
Noise dosimeter, 187–189
Noise exposure forecast (NEF), 334
Noise insulation ratings, 296–300
Noise level, effective perceived (EPNL),

324–325
Noise-limited range, 433
Noise measurement, band pass filters and,

189–193

Noise measurement error, 199–200
Noise rating curves, 323
Noise reduction in duct systems, 167
Noise reduction of walls, 300–304
Noise source sound power, estimation of,

358–359
Noise sources in workplace, 357–358
Noisiness index, 323
Nonlinear acoustics, 617–626
Nonlinearity in solids, 625–626
Normal force, 23
Normalized impedance, 133
Note values, 515
Noy N (unit), 323
Nyquist frequency, 195

Oboe, 546
Ocarina, 539
Occupational Safety and Health Act of 1970,

321–323
Occupational Safety and Health Administration

(OSHA), 321–322
Octave, 2, 510
Octave band analyzer, 191
Octave bands, 45–47

one-third, 46–47
Odontocetes, 237–238
Office of Noise Abatement and Control

(ONAC), 320
Ohm, Simon, 5
Olson, Harry F., 9
Omnidirectional microphone, 178
One-third octave bands, 46–47
Open-circuit response, 426
Open-ended pipes, 134–136
Opera houses, design of, 262–271
Optical interference methods, 483
OPTIMA computer program, 344
Orchestra, 562–563, 564
Orchestra Hall, Chicago, 264
Organ, 522, 547–550
Organ console, 547
Organ of Corti, 216–218
Organ pipes, 548–549
Otoacoustic emission, 219
Outdoor auditoriums, design of, 271–278
Oval window, 218

Panels, sound transmission through,
295–286

Particle displacement, 58
Particle velocity, 16, 58, 151
Partitions, double-panel, 289–292
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Pascal (unit), 48
Percent isolation, 602
Percentile sound levels, 332
Percussion instruments, 521, 522, 553–556
Performance indices for environmental noise,

55–57
Period, 13
Personal sound exposure meter, 187
Petrillo Music Shell, 275
Phase angle, 116
Phase speed, 103
Phased transducer arrays, 469–472
Phon curves, 225
Phonons, 451–458
Physical modeling, electronic music, 562
Physiology of hearing, 213–239
Piano, 533, 535–536
Piccolo, 540–541
Picket fence effect, 196
Piezoelectric crystals, 459–460
Piezoelectric effect, 7
Piezoelectric materials, 425
Piezoelectric relationships, fundamental,

462–464
Piezoelectric strain constant, 462
Piezoelectric stress constant, 463
Piezoelectric transducers, 464–466
Piezomagnetic constant, 468
Pipes, 131

closed-ended, resonances in, 132–134
flared, 135
gaseous flows in, 396–398
infinite cylindrical, 131–132
lagging, 398
open-ended, 134–135
standing waves in, 136–137
unflanged, 135
waves in, 155–158

Piston, equivalent simple, 120
Pitch, 2, 225–226, 510
Pitch range, 510
Plastics, ultrasonic working of, 488–490
Plates, 125–128

forced vibrations in, 128
vibrating thin, 125–128

Playback audio equipment, 576–582
Plumbing system noise, 366–370
Poisson effect, 126
Poisson ratio, 125
Portable playback equipment, 581–583
Power, radiation of, from open-ended pipes,

135–136
Power spectral density, 614–615

Power transmission coefficient, 135–136, 159,
160–161, 162, 163

Preamplifier, 577
Pressure microphone, 178
Pritzker Pavilion, 273–276
Probability density, 612–613
Progressive waves in fluids, 619–626
Propagating mode, 141
Psychoacoustics, 227
Pulse technique in detectinf flaws, 481
Pump noise, 366–367

Q factor, 465
Quadruple meter, 517
Quantum particles, coupled, 456–458
Quartz crystals, 459–460
Quintillianus, 2

Radian frequency, 13
Radial nodal lines, 117
Ragas, 527
Railroad noise regulations, 349–350
Random-incidence microphone, 178
Random vibrations, 612–615
Rayl (unit), 58
Ray theory, 620–621
Rays, 40
Reactive mufflers and silencers, 398–403
Real strings, 85
Real-time analysis, 193
Recorder, 539
Recording equipment, 569–571, 571–576
Recreational noise, 319
Rectangular cavity, 138–140
Rectangular membranes, 113–115
Reed instruments, 536–552
Reed organ pipe, 542
Reflection, 40–42
Reflection coefficient, 249
Refraction, 42–44

basic laws of, 43–44
underwater, 421–423

Relaxation, 445
Relaxation frequency, 449
Relaxation processes, 445–451
Relaxation time

adiabatic, 449
translational, 445

Resolution, 198–199
Resonance method of measuring sound

propagation speed, 487
Resonances in closed-ended pipes, 132–134
Response time, 174



Index 657

Rest symbols, 513, 515
Restrictive flow silencer nozzle, 394
Reverberant effects, 246–247
Reverberant fields, 244–245

sound absorption in, 256–258
sound levels due to, 259–261

Reverberation, 409
Reverberation chambers, 203–206, 254
Reverberation-limited range, 432
Reverberation time, 205, 243, 253

predicting, 253
sound absorption and humidity and, 256–258

Reynolds number, 367
Rhythm, 517
Ribbon-type speaker system, 580
Rigid-walled circular waveguide, 144
Ring frequency, 397
Roller bearing noise, 379–382
Room constant, 259
Room criterion curves, 327
Rooms

dead, decay of sound in, 254–256
live, sound intensity growth in, 247–249

Root-mean-square sound pressure, 47–49
Rotational waves, 31
Rudnick, Isadore, 9

Sabine equation, 243
Sabine, Wallace Clement, 6, 243
Sarrusophone, 545, 547
Sauveur, Joseph, 4
Saxophone, 544
Scanning plane, 470
Schlieren imaging, 495–496
Seasonal thermocline, 414
Seawater

absorption in, parametric variation of,
419–421

speed of sound in, 411–413
velocity profiles in, 413–415

Secondary emission ratio, 492
Semianechoic chamber, 201–202
Semitones, 512
Sensitivity, 176–179

ear, 222–225
Sensorineural deafness, 221
Sequencer, 561
Serial analysis in filters, 191
Sextuple meter, 517
Shadow zones, 44–45
Sharp notes, 512
Shear stress, 23
Shear viscosity, 419

Shear waves, 31
Shell isolation rating (SIR), 296, 298–300, 301
Shock waves, 622–625
Side-lobe ratio (SLR), 197
Signal-to-noise ratio (S/N ratio), 181
Silencers, see Mufflers and silencers
Simple harmonic motion (SHM), 75
Simple harmonic solutions of wave equation,

75–76
Sine function, 13, 14
Sine waves, generating, 13, 14
Single-reed instruments, 541
Sitar, 527
Skudrzyk, Eugen, 9
Small enclosures, 309–310
SNAP 1.1 computer program, 344
Snell, Willbrod (Snellius), 5
Snell’s law, 44, 422
Social surveys of noise, 344–345
Sonar, 409
Sonar equations, 427–431

shortcomings of, 437
summarization of, 437
transient form of, 434–437

Sonar parameters, 429–431
Sonar system, 428
Sonar transducers, 424–427
Sonochemistry, 454
Sonoluminescence, 453–454
Sonophoresis, 505
Sonoporation, 506
Soprano clef, 512
SORAP acronym, 433–434
Sound, 13, 16

decay of, 252–256
in dead rooms, 254–256

growth of, with absorbent effects, 251–252
speed of, see Speed of sound
underwater, concepts in, 410–411
unwanted, 15
wave nature of, 13–15

Sound absorption
in reverberant field, 259
reverberation time and, 256–258

Sound absorption coefficients, 249–251
Sound channels, 44
Sound decay, 8
Sound fields, 244–246

of listening spaces, subjective preferences in,
276–278

Sound focusing, 262
Sound generation, 16–17
Sound intensity, 60–62
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Sound intensity growth in live rooms, 247–249
Sound intensity level, 64
Sound intensity probes, vector, 181–182
Sound-level meter (SLM), 152–186

integrating, 186–187
using, 183, 184–185

Sound levels, 52–55
due to reverberant fields, 259–291
equivalent, 56, 329, 335

Sound-measuring instrumentation, 173–209
Sound power, 200

noise source, estimation of, 358–359
Sound power level, 64

addition method for measuring, 207–208
alternation method for measuring, 207
specific, 362–365
substitution method for measuring, 206–207

Sound pressure, 28
root-mean-square, 47–48

Sound pressure level (SPL), 18, 64
at distance from walls, 304–305

Sound propagation, 16–18
nature of, 31
in water, 409–410

Sound propagation speed, resonance method of
measuring, 487

Sound transmission, through panels, 285
Sound transmission class (STC), 296–298
Sound transmission coefficient, 282

combined, 294–296
Sound, unwanted, 15
Sound velocity, 17–18
Sound waves, see Waves
Soundboards, 522–523
Sousaphone, 551
Specific acoustic impedance, 151, 410
Specific acoustic resistance, 410
Specific sound power level, 362, 363–364
Spectral density, 614–615
Speech intelligibility, 227–230
Speech interference level (SIL), 230–231
Speed of sound, 16–18

in seawater, 411–413
Sphere, theoretical target strength of, 438–439
Spherical spreading, 416–418

combined with absorption, 421
Spherical waves, 64
STAMINA 2.0 computer program, 344
Standing wave interference patterns, 40
Standing-wave ratio, 137
Standing waves, 36–38, 76–78

in pipes, 136–138
Static deflection, 598

Steel drum, 554–555
Stiffness, 85
Strain, 90
Stress, 91
Strings, musical instruments, 521, 522, 522–536
Strings,

finite, 83–84
infinite, forced vibrations in, 81–83
real, 85
vibrating, see Vibrating strings

Struck-string instrument, 533, 534–536
Strutt, John William (Lord Rayleigh), 5, 6
Subjective preferences in sound fields of

listening spaces, 276–278
Substitution method for measuring sound power

level, 206–207
Surface waves, 483
Surgery, acoustical, 504–505
Synthesizers, 558–561
System loss factor, 606

Tambourine, 556
Tanglewood Music Shed, 272–273
Target strengths, 409

theoretical, of sphere, 438–439
Tenor banjo, 527
Tenor clef, 512
Tensile forces, 91
Therapeutic uses of ultrasound. 503–506
Thermocline, 414
Thermodynamic states of fluids, 18–19
Threshold sound level, 188n
Time signature notation, 516–517
Timpani, 554
Tooth error, 373
Torsional waves, 31
Traffic conditions, adjustments for, 340–343
Traffic noise, evaluation of, 335–344
Transducer array-element configurations,

470–472
Transducer arrays, 469–472

phased, 469–470
Transducer response, 426–427
Transducers, 458–468

electrostrictuve effect, 461–462
magnetostrictive, 466–470
piezoelectric, 462–466
sonar, 424–427

Transfer function, 189
Transformer noise, 366
Transistor, 8
Translational relaxation time, 445
Transmissibility, 598–603
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Transmission coefficient
combined sound, 294–296
sound, 282

Transmission loss, 282
measuring, 292–294
underwater, 416–418

Transmission loss in duct systems, 167
Transmitting-current response, 427
Transverse sensitivity, 612
Transverse vibrations of vibrating bars, 100–104
Transverse wave equation, derivation of, 71–73
Transverse waves, 31, 71
Triangle, 553
Triple meter, 517
Trombone, 551
True nodes, 106
Trumpet, 550
Tuba, 551
Tubular bells, 553
Tuning fork, 105, 107–108, 553
Turbulent flow, 367

Ukulele, 525–526
Ultrasonic cleaning, 479–480
Ultrasonic delay lines, 484
Ultrasonic diagnosis, safety of, 502
Ultrasonic echoencephalography, 500
Ultrasonic fire sensing, 487–488
Ultrasonic flowmeter, 486–487
Ultrasonic holography, 496–497
Ultrasonic imaging processes, 492–497
Ultrasonic machining, 488
Ultrasonic methods for flaw detection, 481–483
Ultrasonic motion sensing, 487–488
Ultrasonic viscometer, 491
Ultrasonic welding, 488–489
Ultrasonic working of metals and plastics,

488–490
Ultrasonics, 443–476
Ultrasound, 15

Agricultural, 490
diagnostic uses of, 498–501
industrial applications of, 479–497
medical uses of, 497–506
safety, 502–503
therapeutic uses of, 503–506

Uncorrelated sound waves, 58
Undamped natural frequency, 587
Underwater acoustics, 409–439
Underwater refraction, 421–423
Underwater sound, concepts in, 410–411
Underwater transmission loss, 416–418
Unflanged pipes, 135

Universal gas constant, 19
Universal joint noise, 385
Urick, Robert Joseph, 10

Vacuum tubes, 8
Vector sound intensity probes, 181–182
Vehicle noise, 339–344
Vehicle noise regulations, 347–349
Velocity-depth function, 413
Velocity profiles, 413–415

in sea, 413–415
Vibrating bars, 89–108

boundary conditions for, 93–95
general boundary conditions for, 98–100
mass concentrated, 95–98
transverse vibrations of, 100–104

Vibrating strings, 71–85
assumptions, 71
energy of, 80–81

Vibrating thin plates, 125–128
Vibration(s), 585–615

forced, see Forced vibrations
modifying source of, 603
noise and, 585
random, 612–615

Vibration absorbers, 604–606
Vibration control, 598–603

techniques for, 603–610
Vibration measurements, 611–612
Vibration systems, modeling, 585–590
Viola, 528–533
Violin, 528–533
Violin octet, 533, 534
Violoncello, 528–533
Viscometer, ultrasonic, 491
Vitruvius (Marcus Vitruvious Pollo), 3
Voice, human, 551–552
Voice recognition, 575–576
Voicing, 544
Voltage-controlled amplifier (VCA), 558–559
Voltage-controlled filter (VCF), 558, 559
Voltage-controlled oscillator (VCO), 558, 559
Voltage sensitivity, 612
Volume velocity, 151
Volume viscosity, 419

Walls
enclosures and barriers and, 281–316
noise reduction of, 300–304
sound pressure level at distance from,

304–305
Water, sound propagation in, 409–410
Water hammer, 368–370
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Water-hammer arresters, 370
Wave distortion, 617–619
Wave equation

effect of initial conditions on, 78–80
general solution of, 73–74
longitudinal, see Longitudinal wave equation

for membranes, 111–112
simple harmonic solutions of, 75–76
transverse, see Transverse wave equation

Wave motion, 16
Wave nature of sound, 13–15
Waveguide

boundary condition at driving end of, 144
with constant cross-section, 140–143
rigid-walled circular, 144

Wavelength, 18
Waves, 31–39

complex, 33–36
energy flux density of, 434
forward propagating plane, 31–33
hemispherical, 65
one-dimensional, 620
in pipes, 155–158

plane, 620
reflection of, at boundaries, 74–75
spherical, 64
standing, see Standing waves

Webster, Arthur Gordon, 5
Weighting curves, 52–55
Weighting functions, 196–199
Welding, ultrasonic, 489
Wever-Bray effect, 219
White noise, 228, 615
Wind instruments, 521, 522, 536–553
Window duration, 196
Window error, 196
Workplace, noise sources in, 357–358
Workplace noise exposure, 346–347
Worst noise hour, 336

Xylophone, 553

Young’s modulus, 18, 91, 629
Young, Thomas, 6

Zither, 529
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