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Chapter 1
Sound fields

1.1 Introduction

to sound insulation; the reader will also find that it has general applications to room

This opening chapter looks at aspects of sound fields that are particularly relevant
acoustics.

The audible frequency range for human hearing is typically 20 to 20 000 Hz, but we generally
consider the building acoustics frequency range to be defined by one-third-octave-bands from
50 to 5000 Hz. Airborne sound insulation tends to be lowest in the low-frequency range and
highest in the high-frequency range. Hence significant transmission of airborne sound above
5000 Hz is not usually an issue. However, low-frequency airborne sound insulation is of partic-
ular importance because domestic audio equipment is often capable of generating high levels
below 100 Hz. In addition, there are issues with low-frequency impact sound insulation from
footsteps and other impacts on floors. Low frequencies are also relevant to fagade sound insu-
lation because road traffic is often the dominant external noise source in the urban environment.
Despite the importance of sound insulation in the low-frequency range it is harder to achieve
the desired measurement repeatability and reproducibility. In addition, the statistical assump-
tions used in some measurements and prediction models are no longer valid. There are some
situations such as in recording studios or industrial buildings where it is necessary to consider
frequencies below 50 Hz and/or above 5000 Hz. In most cases it should be clear from the text
what will need to be considered at frequencies outside the building acoustics frequency range.

1.2 Rooms

Sound fields in rooms are of primary importance in the study of sound insulation. This section
starts with the basic principles needed to discuss the more detailed aspects of sound fields that
are relevant to measurement and prediction. In the laboratory there is some degree of control
over the sound field in rooms due to the validation procedures that are used to commission
them. Hence for at least part of the building acoustics frequency range, the sound field in
laboratories can often be considered as a diffuse sound field; a very useful idealized model.
Outside of the laboratory there are a wide variety of rooms with different sound fields. These
can usually be interpreted with reference to two idealized models: the modal sound field and
the diffuse sound field.

1.2.1 Sound in air

Sound in air can be described as compressional in character due to the compressions and
rarefactions that the air undergoes during wave propagation (see Fig. 1.1). Air particles move to
and fro in the direction of propagation, hence sound waves are referred to as longitudinal waves.
The compressions and rarefactions cause temporal variation of the air density compared to the
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Propagation direction

7z

Wavelength, A
Figure 1.1

Longitudinal wave — compression and rarefaction of air particles.

density at equilibrium. The result is temporal variation of the air pressure compared to the static
air pressure. Sound pressure is therefore defined by the difference between the instantaneous
pressure and the static pressure.

The phase velocity for sound in air, ¢y (or as it is more commonly referred to, the speed of
sound) is dependent upon the temperature, T, in °C and for most practical purposes can be
calculated using

co=1331+0.6T (1.1)
for temperatures between 15°C and 30°C and at atmospheric pressure.
The density of air at equilibrium, pg, is also temperature dependent and can be calculated from

3563.2

= 1.2
2713+ T (1.2)

Lo
For calculations in buildings it is often assumed that the temperature is 20°C, for which the
speed of sound is 343 m/s and the density of air is 1.21 kg/m3. This will be assumed throughout
the book.

The fundamental relationship between the phase velocity, the frequency, f, and the wave-
length, A, is

o= fA (1.3)

The wavelength is the distance from peak to peak (or trough to trough) of a sinusoidal wave;
this equals the distance between identical points of compression (see Fig. 1.1) or rarefaction.
For the building acoustics frequency range, the wavelength in air at 20°C is shown in Fig. 1.2.
If we consider these wavelengths relative to typical room dimensions, it is clear that we are
dealing with a very wide range. For this reason it is useful to describe various aspects of sound
fields by referring to low-, mid-, and high-frequency ranges; corresponding to 50 to 200 Hz,
250 to 1000 Hz, and 1250 to 5000 Hz respectively.
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Figure 1.2

Wavelength of sound in air at 20°C.

As we need to describe the spatial variation of sound pressure as well as the temporal variation,
it is necessary to use the wavenumber, k, which is defined as

15} 2
L _=2 1.4
P (1.4)
where the angular frequency, w, is
o = 2xf (1.5)
and the period, T, of the wave is
2 1
T __ (1.6)
w f

The wavenumber is useful for discussing aspects relating to spatial variation in both sound and
vibration fields in terms of kd, where d is the distance between two points.

Two types of wave need to be considered both inside and outside of buildings: plane waves
and spherical waves. Before reviewing these waves we will briefly review the use of complex
notation that simplifies many derivations for sound and structure-borne sound waves.

1.2.1.1 Complex notation

For both sound and vibration, it is useful to look at wave motion or signals at single frequen-
cies; these are defined using harmonic sine and cosine functions, e.g. p(x, ) = cos (wt — kx).
It is usually more convenient to describe these simple harmonic waves using complex
exponential notation, where

exp(iX) = cos X +isin X (1.7)

Equations using complex notation are often easier to manipulate than sines and cosines, and
can be written in a more compact form. A brief review of complex notation is given here as this
is covered in general acoustic textbooks (e.g. see Fahy, 2001).
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The most commonly used complex exponentials are those that describe the temporal and
spatial variation of harmonic waves. For the convention used in this book, these are

exp(iot) = cos(wt) + i sin(wt) (1.8)

and
exp(—kx) = cos(kx) — i sin(kx)

Complex notation also simplifies differentiation and integration. For example, differentiation
or integration with respect to time becomes equivalent to multiplication or division by iw
respectively.

Whilst it can be convenient to work with complex notation, the final result that corresponds
to a physical quantity (sound pressure, velocity, etc.) must be real, rather than imaginary. In
general, it is the real part of the solution that represents the physical quantity.

The time-average of harmonic waves is frequently needed for practical purposes and is
denoted by ( );. The following time-averages often occur in derivations,

T—o0 T—o0

1 T 1 T
lim —f cos?(wt)dt = lim —/ sin?(wt)dt = 0.5 (1.9)
T Jo T Jo

and
1 T 1 T 1 T
lim ?/0 sin(wt)dt = Tlinm?/o cos(wt)dt = Tlinm?/; sin(wt) cos(wt)dt =0 (1.10)

T—o00

where T is the averaging time.

The time-average of the product of two waves, p1(t) and p»(t), that are written in complex
exponential notation can be calculated using

1
(p1p2); = HRe(pip3} (1.11)

where * denotes the complex conjugate.

1.2.1.2 Plane waves

To gain an insight into the sound field in rooms we often assume that it is comprised of plane
waves; so called, because in any plane that is perpendicular to the propagation direction, the
sound pressure and the particle velocity are uniform with constant phase. These planes are
referred to as wavefronts. In practice, plane waves can be realized (approximately) in a long
hollow cylinder which has rigid walls. A sound source is placed at one end of the cylinder that
generates sound with a wavelength that is larger than the diameter of the cylinder. This results
in a plane wave propagating in the direction away from the source. The longitudinal wave
shown in Fig. 1.1 can also be seen as representing a plane wave in this cylinder. This one-
dimensional scenario may seem somewhat removed from real sound fields in typical rooms.
However, the plane wave model can often be used to provide a perfectly adequate description
of the complex sound fields that are encountered in practice.

Using a Cartesian coordinate system, the wave equation that governs the propagation of
sound through three-dimensional space is
#p p p 1p

R T ey | 1.12
ax2 " oy? 0z ¢2 ot (1.12)

where p is the sound pressure.
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For a plane wave that is propagating in the positive x, y, and z-direction across this space, the
sound pressure is described by an equation of the form

p(x,y, z,t) = pexp(—ikyx) exp(—ikyy) exp(—ik,z) exp(iwt) (1.13)

where p is an arbitrary constant for the peak value, and k, k,, and k, are constants relating to
the wavenumber.

As we are using harmonic time dependence, exp(iot), the wave equation can now be written
in terms of the wavenumber as

Pp  Pp  Pp o,

—+-—+-—+kp=0 1.14

8x2+3y2+822+ P (1.14)
The relationship between the wavenumber and the constants, ky, k,, and k, is found by
inserting Eq. 1.13 into the wave equation, which gives

k? = k2 + k2 + k2 (1.15)

We will need to make use of this relationship to describe the sound field in rooms. However,
the wave equation only governs sound propagation across three-dimensional space. It does
not describe the sound field in a room because it does not take account of the waves impinging
upon the room surfaces. In other words, this equation does not take account of boundary
conditions. Hence the constants, ky, ky, and k, can only be determined once we have defined
these boundary conditions.

The particle motion gives rise to sound pressure; hence we can relate the sound particle
velocities, uy, uy,, and u; (in the x, y, and z directions respectively) to the sound pressure by
using the following equations of motion,

ap AUy ap oauy ap ouy
& X B W 4 = = —pg—o 1.16
ax % oy T %t sz T Pt (1.16)
and therefore the particle velocities are
k k, k.
Ug=—Pp Uy=—p U=—p (1.17)
wpPo wPo wpPo

The ratio of the complex sound pressure to the complex sound particle velocity at a single
point is the specific acoustic impedance, Z,. For a plane wave propagating in a single direction
(we will choose the x-direction, so that k =k, and u = uy), this impedance is referred to as the
characteristic impedance of air, Zy, and is defined as

Zo="2 = poco = |2 (1.18)
u K

where « is the gas compressibility (adiabatic).

The particle velocity is related to the sound pressure by a real constant that is independent
of frequency. Therefore, the sound pressure and the particle velocity always have the same
phase on the plane that lies perpendicular to the direction of propagation.

In order to predict or measure sound transmission we will need to quantify the sound intensity,
I; the energy that flows through unit surface area in unit time. The sound intensity is the
time-averaged value of the product of sound pressure and particle velocity,

(P

| = = 1.19
(pu)t 0G0 ( )
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where (p?); is the temporal average mean-square sound pressure given by

1 T
W=7 / p? dt (1.20)
0

and T is the averaging time. Note that \/(p?), is described as the root-mean-square (rms)
sound pressure.

1.2.1.3 Spherical waves

For spherical waves the sound pressure and the particle velocity over a spherical surface
are uniform with constant phase; these surfaces are referred to as wavefronts (see Fig. 1.3).
For a sound source such as a loudspeaker used in sound insulation measurements, a useful
idealized model is to treat the loudspeaker as a point source that generates spherical waves.
A point source is one for which the physical dimensions are much smaller than the wavelength
of the sound, and the sound radiation is omnidirectional.

We now need to make use of a spherical coordinate system defined by a distance, r, from
the origin at r=0. For spherically symmetrical waves, the wave equation that governs the
propagation of sound through three-dimensional space is

#p 20p 1%

Py _ %9 1.21

or2 + ror c2ot? ( )
For a spherical wave propagating across this space, the sound pressure can be described by
an equation of the form

exp(—ikr) exp(iwt) (1.22)
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Figure 1.3

Spherical wavefronts produced by a point source.

6



Ch01-H6526.tex

19/7/2007 14: 2 Page 7

Chapter 1

where p is an arbitrary constant for the peak value and r is the distance from a spherical
wavefront to the origin.

Substitution of Eqg. 1.22 into the following equation of motion,

ap ouy
&t 1.2
o PO, (1.23)

gives the radial particle velocity, ur, as

p i p . Co
=P (1LY P (i 1.24
I co < kr) PoCo ( '2nfr) (124)

This gives the acoustic impedance, Z,, as

7 P _ P _ poCok?r? ; PoCokr
TTu o (1=L)  1+kZ 14K

(1.25)

In contrast to plane waves, the particle velocity is related to the sound pressure by a complex
variable that is dependent on both the wavenumber and distance. So although the phase of
the sound pressure and the phase of the particle velocity are constant over a spherical surface
at a specific frequency, they do not have the same phase over this surface.

The time-averaged sound intensity for a harmonic spherical wave is

1 (f’>2 (P2}t (1.26)

" 2poco \r)  poCo

For spherical waves, the intensity is seen to be proportional to 1/r?; this feature is often
referred to as spherical divergence. The sound power associated with a point source producing
spherical waves can now be calculated from the intensity using

27p?
P0Co

W = 4rr?l = (1.27)
Rather than use p in Egs 1.26 and 1.27, a point source can be described using a peak volume
velocity, Q, given by

. 4P

Q=P (1.28)

wPo

When kr > 1 (i.e. at high frequencies and/or large distances) the imaginary part of Z, is small,
therefore the particle velocity has almost the same phase as the sound pressure and Z, tends
towards Z,. The time-averaged sound intensity for the harmonic spherical wave then tends
towards the value for a plane wave (Eq. 1.19). These links between plane waves and spher-
ical waves indicate why we are able to use the simpler plane wave model in many of the
derivations involved in sound insulation. Any errors incurred through the assumption of plane
waves are often negligible or insignificant compared to those that are accumulated from other
assumptions.

1.2.1.4 Acoustic surface impedance and admittance

As rooms are formed by the surfaces at the boundaries of the space we need to know the
acoustic impedance of a room surface as seen by an impinging sound wave. The normal
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acoustic surface impedance, Z,,, is defined as the ratio of the complex sound pressure at a
surface, to the component of the complex sound particle velocity that is normal to this surface,

Zon= 2 (1.29)

n
Although we are mainly interested in plates (representing walls or floors) that form the room
boundaries, the above definition applies to any surface, including sheets of porous materials
such as mineral wool or foam.

The specific acoustic impedance, Z,, is defined using the characteristic impedance of air,

Za,n

Za,s =
PoCo

(1.30)

In some calculations it is more appropriate or convenient to use the specific acoustic
admittance, B, s, rather than the specific acoustic impedance, where

Bas = (1.31)

Za,s

When calculating sound fields in rooms it is often convenient to assume that the room surfaces
are rigid. This is reasonable for many hard surfaces in buildings. At a rigid surface, the particle
velocity that is normal to this surface is zero; hence Z,,, and Z, s become infinitely large and
Bas is taken to be zero.

1.2.1.5 Decibels and reference quantities

The human ear can detect a wide range of sound intensities. The decibel scale (dB) is com-
monly used to deal with the wide range in pressure, intensity, power, and energy that are
encountered in acoustics. Levels in decibels are defined using the preferred Sl reference
quantities for acoustics in Table 1.1 (ISO 1683); these reference quantities are used for all
figures in the book.

Table 1.1. Sound — definitions of levels in decibels

Level Definition Reference quantity

Sound pressure L,=20lg (p%) Po=20x10"%Pa
where p is the rms pressure NB only for sound in air

Energy Le=10Ig <E£o> Eq=10"1J

Intensity L =10lg (%) lp =10""2W/m?

Sound power Lw=10Ig (%) Wy=10""2W

Loss factors (Internal, Litr/Leie/Lmir=101g (ﬂ%) no=10"12

Coupling, Total)
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1.2.1.6 A-weighting

A-weighting is used to combine sound pressure levels from a range of frequencies into a
single value. This is the A-weighted sound pressure level, L, . It is intended to represent
the frequency response of human hearing and is often used to try and make a simple link
between the objective and subjective assessment of a sound. A-weighting accounts for the
fact that with the same sound pressure level, we do not perceive all frequencies as being
equally loud. In terms of the building acoustics frequency range it weights the low-frequency
range as being less significant than the mid- and high-frequency range. This does not mean
that the low-frequency range is unimportant for sound insulation, usually quite the opposite is
true; the A-weighted level depends upon the spectrum of the sound pressure level. Although
it is common to measure and predict sound insulation in frequency bands, assessment of the
sound pressure level in the receiving room is often made in terms of the A-weighted level.

For N frequency bands, the sound pressure level L,(n) in each frequency band, n, is combined
to give an A-weighted level using

N
Lo =101g <Z 10<Lv<")+’*<">>/1°) (1.32)

n=1

where the A-weighting values, A(n), are shown in Fig. 1.4 for one-third-octave-bands (IEC
61672-1).

For regulatory and practical purposes, the airborne sound insulation is often described using
a single-number quantity that corresponds to the difference between the A-weighted level in
the source room and the A-weighted level in the receiving room for a specific sound spectrum
(e.g. pink noise) in the source room (ISO 717 Part 1). Use of this A-weighted level difference
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Figure 1.4

A-weighting values over the range of human hearing indicating the low-, mid-, and high-frequency ranges for the building
acoustics frequency range.
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Figure 1.5

llustration of a sine wave and an impulse in the time and frequency domains.

simplifies calculation of the A-weighted level in the receiving room. It can also be used to make
a link to subjective annoyance (Vian et al., 1983).

1.2.2 Impulse response

In sound insulation as well as in room acoustics, we need to make use of the impulse response
in both measurement and theory. The frequency spectrum of an impulse is flat. It therefore
contains energy at all frequencies, whereas a sine wave only has energy at a single frequency
(see Fig. 1.5).

The general principle for an impulse response applies to any acoustic system, whether it is
sound pressure in a room or a cavity, or the vibration of a plate or a beam. It is based upon the
response of an acoustic system to a Dirac delta function, §(t), sometimes called a unit impulse.
The delta function is infinite at { =0 and infinitely narrow, such that §(t) =0 when t #0, and it
has the property

/Oo s(t)dt = 1 (1.33)

Excitation of a linear time-invariant (LTI) acoustic system with a delta function results in the
impulse response of the system, h(t). The delta function is important because any kind of signal
can be described by using a train of impulses that have been appropriately scaled and shifted
in time. Hence, the impulse response completely describes the response of an LTI system to
any input signal, x(f). The output signal, y(t), can then be found from the convolution integral

y(t) = /:OO h(u)x(t — u)du = /_oo h(t — u)x(u)du (1.34)

where u is a dummy time variable.

10
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Impulse response, % (7) (linear)

Time, 7 (s)
Figure 1.6

Example of a measured impulse response in a room.

For brevity, convolution is often written as y(t) = x(t) * h(t). The convolution integral uses the
dummy time variable to multiply the time-reversed input signal by the impulse response (or the
time-reversed impulse response by the input signal), and integrate over all possible values of
t to give the output signal.

An example of a measured impulse response for sound pressure in a room is shown in Fig. 1.6.

1.2.3 Diffuse field

One of the assumptions commonly made in the measurement and prediction of sound insulation
is that the sound field in rooms can be considered as being diffuse. A diffuse sound field can be
considered as one in which the sound energy density is uniform throughout the space (i.e. the
sound field can be considered to be homogeneous), and, if we choose any point in the space,
sound waves arriving at this point will have random phase, and there will be equal probability of
a sound wave arriving from any direction. The diffuse field is a concept; in practice there must
be dissipation of energy, so there cannot be equal energy flow in all directions, there must be
net energy flow from a sound source towards part(s) of the space where sound is absorbed.

In diffuse fields it is common to refer to diffuse reflections; this means that the relationship
between the angle of incidence and the angle of reflection is random. This is in contrast to
specular reflection, where the angle of incidence equals the angle of reflection. Walls and
floors commonly found in buildings (excluding spaces specially designed for music performance
such as studios or concert halls) tend to be flat and smooth, from which one might assume that
specular reflections were the norm, and that diffuse reflections were the exception. However,
walls commonly have objects placed near them that partially obscure the wall from the incident
sound wave, such as tables, chairs, bookcases, filing cabinets, and cupboards. These can

11
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cause the incident wave to be scattered in non-specular directions. Non-specular reflection
also occurs when the acoustic impedance varies across the surface; for example a wall where
the majority of the surface area is concrete but with areas of glazing, wooden doors, or recessed
cupboards, each of which have different impedances. Hence there will usually be a degree
of non-specular reflection, such that some of the incident energy is specularly reflected and
some is diffusely reflected.

The diffuse field is a very useful concept. It allows many simplifications to be made in the meas-
urement and prediction of sound insulation, as well as in other room acoustics calculations.
These make use of the mean free path that will be defined in the following section. In the
laboratory we can create close approximations to a diffuse field in the central zone of a room.
However, the sound field does not always bare a close resemblance to a diffuse field over the
entire building acoustics frequency range. In the low-frequency range this is primarily due to
the fact that sound waves arriving at any point come from a limited number of directions. In the
mid- and high-frequency ranges, waves arriving at any point tend to come from many different
directions. In the central zone of typical rooms it is often reasonable to assume that there is
a diffuse field in the mid- and high-frequency ranges. However it is not always appropriate to
assume that there is a diffuse field when: (a) there are regular room shapes without diffusing
elements, (b) there are non-diffuse reflections from room surfaces, and (c) there is non-uniform
distribution of absorption over the room surfaces. For the above reasons, we need to note the
limitations in applying diffuse field theory to the real world.

1.2.3.1 Mean free path

The mean free path, dnygp, is the average distance travelled by a sound wave between two
successive diffuse reflections from the room surfaces. From the basic relationship, co = dnfp/t,
we can calculate the time, ¢, taken to travel this distance. Upon each reflection, a fraction of
the sound energy is absorbed; hence the mean free path allows us to calculate the build-up
or decay of sound energy in a room over time. It will therefore be needed later on when we
derive the reverberation time in diffuse fields as well as when calculating the power incident
upon walls or floors that face into a room with a diffuse sound field. The following derivation is
taken from Kosten (1960) and starts by deriving the mean free path in a two-dimensional space
before extending it to three dimensions. This two-dimensional space has an area, S, and a
perimeter length, U. An arbitrary two-dimensional space can be defined by a closed curve as
shown in Fig. 1.7; note that although the space is defined by curved lines we assume that
all reflections are diffuse. The dashed lines within this curve represent free paths in a single
direction, where each free path has a length, /.

Projective geometry is now used to transform points along the perimeter of the space onto a
projection plane. Each of the free paths lies perpendicular to a projection plane that defines
the apparent length of the surface, L,. When the space is uniformly filled with free paths, the
surface area of the space can be written in terms of the free path lengths using

S= [ IdLy = L] (1.35)
La

where | is the mean free path in one direction.

The number of paths in a single direction is proportional to the apparent length, so using a fixed
number of paths per unit of the projection length, and accounting for all N possible directions

12
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Projection
plane

Y.

Figure 1.7

Two-dimensional space showing some of the free paths (dashed lines) in a single direction that lie perpendicular to the
projection plane. The apparent length, L,, is calculated by using a line integral to sum the projection of the small perimeter
length, dU, onto the projection plane.

gives the mean free path, dmyp, as

Jim SN Lol
Oppp =22 (1.36)
im T L

From Eq. 1.35, S= La,,J,, in each direction, n, so Eq. 1.36 can be rewritten as

S

= (1.37)

dmfp =

where L, is the average apparent length.

The next step is to determine this average apparent length, but first we just look at a single
direction and calculate the apparent length. This is done by using a line integral for the closed
curve. At each point along the closed curve, the vector in the direction of the curve makes an
angle, 0, with the projection plane (see Fig. 1.7). The projection of each small perimeter length,
dU, onto the projection plane is a positive value, |cos 6|dU. By integrating around the entire
closed curve, the integral is effectively counting each free path twice, so a multiplier of one-half
is needed. The apparent length is therefore given by

1
Ly = 77{ | cos0|dU (1.38)
2 Je
To find the average apparent length, it is necessary to average over all possible directions.

This results in an average cosine term,

17 2
|cosb| = f/ |cosf|do = — (1.39)
TJo b/
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which gives the average apparent length as

_ 1 _ u
Ly = —?g |cosf|dU = — (1.40)
2 Cc b/
The mean free path for a two-dimensional space can now be found from Eqgs 1.37 and 1.40,
giving
7S
mfp = T (1.41)

We now consider a three-dimensional space with a volume, V, and a total surface area, Srt.
Moving to three dimensions means that the projection plane becomes a surface (rather than a
line) onto which small parts of the surface area, dSr, are projected (rather than small perimeter
lengths). Hence we need to define an apparent surface area, S,.

The volume of the space can be written in terms of the free path lengths using

V= 1dS; =S./ (1.42)
Sa

where / is the mean free path in one direction.

The number of paths in a single direction is proportional to the apparent surface area, so using
a fixed number of paths per unit area of the projection surface, and accounting for all N possible
directions gives the mean free path, dyyp, as

Jim 374 Sanln
mfp = = (1.43)

From Eq. 1.42, V = Sa,ni,, in each direction, n, so Eq. 1.43 can be rewritten as
v
Omfp = 5 (1.44)

where S, is the average apparent surface area.

The average apparent surface area is found from the surface integral,
1
S, = fyg | cos 0|dSt (1.45)
2 Js

Averaging over all possible directions gives the average cosine term. For any enclosed volume
with convex surfaces, the average apparent surface area is given by

_ St
Sa—T

(1.46)
The assumption that the volume effectively forms a convex solid does not limit its applicability to
real rooms as long as the surface area associated with any concave surfaces within the volume
are included in the calculation of St (Kosten, 1960). Note once again that it is assumed that
all of these curved surfaces result in diffuse reflections.
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For any shape of room in which all room surfaces diffusely reflect sound waves, the mean free
path for a three-dimensional space is given by Eqs 1.44 and 1.46, hence

4v

5 (1.47)

dmfp =

where St is the total area of the room surfaces and V is the room volume.

It is important to note that Eq. 1.47 gives the mean value; as with any random process, there
will be a spread of results. The mean free path applies to any shape of room with diffusely
reflecting surfaces. However, the statistical distribution of the mean free path in rooms with
diffusely reflecting surfaces depends upon the room shape and its dimensions as well as the
presence of scattering objects within the room (Kuttruff, 1979).

1.2.4 Image sources

A geometrical approach to room acoustics allows calculation of the room response using image
sources. It is briefly described here to introduce the concept of image sources for specular
reflections from surfaces. This will be needed in later sections to describe sound fields within
rooms, as well as sound incident upon a building fagade from outside.

This approach assumes that the wavelength is small compared with the dimensions of the
surface that the wave hits. In the study of room acoustics in large rooms and/or at high fre-
quencies this allows sound to be considered in terms of rays rather than waves. Using rays
means that diffraction and phase information that causes interference patterns is ignored. In a
similar way to the study of optics, a ray can be followed from a point source to the boundary
where it undergoes specular reflection, such that the angle of incidence equals the angle of
reflection.

Image sources are defined by treating every boundary (e.g. wall, floor, ground) as mirrors in
which the actual source can be reflected (see Fig. 1.8). The length of the propagation path from
source to receiver is then equal to the distance along the straight line from the image source to
the receiver. As we are considering spherical waves from a point source it is necessary to use
this distance to take account of spherical divergence when calculating the intensity (Eq. 1.26).

For certain receiver positions in rooms with shapes that are much more complex than a simple
box, some of the image sources generated by the reflection process will correspond to paths
that cannot physically exist in practice. Hence for rooms other than box-shaped rooms, it is
necessary to check the validity of each image source for each receiver position.

1.2.4.1 Temporal density of reflections

For a box-shaped room containing a single point source, the image source approach that
was described above can be used to create an infinitely large number of image rooms each
containing a single image source. A small portion of this infinite matrix of image rooms in two-
dimensional space is shown in Fig. 1.9. Assuming that the point source generates an impulse
att =0, each image source must also generate an identical impulse at t =0. This ensures that
all propagation paths have the correct time lag/gain relative to each other. A circle of radius,
cot, with its origin in the centre of the source room will therefore enclose image sources (i.e.
propagation paths with reflections) with propagation times less than {. Moving on to consider
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Source (%) and image sources (¥¢) for a box-shaped room (dark solid lines) and some of its image rooms (dotted lines).
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three-dimensional space, it follows that the volume of a sphere of radius, cot, divided by the
volume associated with each image source (i.e. the room volume, V) will equal the number of
reflections, N, arriving at a point in the room within time, t. Hence,

. 471(Cot)3
N = 3v

(1.48)

and the temporal density of reflections, dN/dt (i.e. the number of reflections arriving per second
at time, t) is
dN  4ncit?
d Vv
This equation applies to any shape of room with a diffuse field; the derivation simply uses a
box-shaped room to simplify use of the image source approach.

(1.49)

1.2.5 Local modes

Having looked at the diffuse field, we will now look at the other idealized model, the modal
sound field. We start by defining room modes. To do this we can follow the journey of a plane
wave as it travels around a box-shaped room. To simplify matters we assume that all the
room surfaces are perfectly reflecting and rigid. Therefore the incident and reflected waves
have the same magnitude and the sound pressure is reflected from the surface without any
change in phase. A rigid wall or floor is defined as one which is not caused to vibrate when
a sound wave impinges upon it; hence the particle velocity normal to the surface is zero. In
practice, walls and floors do vibrate because this is the mechanism that is responsible for sound
transmission; however, this assumption avoids having to consider the wide range of acoustic
surface impedances that are associated with real surfaces.

We now follow the path that is travelled by a sound wave as it travels across a box-shaped
room (see Fig. 1.10). At some point in time it will hit one of the room boundaries from which it
will be reflected before continuing on its journey to be reflected from other room boundaries.

A
v

Figure 1.10

Box-shaped room.
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Figure 1.11

Room modes. Plan view of a box-shaped room showing one possible journey taken by a plane wave. A room mode occurs
when the wave travels through the same starting point (e) travelling in exactly the same direction as when it first left, whilst
achieving phase closure.

These reflections are assumed to be specular as would occur with smooth walls and floors that
have uniform acoustic surface impedance over their surface. We can also follow the journeys
taken by other sound waves travelling in other directions. Some of these waves will return
to the starting point travelling in exactly the same direction as when they first left. In some
instances the length of their journey, in terms of phase, will correspond to an integer multiple
of 27 such that there will be continuity of phase; we will refer to this as phase closure. Each
journey that returns to the same starting point travelling in the same direction whilst achieving
phase closure defines a mode with a specific frequency (see Fig. 1.11).

The term ‘local mode’ is used because the modes are ‘local’ to a space that is defined by its
boundaries; in a similar way we will define local modes of vibration for structure-borne sound
on plates and beams in Chapter 2. For rooms this definition assumes that there is no interaction
between the sound waves in the room and the structure-borne sound waves on the walls and
floors that face into that room. The walls and floors are only considered as boundaries that
determine the fraction of wave energy that is reflected and the phase change that occurs upon
reflection. It is also assumed that there is no sound source exciting these modes; we have
simply followed the journey of a plane wave without considering how it was generated. Hence
it is important to note that local modes of spaces and structures (e.g. rooms, walls, and floors)
are a concept; they do not actually exist in real buildings where the spaces and structures
are coupled together. Although the definition of local modes is slightly removed from reality,
the concept is very useful in studying certain features of sound or vibration fields, as well as
the interaction between these fields using methods such as Statistical Energy Analysis. Local
modes are also referred to as natural modes or pure standing waves; they are a property of the
space, rather than a combined function of the space and the excitation. The latter is referred
to as a resonance. The term local mode is sometimes abbreviated to mode; only using the full
name where it is necessary to distinguish it from a global mode.

To calculate the frequencies of the room modes in this box-shaped room it is necessary to
calculate the wavenumbers. Hence we refer back to our discussion in Section 1.2.1.2 on
plane waves and the wave equation where the relationship between the wavenumber and the
constants, ky, ky, and k;, was given by Eq. 1.15. These constants are calculated by using the
equation for sound pressure in a plane wave which must satisfy both the wave equation (Eq.
1.14) and the boundary conditions. For a box-shaped room with dimensions L, L,, and L,
the following boundary conditions are required to ensure that the particle velocity normal to the
rigid room surfaces is zero,

9
=0aty=0andy =1L, —p=0atz=0andz=Lz.

0z
(1.50)

8—p=0atx=0andx=Lx 8—p
ox ay
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By taking the real part of Eq. 1.13 that describes the sound pressure for a plane wave and
ignoring time dependence we have the following solution

p(x,y, z) = p cos(kyx) cos(k,y) cos(k,z) (1.51)

This will only satisfy the boundary conditions when sin(kyLy) = sin(k,L,) = sin(k,L,) =0, hence

rm

pr qn
— k — = —
L,

ky = =
T L Y7L,

kz (1.52)

where the variables p, g, and r can take zero or positive integer values.

Each combination of values for p,q, and r describes a room mode for which the mode
wavenumber, kp 4 -, (also called an eigenvalue) is found from Eqgs 1.15 and 1.52 to be

N BECEE)

Therefore the mode frequency, f, 4 - (also called an eigenfrequency) is

= (E) () - ()

where p, q, and r take zero or positive integer values.

In a box-shaped room there are three different types of room mode: axial, tangential, and
oblique modes.

Axial modes describe the situation where wave propagation is parallel to the x, y, or z axis.
They have one non-zero value for p, g, or r, and zero values for the other two variables (e.g.
f10,0,f0,3,0, f0,0,2)-

Tangential modes can be described by defining a ‘pair of surfaces’ as two surfaces that lie
opposite each other, where each pair of surfaces partially defines the box-shaped room. Hence,
tangential modes describe wave propagation at an angle that is oblique to two pairs of surfaces,
and is tangential to the other pair of surfaces. They have non-zero values for two of the variables
p,q, or r,and a zero value for the other variable (e.g. fi20, f30.1, fo.22)-

Oblique modes describe the situation where wave propagation occurs at an angle that is oblique
to all surfaces; hence they have non-zero values for p, q, and r (e.g. f231).

We have assumed that all the room surfaces are perfectly reflecting and rigid, in practice there
is interaction between the sound pressure in the room and the vibration of the walls and floors
facing into that room. However, the assumption of rigid walls and floors is reasonable in many
rooms because this interaction results in relatively minor shifts in the eigenfrequencies.

1.2.5.1 Modal density

It is often useful to calculate the first 10 or so modes to gain an insight into their distribution
between the frequency bands in the low-frequency range. However, in a room of approxi-
mately 50m? there are almost one-million modes in the building acoustics frequency range.
Fortunately there is no need to calculate all of these modes because we can adopt a statistical
viewpoint. A statistical approach also helps us to deal with the fact that very few rooms are
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Figure 1.12

Mode lattice for a three-dimensional space. The vector corresponding to eigenvalue, k12,3, is shown as an example.

perfectly box-shaped with rigid boundaries. For this reason the calculation of any individual
mode frequency will rarely be accurate when the wavelength is smaller than any of the room
dimensions. We can usually expect to estimate the one-third-octave-band in which a mode
frequency will fall to an accuracy of plus or minus one-third-octave-band.

The statistical descriptor for modes is the statistical modal density, n(f), the number of modes
per Hertz. To calculate the modal density it is necessary to arrange the eigenvalues in such
a way that facilitates counting the modes in a chosen frequency range. It is implicit in the
form of Eq. 1.15 that this can be achieved by creating a lattice in Cartesian coordinates where
the x,y, and z axes represent ky, k,, and k, (Kuttruff, 1979). This lattice of eigenvalues in
k-space is shown in Fig. 1.12, where each intersection in the lattice represents an eigenvalue
indicated by the symbol e. The length of the vector from the origin to an eigenvalue equals
ko,q,r- Eigenvalues that lie along each of the three axes represent axial modes; those that
lie on the coordinate planes kyky, kxk;, and kyk, (excluding the eigenvalues on the axes)
represent tangential modes; all other eigenvalues (i.e. all eigenvalues excluding those on the
axes and the coordinate planes) represent oblique modes. From Eq. 1.52 it is evident that the
distance between adjacent eigenvalues in the ky, k,, and k; directions are /Ly, /L, and nr/L,
respectively. Hence the volume associated with each eigenvalue is a cube with a volume of
73 /LsLyL,, which equals 73/V.

The number of modes below a specified wavenumber, k, is equal to the number of eigen-
values that are contained within one-eighth of a spherical volume with radius, k, as indicated
in Fig. 1.13. If there were only oblique modes this would simply be carried out by dividing
(4k3/3)/8 by 73/V; however, the existence of axial and tangential modes means that this
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Sketch indicating how the volumes associated with the eigenvalues for axial, tangential, and oblique modes fall inside or
outside the permissible volume in k-space. The shaded volumes indicate those fractions of the volumes associated with the
axial and tangential modes that fall outside the permissible volume in k-space. The octant volume with radius, k, encloses
eigenvalues below wavenumber, k.

would be incorrect. This is because part of the cube volume that is associated with these
mode types falls outside of the permissible volume in k-space that can only have zero or
positive values of ky, k,, and k,. From Fig. 1.13 we also see that for tangential modes on the
coordinate planes, one-half of the cube volume falls outside this permissible volume and for
axial modes, three-quarters of the cube volume falls outside. Therefore calculating the number
of modes is a three-step process. The first step is to divide (47k%/3)/8 by 7#%/V to give an
estimate for the number of oblique modes that also includes one-quarter of the axial modes
and one-half of the tangential modes. The second step is to account for the other halves of the
tangential modes that lie in the area on the three coordinate planes; this fraction of the total
number of modes is calculated by taking one-half of (nk2/4)/(n2/(LxLy + LiL, + LyL;)). The
latter step included the axial modes on each of the three coordinate axes as halves. Hence
there only remains one-quarter of the axial modes that have not yet been accounted for. The
third step determines this remaining fraction of the total number of modes by taking one-quarter
of k/(m/(Lx + Ly + L;)). The sum of these three components gives the number of modes, N(k),

below the wavenumber, k,
K3V k2St kLt

NK) =52+ Ton T Ton

(1.55)
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where the total area of the room surfaces, St is 2(LxL, + LxL,+L,L;) and the total length of
all the room edges, Lt, is 4(Lx +L, +L,).

As we are working in k-space we calculate the modal density, n(w), in modes per radian, and
then convert to the modal density, n(f), in modes per Hertz, which is more convenient for
practical calculations. The general equation for the modal density, n(w), in terms of w is

ey — NG _ dNG) e

do dk do
To calculate n(w) we now need to find dk/dw which is equal to the reciprocal of the group
velocity, ¢q. The group velocity is the velocity at which wave energy propagates across the
space. For sound waves in air, the group velocity is the same as the phase velocity, cy. Hence
the general equation to convert n(w) to n(f) is

(1.56)

n(f) = 27n(w) = % % (1.57)

which gives the modal density for a box-shaped room as

4xfPV | afSr | Ly
- 2¢2  8co

n(f) (1.58)

where the modal density for each frequency band is calculated using the band centre frequency.

For rooms that are not box-shaped, and for typical rooms in the high-frequency range, a
reasonable estimate of the modal density can be found by using only the first term in Eq. 1.58,
to give
47f2V
n(f) = 2~ (1.59)
o

Estimates for the statistical modal density of axial, tangential, and oblique modes can be
estimated from (Morse and Ingard, 1968)

6\/1/3
Naxial(f) = (1.60)
Co
6rfv?3  ev1/3
ntangential(f) = Cg - o (1.61)
4nf2V  3pfv?3  3y1/3
Nobiique(f) = - (1.62)

3 2
o c§ 2¢o

for which it is assumed that L1~ 12V"/3 and St~ 6V?/3 (Jacobsen, 1982). This simplifies the
calculation for rooms that are almost (but not exactly) box-shaped.

1.2.5.2 Mode count

The mode count, N, in a frequency band with a bandwidth, B, can be determined in two ways.
Either by using Eq. 1.54 to calculate the individual mode frequencies and then by counting the
number of modes that fall within the band or by using the statistical modal density to determine
a statistical mode count, Ns, in that band, where

Ns = n(f)B (1.63)
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Mode count for axial, tangential, and oblique modes in a 50 m® box-shaped room.

In a box-shaped room, the mode with the lowest frequency will always be an axial mode. As
the band centre frequency increases, the number of oblique modes in each band increases
at a faster rate than the number of axial modes or the number of tangential modes. As an
example we can look at the trends in the mode count for a 50 m® room. The room dimensions
are determined using the ratio 4'/3:2'/3:1 for x:y:z. This ratio is sometimes used in the design
of reverberation rooms to avoid dimensions that are integer multiples of each other; this avoids
different modes having the same frequency. As we usually work in one-third-octave-bands it
is of interest to know the number of modes that fall within each band. The mode counts for the
axial, tangential, and oblique modes are shown in Fig. 1.14. For typical rooms we can describe
the mode count using three different ranges: A, B, and C. In range A, the frequency bands
either contain no modes or a few axial and/or a few tangential modes. In range B, the blend
of the three different mode types varies between adjacent frequency bands depending on the
room dimensions. In range C, the mode count is always highest for oblique modes and always
lowest for axial modes. For this particular example, range A corresponds to one-third-octave-
bands below 80 Hz, range B lies between the 80 and 200 Hz bands, and range C corresponds
to bands above 200 Hz.

1.2.5.3 Mode spacing

The average frequency spacing between adjacent modes, §f, is calculated from the modal
density using
1

o =5 (1.64)

As sound insulation calculations are almost always carried out in one-third-octave or octave-
bands it tends to be more informative to calculate the mode counts in these frequency bands
rather than use the mode spacing.
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1.2.5.4 Equivalent angles

Part of the definition of a diffuse field is that there is equal probability of a sound wave arriving
from any direction, i.e. from any angle. Hence it is instructive to look at the range of angles asso-
ciated with the plane waves that form local modes. We have previously described a local mode
in a qualitative manner by following the journey of a plane wave around a room. To quantita-
tively describe the plane wave field we need to account for the different propagation directions
after reflection from each surface. The general equation for a plane wave (Eqg. 1.13) describes
propagation in a single direction; hence each mode is comprised of more than one plane wave.
For each mode we can define equivalent angles, 6y, 6, and 6,; these angles are defined from
lines that are normal to the x, y, and z-axis respectively. They are defined in k-space for any
eigenvalue in the lattice (see Fig. 1.15). For each mode, one plane wave points in the direction
of this vector in k-space. The direction of the other plane waves can be found by reflecting the
vector into the other octants of k-space. Axial, tangential, and obligue modes are therefore
described by two, four, and eight plane waves respectively. For each mode, the equivalent
angles are related to the mode wavenumber, k, 4, and the constants, ky, k,, and k, by

Kx = Kp,q,r SiN Oy ky = kpq,rsindy, kz = Kp,q,r Sin6; (1.65)

hence, from the constant definitions in Eq. 1.52, the equivalent angles for each mode are

. PCo . qcCo . Icp
Oy = asin 0, = asin 0, =asin| —— 1.66
s <2fop,q,r) g <2Lyfp,q,r) ‘ <2szp,q,r) (1:69)

Later on we will need to consider the angles of incidence for the waves that impinge upon a
room surface in the calculation of sound transmission. Here we are only assessing the range
of equivalent angles for plane waves that propagate across the space to form room modes.
Figure 1.16 shows the equivalent angles for the same 50 m® room that was used for the mode
count, where each point corresponds to a single room mode. Note that we are ignoring the
fact that specular reflection would not occur in real rooms at high frequencies. In the low-
frequency range, where there are relatively few modes, there is a limited range of angles. As
the frequency increases, the number of modes increases (the majority tending to be oblique
modes), and the range expands to cover the full range of angles between 0° and 90°. For
axial modes, one angle is 90° and the other two angles are 0° (e.g. f10,0 has 6, =90°, 6, =0°,
and 6, = 0°). For tangential modes, one angle is 0°, and the other two angles are oblique. For
oblique modes, all three angles are oblique.

Equivalent angles do not in themselves identify a frequency above which the modal sound field
approximates to a diffuse field; we have already noted other important features that define a
diffuse field. However, they do illustrate how one aspect of a diffuse field concerning sound
arriving from all directions can potentially be satisfied in a modal sound field. In the study of
sound transmission it is useful to be able to switch between thinking in terms of modes, and in
terms of waves travelling at specific angles.

1.2.5.5 Irregularly shaped rooms and scattering objects

The description of local modes was based on an empty box-shaped room. Rooms in real
buildings are not all box-shaped and they usually contain scattering objects such as furniture.
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Equivalent angles for the modes of a 50 m? box-shaped room.
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In the laboratory, it is common to use non-parallel walls and diffusers to try and create
a diffuse field in the central zone of the room. This does not mean that the local mode
approach is instantly irrelevant; far from it. Scattering objects can be seen as coupling
together the local modes of the empty room, giving rise to hybrid versions of the original
mode shapes (Morse and Ingard, 1968). These hybrid versions no longer have the symmet-
rical sound pressure fields associated with individual local modes in an empty box-shaped
room. In the limit, as the room shape becomes increasingly irregular (or sufficient scattering
objects are placed inside a box-shaped room) and the room surfaces have a random distri-
bution of acoustic surface impedance, we can effectively consider all the room modes to be
some form of oblique mode. As we approach this limit we can leave the local mode model
behind us and assume there is a close approximation to a diffuse field in the central zone of
the room.

1.2.6 Damping

In our discussion on room modes we assumed that there was a perfect reflection each time
the plane wave was reflected from a room boundary. In reality there will always be damp-
ing mechanisms that reduce the sound pressure level. When discussing room acoustics we
usually refer to absorption and reverberation times, rather than damping. From a room acous-
tics perspective, the sound source and the listener are located within one space, so from
the point-of-view of a listener in the source room, any sound that doesn’t return to them has
been absorbed. However, with sound insulation our concern is usually for the person that
hears the sound in the receiving room, and from their point-of-view the sound has been trans-
mitted. As we are particularly interested in the exchange of sound energy between spaces
and structures, it is useful to start treating them in a similar manner by using the same ter-
minology to describe absorption and transmission. Hence it is convenient to relate different
damping mechanisms to the loss factors used in Statistical Energy Analysis; these are the
internal loss factor, the coupling loss factor, and the total loss factor (Lyon and DeJong,
1995).

With internal losses the sound energy is converted into heat. Hence high internal loss factors
are beneficial for the noise control engineer who is trying to reduce sound levels. Internal losses
occur when the sound wave hits absorptive surfaces or objects (e.g. sound absorbent ceiling
tiles, carpet, porous materials) and as the wave travels through the air due to air absorption. The
former is usually more important than the latter because air absorption only becomes significant
at high frequencies and in large rooms. Information on sound absorption mechanisms and
sound absorbers can be found in a number of textbooks (e.g. Mechel, 1989/1995/1998; Mechel
and Vér, 1992; Kuttruff, 1979).

With coupling losses, the sound energy is transmitted to some other part of the building that
faces into the room. This could be an open door or window where the sound exits, never to
return. It could also be a wall or a floor in the room which is caused to vibrate by the impinging
sound waves.

The sum of the internal and coupling loss factors equals the total loss factor, and this is
related to the reverberation time of the room. We therefore start this section on damping by
deriving reflection and absorption coefficients for room surfaces that will lead to a discussion
of reverberation times and loss factors for rooms.
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Plane wave incident at an angle, 6, upon a surface, and the specularly reflected wave.

1.2.6.1 Reflection and absorption coefficients

A plane wave incident upon a room surface at x=0 can be described using the term,
p.rexp(—ikx) where p, is an arbitrary constant. The term for the reflected wave is Rp, exp(ikx)
where R is defined as the reflection coefficient,

R = |R| exp(iy) (1.67)

As seen from Eq. 1.67, the reflection coefficient is complex. It describes the magnitude and
phase change that occurs upon reflection. In diffuse fields the waves that are incident upon a
surface have random phase, so the information on the phase change is usually ignored.

We now consider a plane wave that is incident upon a surface at an angle, 0; defined such that
6 = 0° when the wave propagates normal to the surface. The aim here is to relate the reflection
coefficient to the specific acoustic impedance or admittance. It is assumed that the surface
is locally reacting so that the normal component of the particle velocity only depends on the
region at the surface where the sound pressure is incident.

The incident wave propagates in the xy plane towards a surface at x =0 as shown in Fig. 1.17.
The incident wave is described by

pi(x,y,t) = [Py exp(—ik(x cos O + y sinb))] exp(iwt) (1.68)

The incident wave is specularly reflected from the surface and the reflection coefficient is used
to describe the amplitude of the reflected wave, p_ = Rp.. . Hence the reflected wave is

p_(x,y,t) = [Rp, exp(—ik(—x cos 6 + y sin6))] exp(iwt) (1.69)

The particle velocity in the x-direction (i.e. normal to the surface) is found using Eq. 1.16, which
gives

Uy = ———— (1.70)
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Therefore the particle velocities for the incident and reflected waves are

Uy (X, 1) = g[m exp(—ik(x cos 6 + y sin6))] exp(iot) (1.71)
LoCo

0 . . .
Ux—(x,y,t)=— %[Rp+ exp(—ik(—x cos 6 + y sin 0))] exp(iwt) (1.72)
pPoCo

Atthe surface (i.e. at x = 0), the resultant pressure is p. + p_, and the resultant particle velocity
normal to the surface is uy; + ux_. The ratio of the resultant pressure to this resultant particle
velocity equals the normal acoustic surface impedance (Eqg. 1.29). Hence the specific acoustic
impedance of a surface is related to the reflection coefficient by

__1 1+R
T cos61—R

which is re-arranged to give the reflection coefficient in terms of either the specific acoustic
impedance or admittance

(1.73)

a,s

_ Zascosf—1  cos6 — fas
T Zasc0s0+1 " coSO+ Bas

(1.74)

In practice it is usually more convenient to work in terms of absorption rather than reflection.
The sound absorption coefficient, «, is defined as the ratio of the intensity absorbed by a
surface to the intensity incident upon that surface; hence it takes values between 0 and 1.
The intensity in a plane wave is proportional to the mean-square pressure (Eq. 1.19), so the
absorption coefficient is related to the reflection coefficient by

a=1-|R)? (1.75)
The absorption coefficient can be calculated using Eqs 1.74 and 1.75 in terms of either the

specific acoustic impedance or admittance. For a plane wave that is incident upon a locally
reacting surface at an angle, 6, the angle-dependent absorption coefficient, «y, is

47Rre COS O 4Bre COS 6
® = "> 2 2 = 2 (1.76)
(Z3, + Z2,)cos20 + 2Zre cos O+ 1 (Bre + COSO)? + B2,
where the real and imaginary parts of the specific acoustic impedance are
Zas = Zre + iZim (1.77)
and the real and imaginary parts of the specific acoustic admittance are
1 .
Bas = 7 .= Bre — 1Bim (1.78)
a,s
At normal incidence, 6 = 0°, hence the normal incidence absorption coefficient, g, is
4
0 = Pre (1.79)

(ﬁRe + 1)2 +/3|2m

There can be significant variation in the absorption coefficient with angle. However, when
there is a diffuse sound field incident upon a surface we assume that there is equal probability
of sound waves impinging upon the surface from all directions. For diffuse fields we therefore
use the statistical sound absorption coefficient, ast, given by

/2
gt = /  sin(20)do (1.80)
0
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The statistical absorption coefficient is calculated from the specific acoustic admittance using
(Morse and Ingard, 1968)

ﬁ%e - /3|2m ﬂlm (ﬁRe + 1)2 + :B|2m
st = 8PRre [ 1 t —BrelN| ————T 1.81
o = ( S e Ve A W ey

1.2.6.2 Absorption area

Rooms not only have absorbent surfaces, but they also contain absorbent objects (e.g. furni-
ture, people) and there will be air absorption. For practical purposes, the absorption area, A, in
m? is useful in describing the absorption provided by surfaces, objects, and air. The absorption
area is defined as the ratio of the sound power absorbed by a surface or object, to the sound
intensity incident upon the surface or object. For a surface the absorption area is the product of
the absorption coefficient and the surface area. The absorption area essentially describes all
the absorption in the room using a single area; hence an absorption area of 10 m? corresponds
to an area of 10 m? that is totally absorbing.

For a room with / surfaces, J objects, and air absorption, the total absorption area, At is

i J
Ar =Y "Siai+ Y Ao+ Aar (1.82)
i=1 j=1

Air absorption depends upon frequency, temperature, relative humidity, and static pressure.
The absorption area for air is calculated from the attenuation coefficient in air, m, in Neper/m
and the volume of air in the space, V, using

Asir = 4mV (1.83)

The attenuation coefficient in dB/m can be calculated according to ISO 9613-1 and converted
to Neper/m by dividing by 101g(e).

Calculated values for A, at 20°C, 70% RH and Py =1.013 x 10° Pa are shown in Fig. 1.18.
For rooms with an absorption area of at least 10 m? due to surfaces and objects, Aair will only
usually form a significant fraction of A in the high-frequency range. For furnished, habitable
rooms (such as those in dwellings, commercial buildings, and schools), air absorption in the
building acoustics frequency range can often be ignored in volumes <150 m3.

1.2.6.3 Reverberation time

When a sound source in a room is stopped abruptly, the sound energy decays away due to
the damping mechanisms that are present in the room. This feature is called reverberation
and is assessed by plotting a decay curve. This is a plot of the decaying sound pressure level
against time, starting from the time at which the sound source is stopped, usually denoted as
the time, t =0.

For sound insulation, the reverberation time is needed to relate the sound power radiated into
a space to the average sound pressure level in that space and to quantify either the absorption
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Figure 1.18

Absorption area for air in different room volumes.

in a space or the total loss factor of a space. In room acoustics, several other parameters are
used to describe different aspects of the sound field relating to reverberation and the subjective
evaluation of sound in spaces (ISO 3382).

The reverberation time, T, is the time in seconds that is taken for the sound pressure level
to decay by 60dB, or in terms of energy, for the sound energy to decay to one-millionth of
its initial value. This definition is well-suited to the decay curve that occurs in a diffuse field;
a straight line decay as shown in Fig. 1.19. Some decay curves can be approximated by a
single straight line over the full 60 dB decay, but there are many that do not follow this simple
form. In addition, it is not always possible to measure a 60dB decay due to the presence
of background noise. Therefore we need a definition that can be used when decay curves
have more than one slope over the 60 dB decay range. This definition also needs to quantify
the time taken for the level to decay by 60dB by using linear regression over a specified
decay range (e.g. 30dB) so that it is not imperative to use the full 60 dB decay. Hence, the
reverberation time is more usefully defined as the time in seconds that would be required for
the sound pressure level to decay by 60dB when using linear regression over a specified
part of the decay curve. As we can now use any range for the linear regression, such as 10,
15, 20, or 30dB, it is necessary to use the notation, Tx, where X identifies the evaluation
range used in the linear regression, i.e. Ty, T15, T2, T30. With measured decay curves,
the starting point for the linear regression is usually 5dB below the initial level, to the end
point at X +5dB (ISO 354 and ISO 3382). In Section 3.8.3 we will see that 5dB is used as
the starting point primarily because the signal processing distorts the initial part of the decay
curve.

We can now look at reverberation times with a diffuse field and a non-diffuse field in a box-
shaped room.
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Figure 1.19

Ideal straight line decay curve showing the decrease in the sound pressure level with time after the excitation has stopped.

1.2.6.3.1 Diffuse field

In a diffuse sound field, the mean free path, dms, can be used to calculate the average time, At,
between two successive diffuse reflections from the room boundaries,

At = Ll (1.84)
Co
we can then use Af to calculate the number of diffuse reflections, N, in time, t, using
t C()t
=—=— 1.85
At dmfp ( )

The decay process can now be assessed by looking at the probability of waves impinging upon
surface areas in the room with different absorption coefficients. This uses the approach taken
by Kuttruff (1979). We take a room containing a sound source fed by a stationary signal such
as white noise and assume that the resulting sound field is diffuse. When the sound source is
stopped at time, t =0, the waves continue to travel across the room volume, and each time they
impinge upon a room boundary, a fraction of the energy is reflected, with the remaining fraction
being absorbed. The binomial probability distribution is used to assess two possible outcomes
when a sound wave impinges upon a room boundary: either the wave is reflected from (and
absorbed by) surface area, S1, or it is reflected from (and absorbed by) the remaining surface
area in the room, S, = St — Sy. These outcomes must be statistically independent; hence the
probability that a wave is reflected from (and absorbed by) surface area, Sy, is the same every
time that the wave impinges upon a room boundary. This is conceivable in a room where each
surface area with a different absorption coefficient is uniformly distributed over the total surface
area of the room, and there are diffuse reflections from all the room surfaces.
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The binomial probability distribution, P(N1\N) gives the number of times, N;, that a wave is
reflected from surface area, Sy, out of a total number of reflections, N. The probability of a
reflection from surface area, S1, is S1/St, hence the probability of a reflection from the remaining
surface area in the room, Sy, is S»/St or 1 — (S1/St). The binomial probability distribution is

N Si\M™ S\ M
P(N1\N) = <N1 ) (S—T) (1 - ST) (1.86)
where the binomial coefficient is calculated using
N N!
(N1> = NiI(N — Ny)! (1.87)

Each time a wave impinges upon surface area, S1, the mean-square pressure is reduced by the
factor (1 — «q) where «4 is the diffuse field sound absorption coefficient for surface area, S;.
The same process occurs with surface area, Sy, with the coefficient, a,. So, after N reflections,
of which N reflections are from surface area, S¢, and N — Nj reflections are from the remaining
surface area, S, the mean-square pressure as a function of Ny, p?(Ny), is

p?(N1) = p*(0)(1 — )™ (1 — )" (1.88)
where p?(0) is the mean-square pressure at time, t =0.

Taking into account all possible values of Ny from zero to N, we can calculate the expected
value, E(N4) of random variable, N4, which has the probability distribution, P(N4\N). As we
are particularly interested in the decay of the sound pressure we note that E(N4) equals the
population mean (i.e. the average value) of the mean-square pressure,

o S S N
EM) = Y- pN0PNAN) = p20) | (GE) (e (1 G ) (1 —e)] (189

Ny=0

The term within the square bracket is equal to (1 — @) where « is the average diffuse field
sound absorption coefficient

(1.90)

o

St
Hence for rooms with / surface areas that each have a different absorption coefficient (instead
of /=2 as has just been assumed), the expression can be generalized to

CEPYELL NN of ¥ (1.91)
Z,/':1 Si St

The average diffuse field sound absorption coefficient, «, is a weighted arithmetic average of
the absorption coefficients, where each coefficient has been weighted according to its surface
area. From Eq. 1.89 the mean-square pressure p(t) at time, t, is therefore described by

p*(t) = p*(0)(1 —@)" = p*(0) exp(N In (1 — @)) (1.92)

It is important to note from Eq. 1.92 that the mean-square pressure in a diffuse field has an
exponential decay. Therefore when plotting the sound pressure level in decibels against time,
the decay curve is a straight line. We will soon look at decay curves in non-diffuse fields, where

32



Ch01-H6526.tex

19/7/2007 14: 2 Page 33

Chapter 1

the mean-square pressure does not have an exponential decay, and the decay curve is not a
single straight line across the 60 dB decay range.

Attime t =T, the definition of the reverberation time is such that p?(T) is one-millionth of p2(0),
hence combining Eqgs 1.85 and 1.92 gives

PAT) =108 :exp(% In(1 —a)) (1.93)
mfp

This gives the reverberation time formula that is commonly referred to as Eyring’s equation
(Eyring, 1930),

—dmp61In10 —24V1In10
mfp
= = 1.94
coln(1—a@) coStin(1—a) (1.94)
and by taking air absorption into account, this becomes
—24VIn1
n10 (1.95)

T= co(Stin(1 — @) — 4mV)

When considering the effect of the room volume, V, and the total surface area, St, on the diffuse
field reverberation time, it is useful to think in terms of the mean free path. The reverberation
time is proportional to the mean free path for a diffuse field (Eq. 1.47), hence the longer the
mean free path, the longer the time between successive reflections from the room surfaces.
So if we choose a point in this room to measure the reverberation time, it will have taken longer
for the waves to travel around the room before returning to our chosen point. Each time the
wave hits a surface, a fraction of the wave energy will be absorbed. Assuming a fixed value
for the absorption coefficient of room surfaces, the reverberation time will therefore increase
with increasing room volume.

For a diffuse field where the average diffuse field absorption coefficient, @, is much smaller
than unity, we can assume that @~ —In (1 — ). Using this approximation in Eq. 1.94 leads to
Sabine’s equation (Sabine, 1932),

_ dmp6In10  24VIn10

T = 1.96
Codl coSta ( )

To take account of absorption from objects and the air, as well as from the room surfaces,
Eq. 1.96 is more conveniently written in terms of the total absorption area, At (Eq. 1.82) as

24V In10
;_ 24VIn10

1.97
CoAT (1.97)

Assuming that the steady-state sound pressure level in the diffuse field is 60 dB at time t =0,
the time-varying sound pressure level in decibels that defines the idealized decay curve is

P _ o 600
) =07

The Sabine equation is based on the assumption that @ is sufficiently small that o~ — In (1 —@),
whereas the Eyring equation is applicable to any value of @. In general, Eyring’s equation gives
reasonable estimates in rooms where there is uniform surface absorption and diffuse surface
reflections, however, itis also appropriate in box-shaped rooms with uniform surface absorption
and specular surface reflections (Hodgson, 1993, 1996).

Ly(t) = 101g ( (1.98)
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1.2.6.3.2 Non-diffuse field: normal mode theory

In non-diffuse fields the decay curves cannot usually be approximated by a straight line across
the entire 60 dB decay range. To understand some of the reasons for this, we return to consider
local room modes in a box-shaped room. In each frequency band, the decay curve will be
determined by the individual room modes that are decaying within that band, and the interaction
between these modes.

We will focus on decay curves in the low-frequency range. When we consider the mode count in
one-third-octave-bands for typical rooms, bands in the low-frequency range have relatively few
modes compared to those in the mid- and high-frequency ranges (refer back to the 50 m® room
in Fig. 1.14). In reality, we cannot strictly compartmentalize the decaying modes into individual
frequency bands. This is due to the damping associated with each mode; a decaying mode may
influence the decay in the two bands that are adjacent to the band in which the mode is strictly
assumed to fall. However, compartmentalization is used here to provide some insight into the
way that axial, tangential, and oblique modes determine the decay curve for a band. The normal
mode theory used to calculate the decay curves is taken from Kuttruff (1979) and Bodlund
(1980); the latter reference also provides corrections to earlier investigations by Larsen (1978).

Assume that we have a box-shaped room with locally reacting surfaces. This room contains
a sound source that is fed by a sinusoidal signal with the same frequency as the mode of
interest. In reality, most rooms have modes that are relatively closely spaced. This means that
a sinusoidal signal will also excite other room modes unless all the surfaces have very low
absorption coefficients and the modes are all well-separated in terms of frequency. However,
here we will assume that we are able to excite only a single mode. When the sound source
is stopped at time, t =0, the waves continue to travel along the path that is defined for this
particular room mode. Upon each reflection from a room surface, a fraction of the energy is
reflected, and the remaining fraction is absorbed.

When looking at the reverberant decay of an individual mode, m, the mean-square pressure
decays away exponentially according to

p?(t) = p*(0) exp(—28mCot) (1.99)

where 8, = Bas (6p.m/Lx +eq.m/Ly + €r.m/Lz) in which B, is the specific acoustic admittance,
and sp m, £q,m and &, , correspond to mode, f o - (if p=0, then gy ,, =1 else ¢, m, =2; if =0,
then eqm =1 else eqm =2; if r=0then &, =1 else g, ,m =2).

The reverberation time, T, for an individual mode can be calculated from Eq. 1.99 at time
t= Ty using

p,zn(Tm) _6 ( (Sp,m £q,m 5r,m>)
=10"° =exp | —2¢oT, + —— + 1.100
P?n(o) p 0 m.Ba,s Lx Ly Lz ( )

which gives,
3In10

T, =
m epm eqm
CoPBa,s I, T I, +

(1.101)

&r,m
Lz

)

The denominator in Eq. 1.101 is referred to as the damping constant of the mode. From
Eq. 1.101 it is possible to identify three trends for the different mode types when the spe-
cific acoustic admittance is independent of frequency: (1) the axial modes associated with
each room dimension have different reverberation times to each other when Ly #Ly, #L;;
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(2) when the tangential modes are considered in three groups defined by p=0, g=0, and
r =0, each group will have the same reverberation time; and (3) all obligue modes have the
same reverberation time.

For engineering calculations it is convenient to relate the reverberation time directly to the
absorption coefficient. Normal mode theory uses the specific acoustic admittance, which is the
reciprocal of the specific acoustic impedance; hence it is linked to the absorption coefficient.
From Eq. 1.76 we see that the absorption coefficient is dependent upon the angle of incidence
and the specific acoustic impedance. Depending on the mode, the waves will be incident
upon the room surfaces at different angles. For axial modes the waves always impinge upon
two opposite surfaces at an angle of incidence that is normal to these surfaces. For oblique
and tangential modes, the angle of incidence varies depending upon the mode and the room
boundary upon which the waves are impinging. For simplicity, the angle dependence is ignored
in the following examples and a single value for the specific acoustic admittance is used for all
of the room surfaces. This still allows us to see the general effect of the modes on the decay
curves; we simply acknowledge that the situation is more complex in reality.

Equation 1.101 can now be used to calculate the decay curve for each of the M individual
modes within a frequency band. This can be compared with the decay curve for the frequency
band itself. It is assumed that the sound source is fed with a white noise signal with an rms
volume velocity spectral density, Qgq. It is convenient to set the sound pressure level at t =0
to a level of 60 dB for the frequency band, hence we need to establish the level at t =0 for
each of the M modes in that band. For the mth mode, the spatial average mean-square sound
pressure at time { =0 is (Bodlund, 1980)

P5Ca Qe
12V2|n10 "

for which it is assumed that the specific acoustic admittance for the room surfaces is a real
value, much less than unity, and uniform over all the surfaces.

(Ph)s = (1.102)

Using Eq. 1.102 to set the level for each mode at t =0, the sound pressure level, L, x(f), in
decibels, for the mth decaying mode in a frequency band is

2 2
Ly, m(t) =101Ig (pm(t)) =60 — @ +101g (W) =60 — @ +10lg (A]-’”)
pm(0) Tm SN (P2)s T S T

(1.103)

The sound pressure level, L,(t), in decibels for the frequency band can then be calculated from
the energetic sum of the decay curves for the individual modes in the band,

M
Ly(t) =101g (Z 10vam<f>/1°> (1.104)

m=1

We can now look at decays in rooms with the same volume (50 m®) but different L, L,, and
L, dimensions. The specific acoustic admittance for all room surfaces is assumed to be real,
independent of frequency, and independent of the angle of incidence. Although it does not
correspond to any particular material commonly used for walls and floors, a value of 85 =0.01
is used to give reverberation times less than 2s. Note that smooth, heavy concrete walls and
floors would usually have much smaller values, which would lead to longer reverberation times.
In contrast to measured decay curves, the decay curves from this model can be evaluated from
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Figure 1.20

Decay curves for box-shaped rooms No.

1 and No. 2. Each room has a volume of 50 m® but with different Ly, Ly, and L,

dimensions. The curves are shown for individual modes in the 125 Hz one-third-octave-band along with the resulting curve

for that band.

t =0 to calculate the reverberation time. This is because the model does not include the effect
of direct sound from the sound source, and, unlike a measurement, there is no distortion of the
initial part of the decay curve from the signal processing.

As sound fields in practice can rarely be considered as diffuse in the low-frequency range
we will initially look at the 125 Hz one-third-octave-band. The decay curves from two different
50 m® rooms (No. 1 and No. 2) are shown in Fig. 1.20 for the frequency band and the individual
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modes in this band. For each individual mode the decay curves are straight lines. In contrast,
the resulting decay curve for the frequency band is a curve; this is easier to see if a straight
edge is placed against it. The decay curves for these two rooms are different. However, in this
particular example the initial part of the decay curve has a similar slope in both rooms, hence
the reverberation time, Tys, is similar too.

The axial modes tend to have longer reverberation times than the tangential modes, which, in
turn, tend to be higher than for the oblique modes. For this reason the energy of individual axial
modes at t =0 is slightly higher than individual tangential or oblique modes. We recall that the
decay curve for the frequency band is calculated from the energetic sum of the decays for the
individual modes (Eq. 1.104). Therefore, it is only in the early part of the decay, say within
the initial 20 or 30 dB, that the majority of the different room modes play a role in determining
the decay curve of the frequency band. In the later part of the decay, the decay curve for the
frequency band is primarily determined by the modes with the longest reverberation times.
These are always axial modes. This is clearly seen with room No. 2 where there is only a single
axial mode, f5 oo in the frequency band. In the late part of the decay curve, the slope is primarily
determined by this one axial mode. Hence for typical rooms in the low-frequency range, the axial
modes play an important role in determining the decay curve of the frequency band. This will be
more apparent when one room dimension is significantly longer than the other two dimensions.
In this situation, the decay curve of the frequency band is predominantly determined by the
axial mode(s) with wave propagation along the longest dimension. This allows some insight
into which surfaces require low-frequency absorbers to reduce the reverberation time of the
frequency band by reducing the reverberation time of specific modes.

In practice, the measured decay curve for the frequency band will fluctuate about the predicted
straight line decay due to interaction between the modes causing beating. Also, in using a
single value for the specific acoustic admittance we have effectively assumed a single absorp-
tion coefficient for all angles of incidence which is not appropriate for many common walls and
floors. In the low-frequency range the absorption coefficient can be lower at normal incidence
than at oblique incidence. This would make the curvature more distinct due to even longer
reverberation times for the axial modes.

The model also allows us to compare the decay curve for a diffuse field with the decay curves
for individual frequency bands as the band centre frequency increases. To do this we will
choose the 100, 1000, and 5000 Hz one-third-octave-bands for a different 50 m® room (room
No. 3). It is important to note that the assumption of purely specular reflection for the 1000
and 5000 Hz bands is unrealistic in practice as walls and floors are often slightly irregular
with scattering objects near the room surfaces. However, it gives us a useful insight into the
effects of different mode counts and the different blends of mode types in each frequency band.
Figure 1.21a shows the decay curves for the three frequency bands. The curvature of the decay
in the 100 Hz band is in marked contrast to the approximately straight decay of the 5000 Hz
band. The reasons for this difference can be seen by grouping together the decay curves for
each mode type (axial, tangential, or oblique) as shown in Fig. 1.21b. In the 100 Hz band
the initial 20 dB decay is determined by all three mode types. However, the later part of the
decay curve is predominantly determined by the axial modes with minimal influence from
the tangential and oblique modes. This is in contrast to the 1000 and 5000 Hz bands where
the number of axial modes is small compared to the number of tangential or oblique modes;
hence, there is only a minor influence from the axial modes on the decay curve for the frequency
band. As the frequency increases, there are many more oblique modes than axial or tangential
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modes. As all obligue modes have the same reverberation time, and the decay curve for each
individual mode is a straight line, it follows that the decay curve at high frequencies tends
towards a straight line determined by the oblique modes. This is seen in Fig. 1.21b where the
decay curve for the 5000 Hz band is very similar to the grouped decay curve for the oblique
modes.

For a room with uniform locally reacting surfaces, normal mode theory gives a useful insight
into the reasons for curvature of the decay curves. However, it does not fully describe the
degree of curvature that occurs in practice. This is partly due to the fact that walls and floors
are not purely locally reacting; they can act as surfaces of extended reaction.

Locally reacting surfaces and surfaces of extended reaction: It is very convenient to be
able to consider the reverberation time as independent of any interaction between the room
modes and the structural modes of the walls and floors. So far it has been assumed that
although the sound waves impinging upon a surface are absorbed, this absorption is a ‘local
matter’ between the sound wave and the point on the surface from which it is reflected. From
the point-of-view of an impinging sound wave there are two types of room surface that are
responsible for absorption: locally reacting surfaces and surfaces of extended reaction (Morse
and Ingard, 1968). These two types can be defined by referring to the normal acoustic surface
impedance; this is the ratio of the complex sound pressure at the surface to the component of
the complex sound particle velocity that is normal to the surface. If a wave impinges upon a point
on the surface, a locally reacting surface is one where the particle velocity normal to the surface
is only affected by the sound pressure at that point, and is unaffected by the pressure at adjacent
points on the surface. In contrast, a surface of extended reaction is one where the particle veloc-
ity normal to the surface is affected by the pressure at adjacent points on the surface. Surfaces
of extended reaction therefore include plates undergoing bending wave motion, and porous
surfaces where the sound propagates inside the porous material in a direction parallel to the
surface.
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Figure 1.21(a)

Decay curves for box-shaped room No. 3 (100, 1000, and 5000 Hz one-third-octave-bands).
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Figure 1.21(b)

Decay curves for the 100, 1000, and 5000 Hz one-third-octave-bands along with the grouped decay curve for each mode
type. The number of modes corresponding to each mode type in the one-third-octave-band are shown in brackets.
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For practical purposes, the assumption of locally reacting room surfaces is very useful in sim-
plifying the calculation of reverberation time. In many rooms, small areas of rigid frame, porous,
absorbent material are fixed to the room surfaces to reduce the reverberation time. Many of
these absorbers can be considered as locally reacting. The assumption of locally reacting sur-
faces is often reasonable due to other factors that introduce uncertainty into the calculation;
these are non-uniform distribution of absorption, application of laboratory measurements of
absorption coefficients to rooms with non-diffuse fields, specific room geometry, and scatter-
ing from objects and surfaces in the room. Bare walls and floors undergoing bending wave
motion are surfaces of extended reaction, responsible for transmitting sound to other parts of
the building. In this situation the reverberation time is not only determined by the room modes,
it is determined by the interaction between the room modes and the structural modes of the
walls and floors (Pan and Bies, 1988). This blurs the boundary between the study of room
acoustics and structure-borne sound.

For a room with locally reacting surfaces that have a frequency-independent value for the
specific acoustic admittance, the normal mode model indicates that the group of oblique modes
will have the same reverberation time, and each group of tangential modes withp=0org=0or
r =0 have the same reverberation time. However, experimental evidence from a reverberation
chamber with 280 mm thick concrete walls and floors indicates that there can be significant
variation between the reverberation times of individual modes within these groups (Munro,
1982). This is primarily because the walls and floors are not locally reacting (Pan and Bies,
1988). It has been shown both theoretically and experimentally that the reverberation time in a
room can be altered by changing the total loss factor and/or the modal density of its walls and
floors (Pan and Bies, 1990). Experiments in the same reverberation chamber demonstrate that
by increasing the total loss factor of a bending wave mode on one concrete wall (by wedging
wooden blocks between this wall and another wall to increase the structural coupling losses),
it is possible to change the reverberation time of an individual room mode (Pan and Bies, 1988).
However, this needs to be kept in perspective when predicting reverberation times in rooms.
There are other reasons why it is difficult to accurately predict reverberation times; mainly
the existence of non-diffuse sound fields and the application of laboratory measurements of
absorption or scattering coefficients to a specific situation in the field. The fact that walls and
floors are not locally reacting is simply one more reason.

In practice, walls and floors are usually partly or completely covered with a locally reacting
absorber, such as carpet on a heavy concrete floor. Therefore it is not always necessary
for calculations to consider the effect of modal interaction; reasonable estimates can often be
obtained by assigning an absorption coefficient to the areas of wall and floor that are not covered
by the locally reacting absorber. This absorption coefficient may be based on measurements
or empiricism. In many cases the wall or floor will act as both a surface of extended reaction
and a locally reacting surface, although one of these may be more important than the other. For
example, some masonry/concrete walls have highly porous surfaces. A reasonable estimate
of the reverberation time can often be found by using a measured absorption coefficient and
simply treating the wall as a locally reacting surface; it may be unnecessary to consider the fact
that it also acts as a surface of extended reaction due to bending wave vibration. This allows
calculation of the room reverberation time using absorption coefficients in equations such as
Eq. 1.94 or 1.96.

Despite the fact that real walls and floors are not purely locally reacting, normal mode the-
ory shows that the curved decay for a frequency band is due to the different reverberation
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Figure 1.22

Example of a decay curve with a double slope; this can occur in rooms with a highly absorptive ceiling, but where the walls
and the floor have relatively low absorption.

times for the modes within that band. Interaction between room modes and structural modes
therefore results in a range of reverberation times for individual modes; hence there will still
be curved decays in some frequency bands. In fact, measured data suggest that the range
of reverberation times for individual modes is much larger than calculated from normal mode
theory, resulting in decay curves with a greater degree of curvature (Bodlund, 1980).

1.2.6.3.3 Non-diffuse field: non-uniform distribution of absorption

Non-diffuse fields also occur due to non-uniform distribution of absorption over the room sur-
faces; one common example occurs when there is a highly absorptive ceiling but the walls
and the floor have relatively low absorption. In these situations the decay curve can also show
curvature or a distinct double slope as illustrated in Fig. 1.22. Considering the different modes,
it is possible to make a basic qualitative assessment of the reasons for this double slope. When
the early part of the decay is predominantly determined by the oblique modes (as in the previ-
ous example for the 5000 Hz band) we can expect large numbers of these modes to be rapidly
attenuated as they impinge upon the highly absorbent ceiling. This gives rise to the fast decay
rate in the early part of the decay curve. However, some of the axial and tangential modes will
only be reflected from the side walls which have low absorption. Hence we can expect these
modes to have relatively long reverberation times and contribute to the late part of the decay,
which compared to the early part, will have a much slower rate of decay. The main features of
the decay curve can be predicted by dividing the modes into two groups (Nilsson, 2004). The
first group contains modes where the waves propagate almost parallel to the ceiling (grazing
waves). In the second group the modes propagate at angles that are oblique to the ceiling
(non-grazing waves). Using this grouping, the non-grazing waves determine the early part of
the decay curve and the grazing waves determine the late part of the curve. Other prediction
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formulae for rooms with non-uniform distribution of absorption can be found in work by Fitzroy
(1959), Arau-Puchades (1988), and Neubauer (2001).

1.2.6.4 Internal loss factor

In later chapters we will look at predicting sound transmission between two rooms using Stat-
istical Energy Analysis (SEA). It will then become useful to denote the different rooms using
a subscript. The internal loss factor is usually denoted as iyt but here we will start using the
notation, n;, for the internal loss factor of a room subsystem, i, in an SEA model.

Internal losses describe the conversion of sound energy into heat by absorption; if this is the
only process that is described by the total absorption area, the internal loss factor is given by

- CoAT
Y

Nint = Nii (1.105)

1.2.6.5 Coupling loss factor

The coupling loss factor, 7;, describes resonant transmission between a room (subsystem /)
and a plate (subsystem j) that faces into the room. This is described in Section 4.3.1.1.

1.2.6.6 Total loss factor

The total loss factor, 7;, of a subsystem, i, is the sum of its internal loss factor and all the
coupling loss factors from that subsystem,

J
niznn‘-i-ij (i #1J) (1.106)
j=1
and is related to the reverberation time by
6In10 22
= = (1.107)

For most rooms, the sum of the coupling loss factors is much smaller than the internal loss
factor, and the latter provides a reasonable estimate of the total loss factor. For a room where
the total absorption area, Ar, is calculated from the measured reverberation time (and hence
includes both internal and coupling losses), the total loss factor can be written as

CoAT

;= 1.108
Uilr-wrys ( )

1.2.6.7 Modal overlap factor

The modal overlap factor, M, describes the degree of overlap in the modal response. It is
defined as the ratio of the 3dB modal bandwidth, Af;4g, to the average frequency spacing
between mode frequencies, Af, and is calculated from

Afsap

- - 1.1
M= =22 = fun (1.109)

where Afsqg (Which is also referred to as the half-power bandwidth) is equal to the frequency
spacing between the two points on the modal response where the level is 3 dB lower than the
peak level, and 7 is the loss factor.
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Modal response for two adjacent modes with modal overlap factors, M <« 1 and M=1.

An example of the response due to two adjacent modes with a frequency spacing, Af is shown
in Fig. 1.23. This idealized response could represent either the sound pressure level in a room
or the velocity level on a wall. When M « 1 there is no overlap of the 3dB bandwidths and
there can be deep troughs between the two modes. When M = 1, the modal responses overlap
at the point where the levels are 3 dB below the peak level. As M >>> 1 the response becomes
increasingly uniform due to the absence of deep troughs.

Figure 1.24 shows the modal overlap factor for different room volumes and reverberation times.
The modal overlap factor is often less than unity in the low-frequency range.

A cut-off frequency, fy, that identifies the lowest frequency associated with a minimum value of
the modal overlap factor can be found by substituting Egs 1.59 and 1.107 in Eq. 1.109 to give

MTc?
fy = 0 1.110
M=V 88rV ( )

With a modal overlap factor of three, this cut-off frequency is often referred to as the Schroeder
cut-off frequency, fs, and quoted as (Schroeder, 1962)

7
fszzooo\fv (1.111)

For a room of fixed volume, long reverberation times mean that the damping loss factor is low;
hence the modal overlap is also low which results in higher cut-off frequencies. Usually we
want to calculate the cut-off frequency from measured reverberation times. When these are
approximately constant over the building acoustics frequency range, the average reverberation
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Figure 1.24

Modal overlap factors for different room volumes and reverberation times.

time can be used. Otherwise, an initial estimate for the cut-off frequency can be found from the
arithmetic average of the reverberation time over a large part of the frequency range. This will
then identify a more relevant part of the frequency range over which the reverberation times
can be averaged to refine the estimate.

Figure 1.25 shows the Schroeder cut-off frequency for a range of room volumes and reverber-
ation times. For room volumes less than 60 m3 with reverberation times between 0.5 and 1,
the lowest cut-off frequency will be in the 200 Hz one-third-octave-band, and often in higher
frequency bands.

1.2.7 Spatial variation in sound pressure levels

In the measurement and prediction of sound insulation it is almost always the temporal and spa-
tial average sound pressure level in each room that s of interest rather than the level at a particu-
lar point in space at a particular point in time. For this reason, measurement procedures require
time-averaged sound pressure levels to be measured at a number of different points in a room
and averaged. However, an average value is only useful in the analysis of sound insulation
measurements and predictions if we know what it represents. It is therefore necessary to look
at the spatial variation of time-averaged sound pressure levels both in theory and in practice.

We start with the theory for the sound field near room boundaries, and then move on to discuss
the sound pressure level distribution in a room due to individual modes and in the idealized
diffuse sound field. We then consider practical situations where there is a direct sound field
near the loudspeaker, and spaces in which the sound pressure level decreases with distance.
This allows us to interpret some example measurements of sound fields in frequency bands,
and to see the benefit in using statistical descriptions for the spatial variation in the sound
pressure level.
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Figure 1.25

Schroeder cut-off frequency for different room volumes and reverberation times.

1.2.7.1 Sound fields near room boundaries

In a diffuse field the phase relationship between all waves passing through a single point in
space is random. However, near a room boundary there will be a non-random phase relation-
ship between the incident wave and the reflected wave. When a sound wave is incident upon
a room boundary the reflected wave combines with the incident wave to give an interference
pattern in the vicinity of this boundary (Waterhouse, 1955).

Initially it is assumed that all the room boundaries are perfectly reflecting and rigid. Under this
assumption the sound field close to any surface, edge, or corner in a room can be compared
to the sound field far from the surface. This approach is often used to quantify the total sound
energy stored in a room where it can be assumed that there is a diffuse field in the central zone
of the room. In practice there are a wide range of acoustic surface impedances for walls and
floors in buildings and it is necessary to be aware of their effect on the sound field.

1.2.7.1.1 Perfectly reflecting rigid boundaries

To gain an insight into the sound field near a wall or floor in a room, we start with the situation
where a harmonic plane wave is incident upon a surface, such as a wall or floor, at an angle that
is perpendicular to the surface, i.e. at normal incidence. The surface is positioned at x =0 in
the yz plane (see Fig. 1.26). Itis assumed that the surface is large compared to the wavelength
and that there are no other surfaces that affect the sound field. The incident wave, p., exp(—ikx)
travels from —oo towards x = 0 where it is reflected from the surface to give the reflected wave,
p_ exp(ikx). This conveniently means that the exponential terms equal unity at the surface
where x = 0. The resulting sound pressure due to the incident and reflected waves is

p(x, 1) = [P exp(—ikx) + p_ exp(ikx)] expliot) (1.112)

where p, is an arbitrary constant for the incident wave. The constant for the reflected wave,
p_, is related to p, by the reflection coefficient of the surface, R (Eq. 1.67), where p_ =Rp,.
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Plane waves incident upon, and reflected from a room boundary.

By squaring the real part of Eq. 1.112 and taking the time-average, the mean-square sound
pressure at a distance, x, from the surface in the negative x-direction is

(p%)¢ = p2(0.5 + 0.5|R|? + |R| cos(2kx + y)) (1.113)

For perfect reflection from a rigid surface there is no phase shift (i.e. y =0), so R=|R|=1 and
Eqg. 1.113 becomes

(p%)t = P2 (1 + cos(2kx)) (1.114)

At x =0, the sound pressure for the incident and reflected waves is in phase, so (p?); = Zfﬁ. At
x = A4 the incident and reflected waves are out of phase with each other and the mean-square
pressure is zero.

The particle velocities for the incident and reflected waves are found from the sound pressure
terms using Eq. 1.18. This gives pogo exp(—ikx) for the incident wave and — 2= exp(ikx) for the
reflected wave that travels in the opposite direction. The resulting particle velocity is,

£0Co

1 . . R . .
u(x,t) = —C[m exp(—ikx) — p_ exp(ikx)] exp(iwt) (1.115)
PoCo

At x =0, the particle velocity is zero when the surface is perfectly reflecting and rigid (i.e.
p-=p+).
In practice, sound waves in a room are incident from many different directions upon a reflect-
ing surface, so the next step is to consider a single wave that is incident at an angle, 0, to the
x-axis. For the reflected wave we will assume specular reflection from the surface. For an

oblique angle of incidence, the Cartesian coordinate system is rotated by 6 so that x in
Eq. 1.112 is replaced by x’, where x’ = x cos 6 + y sin6. This gives

p(x,y,t) =[Py exp(—ik(x cosd + y sin9)) + p_ exp(—ik(—x cos 6 + y sin6))] exp(iwt) (1.116)

Hence for oblique incidence, the time-averaged mean-square pressure at a distance, x, from
a perfectly reflecting, rigid surface is

(p?)¢ = P2 (1 + cos(2kx cos 0)) (1.117)
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Figure 1.27

(a) Sound waves incident from all possible angles upon a perfectly reflecting surface form a hemisphere around a small area
on the surface. (b) Spherical coordinate system with the element of the solid angle used to average the mean-square pressure
over the hemisphere.

We can now consider waves that are incident upon the surface from all possible angles. This
forms a hemisphere that encloses a small area on the surface as shown in Fig. 1.27. The
incident waves are assumed to be incoherent, i.e. to have random phase, therefore the mean-
square pressure in Eq. 1.117 can be averaged over all possible angles of incidence using

sin (2kx)

1 2n  pm/2
2y ~2 . _ ~2
(%) = 7271/0 /0 [P7.(1 + cos (2kx cos )] sin 0 dod¢ = p%. (1 + Sl

) (1.118)

where the spherical coordinate system is shown in Fig. 1.27 and the element of the solid
angle, d<2, is sin 6 dod¢.

From Eq. 1.118 the asymptotic value for the mean-square pressure at a distance far from the
surface,(pgc)t, is equal to f)i. At this point it is convenient to change over from using negative
x values for the distance and use positive values for the distance, d, along the x-axis. Hence
the ratio of the mean-square pressure at a distance, d, from this surface, to the mean-square
pressure at a point far away from the surface is (Waterhouse, 1955)

(P?)¢ . sin(2kd)
W)~ okd

(1.119)

This is plotted in Fig. 1.28 as the sound pressure level difference in decibels against 2kd. The
smallest distance at which there is no difference between the level near the surface and the
level far away from the surface occurs at 2kd = r, where d = A/4. The largest level differences
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Figure 1.28

Sound pressure level difference between a point at a distance, d, from a perfectly reflecting surface and a point far away from
the surface.

(magnitude) occur at distances less than 1/4 from the surface. At high frequencies and/or
large distances from the surface the sound pressure level difference tends towards 0 dB. If we
start at a distance d = 1/4 from the surface and move towards the surface the level difference
tends towards 3 dB. Equation 1.119 applies to single frequencies rather than frequency bands,
although it also gives reasonable estimates for one-third-octave-bands and octave-bands of
white noise at distances up to A/4 from the surface (Waterhouse, 1955). To illustrate its practical
application, the level difference against frequency at different distances from the reflecting
surface is shown in Fig. 1.29.

When measuring the reverberant sound pressure level in a room it is necessary to avoid
measuring near the room boundaries in these interference patterns. The requirements for
the minimum distance between a microphone and the room boundaries depend on the level
of accuracy required, and the practical aspect of finding sufficient measurement positions
in small rooms. Measurements are usually carried out simultaneously in all the frequency
bands over the building acoustics frequency range. For this reason it is common to quote the
minimum distance as a fixed value based upon the lowest frequency of interest; rather than
quoting a fraction of a wavelength. In the Standards for field and laboratory sound insulation
measurements the minimum measurement distances from the room boundaries are quoted as
0.5,0.7,and 1.2m (ISO 140 Parts 3, 4, 5, 6, & 7). Equation 1.119 can be used to estimate the
level difference at these distances from walls or floors. At 50 Hz the level difference is 1.4 dB
for a distance of 1.2m. At 100 Hz a level difference of 1.8 dB occurs for a distance of 0.5m,
and 0.8dB for 0.7 m.

The interference patterns at the edges and the corners also need consideration. The ratio for
the mean-square sound pressure at a distance, d, from an edge or a corner due to both the
incident and reflected waves, relative to the mean-square sound pressure at a point far away
from the edge or corner is given by Waterhouse (1955).
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Figure 1.29

Sound pressure level difference between a point at a distance, d, from a perfectly reflecting surface and a point far away. Note
that the curves have been truncated at the frequency where d = A/4. These single frequency values are also applicable to
white noise in one-third-octave or octave-bands.

For an edge that lies along the x-axis, the mean-square sound pressure ratio at a point (y, z) is

(pz)t
(P2.);

=1+ jo(2Kky) + jo(2kz) + jo(2kdy) (1.120)

where jp(a) = sin(a)/a and d? = y? + z2.

For a corner positioned at the origin of the Cartesian coordinates the mean-square sound
pressure ratio at a point (x, y, z) is
(p?)t
(%)t

=1+ jo(2kx) + jo(2ky) + jo(2kz) + jo(2kdx) + jo(2kdy) + jo(2kd;) + jo(2kd) ~ (1.121)

where d2=x%+22, d2=x?+y? and d? =x? + y? + 22.

Figure 1.30 allows comparison of the sound pressure level difference for a surface, edge, and
a corner. To create this particular example, d is used to represent different distances from the
surface, edge, or corner: namely, the distance perpendicular to the surface along the x-axis,
the distance from the edge along the line y =z, and the distance from the corner along the
line x =y =z. At the boundary position where d =0, the level differences are 3, 6, and 9dB
for the surface, edge, and corner respectively. Image sources can be used to visualize this
finding. Figure 1.31 shows the actual source for a plane wave front near these boundaries
along with the image sources. For the surface, edge, and corner there are 1, 3, and 7 reflected
waves respectively; this gives the total number of sources as 2, 4, and 8 respectively. The
image sources have the same amplitude and phase as the actual source, therefore the sound
pressure from the actual source and the image sources is in phase at the boundary position
(d =0). Hence the level differences correspond to 10 times the logarithm (base 10) of the total
number of sources.
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Sound pressure level difference between a point at a distance, d, from a surface, edge, and corner relative to a point far away.
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Figure 1.31

Source (%) and image sources (¥) for a plane wave front incident upon a surface, edge, and corner.
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The level differences due to interference patterns near edges and corners tend to be larger in
magnitude than with a surface and extend to greater distances. However, we will soon look at
calculating the total energy stored in a room where it is necessary to account for the energy
stored in the interference patterns of surfaces, edges, and corners. When the sound field in
the central zone of the room is reasonably diffuse it is found that the energy stored in edge
and corner zones is relatively small compared to the energy stored near room surfaces. This
is because the surfaces account for large areas in most rooms (Waterhouse, 1955).

1.2.7.1.2 Other boundary conditions

Up till now we have assumed that the room boundaries are perfectly reflecting and rigid, i.e.
the normal acoustic surface impedance is infinite. Therefore at the surface, the particle velocity
normal to these boundaries is zero. Many walls and floors in buildings have low-absorption
coefficients in the low-frequency range where interference patterns in rooms are important;
so the assumption that they are perfectly reflecting is reasonable. However, habitable rooms
almost always have fairly absorptive surfaces to provide suitable acoustics for the occupants
of the building so we need to consider the effect of absorption. In addition we know that real
room surfaces are not rigid because they are set into vibration by impinging sound waves. In
reality the sound waves that impinge upon the walls and floors cause them to vibrate; hence the
particle velocity at, and normal to the room surfaces must be the same as the surface vibration
of the wall or floor, and not zero. When we focus on sound transmission, the vibration of these
room surfaces becomes particularly important. Room surfaces range from a single sheet of
12.5mm plasterboard on a timber frame, to a few hundred millimetres of solid concrete; all of
these surfaces have finite values for the acoustic surface impedance.

If we restrict our attention to sound waves impinging upon a surface at normal incidence, then
the effect of absorptive non-rigid surfaces can be assessed by using Eq. 1.113 to calculate
the mean-square pressure. This requires knowledge of the reflection coefficient which can be
calculated from the specific acoustic impedance using Eq. 1.74, and can be related to the
absorption coefficient using Eq. 1.75.

In order to assess the sound field near a surface it is useful to reference the mean-square
pressure from Eq. 1.113 to the mean-square pressure of the free-field incident wave, (pi)
where

t

p3), == (1.122)

The sound field can then be shown using the sound pressure level difference, 101g ((p?)¢/(p? ):),
where 0 dB corresponds to the level of the free-field incident wave.

Figure 1.32 shows examples of the sound pressure level difference for normal incidence as
a function of 2kx in front of a surface at x =0. Note that the distance, x, is in the negative
x-direction. These examples use a range of values for the specific acoustic impedance to
represent different surfaces. For a rigid surface the specific acoustic impedance is infinite.
Real values for the specific acoustic impedance are chosen to show a range of absorption
coefficients up to unity. The complex value, 1+ 8i, is used to represent a single sheet of
12.5mm plasterboard (10.8 kg/m?) at 50 Hz; this plate has a low surface density and is used
to provide contrast to the assumption of a rigid surface. The complex value, 1 — 2/, can occur
at a single frequency when a porous material is placed in front of a thick heavy wall to provide
absorption in the room.
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Figure 1.32

Sound field in front of a surface formed by the incident and reflected waves for normal incidence. Surfaces with different
specific acoustic impedances are positioned at x=0.

When the specific acoustic impedance is unity then the absorption coefficient is also unity and
the incident wave is completely absorbed at the surface. Therefore the sound field in front of
the surface only comprises the incident wave, and the sound pressure level difference is 0 dB
for all values of 2kx. In contrast, at the rigid surface there is a perfect reflection so that there
is pressure doubling, a level difference of 6 dB. As we move away from the surface, there are
sharp interference minima (troughs) where the incident and reflected waves are exactly out of
phase with each other. There are also interference maxima with peak values of 6dB where
the waves are in phase with each other. The minima occur when 2kx = —(2n — 1)& where
n=1,2,3, etc.

When the specific acoustic impedance has real or complex values, resulting in absorption
coefficients between 0 and 1, the depths of the minima and the height of the maxima are
significantly reduced in comparison to the rigid surface. Also, in comparison to surfaces with
real or infinite impedance, complex impedances can significantly change the value of 2kx at
which the minima and maxima occur. In the next section we will look at the modal sound field
by assuming perfectly reflecting and rigid boundaries; hence the features we have seen here
for real boundaries will be of relevance again.

1.2.7.2 Sound field associated with a single mode

Before we look at sound fields where there are many modes, it is instructive to look at the
sound field associated with an individual mode. We will use the box-shaped room with perfectly
reflecting and rigid boundaries and send a sinusoidal signal to a loudspeaker positioned in one
of the corners.
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For a sound source positioned at xs, ¥s, Zs, the mean-square sound pressure level at a
receiver point x,y,z that is associated with mode, #,,,, is calculated using normal mode

theory (Morse and Ingard, 1968)
2

wpo 0(2) Qms 1Pp,q,r(xr Y, Z)Wp,q,r(X& Vs: Zs)

VAp,q,r\/4w§,q,rC,§,q,, + (w? — w,%,q,,)2

(3. (X, Y, 2, X5, ¥s, 28))t = (1.123)

where w is the frequency of the sinusoidal signal, Qms is the rms volume velocity of the source,
¢p.q.r is the damping constant, and Ap 4 = 1/(gpeqer) for which e, 4, and e, have already been
defined next to Eq. 1.99.

The damping constant, ¢, 4., can be linked back to §,, that was previously used to describe
the reverberant decay of an individual mode in Eq. 1.99. In terms of the damping constant, the
decay of the mean-square sound pressure for mode, fp g, is

P2 (t) = p?(0) exp(—2¢p,q,rt) (1.124)

We can now describe the damping constant in terms of the reverberation time or loss fac-
tor. From Eq. 1.101 the damping constant is related to the reverberation time, T, , for an
individual mode by

3In10
Cogr = —— (1.125)

TP,C‘N
which is related to the loss factor for an individual mode, 1 4., using

6IN10  Lpgr
np,q,r =S 27 =

1.126
7fTp.q.r nf ( )

From Eqgs 1.51 and 1.52 the local mode shape (also called an eigenfunction), 4, that
describes the sound pressure distribution in space for the receiver position is

VYp.qr(X,Y,2) = cos prx cos ay cos rnz (1.127)
" Ly L, L,
and for the source position is
Up.a.r(Xs, Vs, Zs) = COS PTXs ) cos [ 95 cos (1722 (1.128)
" Ly L, L,

We will soon look at how different source positions affect the excitation of individual modes.
For the moment it is only necessary to ensure that we can excite any mode; hence the source
needs to be positioned at any one of the corners, for example at 0,0,0. When the source is
at a corner, [ q.r(Xs, s, Zs)| =1 for any mode. This allows us to focus on the way that v, q
(x,y, z) affects the spatial distribution of the mean-square sound pressure.

The maximum value that |y, q,(X,y, Z)| can take is 1; hence for an individual mode, the
maximum mean-square sound pressure occurs at receiver positions where |y, 4.-(X, ¥, 2)| =1.
These maximum values occur at positions referred to as anti-nodes and their position in the
room depends upon the individual mode, f, 4. However, when the receiver is positioned at
any of the eight corners of the box-shaped room, then |y, 4.-(X, y, Z)| = 1 for all modes. Hence,
the corner of a room is an ideal point to detect which modes have been excited.

For any individual mode in a box-shaped room, the sound field on any of the three orthogonal
planes forming the room is symmetrical about the lines perpendicular to the axes.
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Figure 1.33

lllustration showing how the sound pressure levels from each plane in the box-shaped room is displayed on each three-
dimensional surface plot. In this example it is the yz plane midway along the x dimension, L. Each plane is shown with a
graduated shaded area so that corners with the darkest and the lightest shading can be used as reference points to identify
sound pressure levels at different positions on the plane. If more than one plane is shown, then all these planes have the
same sound pressure level distribution.

When at least one of the cosine terms in v, (X, y, ) is 0, the sound pressure is also 0, so
there will be planes of zero pressure perpendicular to the x, y, or z-axes. In a box-shaped room
these are referred to as nodal planes; these exist where x =nL,/2p, y =nL,/2q and z = nL,/2r
forn=1, 3,5, etc. For any mode, f, 4, there will be p nodal planes perpendicular to the x-axis,
g nodal planes perpendicular to the y-axis, and r nodal planes perpendicular to the z-axis.

For rooms with volumes less than 30 m3, there will only be one mode or a few modes in individ-
ual one-third-octave-bands between 50 and 100 Hz. These modes are usually the axial modes
£1.0,0 f0,1,0| 0,015 f2,0,0, foygyo, the tangential modes f4 1, f0,1y1, f1.0,1 and the oblique mode f; 1 1.

The graphs in this section can be interpreted with reference to Fig. 1.33. Examples of the sound
pressure level distribution are shown for axial modes f1 9o and fp 0,1 (Fig. 1.34), the tangential
mode, f1 10 (Fig. 1.35), and the oblique mode f; 1 1 (Fig. 1.36). To allow a practical interpretation
of the sound field, the decibel scale has been used. However the use of decibels is not ideal
because the mean-square pressure is zero on the nodal planes. In reality there will not be zero
mean-square sound pressure for two reasons. Firstly, there will always be some background
noise in the measurement, and secondly, not all real surfaces are perfectly reflecting and rigid.
For the latter reason the surfaces will absorb some of the incident sound and there will not be
perfect cancellation along nodal planes, i.e. there will not be pure standing waves. This was
previously seen in Section 1.2.7.1.2 when we looked at the sound field near room boundaries
where the specific acoustic impedance of the surfaces had complex or finite real values. The
maximum level for each mode has therefore been normalized to 0 dB, and we will assume that
the background noise level is 60 dB below this maximum level; so levels of —60 dB on these
graphs represent the nodal planes with zero mean-square pressure.

The main features of the modal sound field are the large spatial variations in the sound pressure
level. The highest levels occur at the room boundaries, with the nodal planes sited away from
these boundaries.

This model of the sound field gives us a basic insight into the sound field in a room. However by
assuming that the room boundaries are perfectly rigid we have not considered the interaction
between the sound in the room and the vibration of the walls and floors. In addition we have
not yet considered the situation where frequency bands ‘contain’ zero, one, or more modes.
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Sound pressure level distribution for axial modes: (a) f1,0,0 and (b) fo,0.1.
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Figure 1.35

Sound pressure level distribution for the tangential mode, fi.1 0.
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Sound pressure level distribution for the oblique mode fy 1 1.

1.2.7.3 Excitation of room modes

We need to consider the excitation of room modes in two different situations: one in a source
room where the airborne sound insulation is being measured by using a loudspeaker to
generate the sound field, and the other in a receiving room where the room surfaces radiate
sound into the receiving room, which excites the receiving room modes. The latter situation
primarily concerns the coupling between energy stored in walls, floors, or other spaces, and the
energy stored in the receiving room modes and is discussed in Chapter 4. At this point, we just
consider the effect of using a single loudspeaker at different positions in the source room, and
how those different positions affect the excitation of room modes in the low-frequency range.
For individual frequencies the mean-square sound pressure due to each room mode can be
calculated using Eq. 1.123 and summed to give the overall mean-square sound pressure. This
is similar to carrying out a swept-sine measurement with a constant amplitude signal from the
loudspeaker. In practice the airborne sound insulation is usually measured using broad-band
noise, but single frequencies gives a clearer understanding of the effect of different source
positions.

Three different source positions are assessed: one near a corner, another at the mid-point
along one wall, and another that is exactly in the centre of the room. In practice it is rarely
possible to put the loudspeaker exactly at the corner, although we can place it near the corner;
so we will assume that the acoustic centre of the loudspeaker is at 0.5,0.5,0.25m which is
nearest to the corner at 0,0,0.

The receiver position is at Ly,L,,L,, which is in the corner opposite the loudspeaker. A micro-
phone would not be placed in a corner for standard sound insulation measurements; it would
be positioned away from the room boundaries. However, we only want to assess which modes
have been excited so we do not need to know the absolute sound pressure levels. For this
reason the receiver position is at a point in the room where all modes have an anti-node (i.e.
in a corner).

The damping constants for the individual modes are calculated from Eqgs 1.125 and 1.101 using
a frequency-independent value for the specific acoustic admittance (8, s =0.01).

Predicted curves for the sound pressure level are shown in Fig. 1.37 for the same 50 m® box-
shaped room that was used to look at the mode count in one-third-octave-bands. The peaks in
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the sound pressure level are due to the room modes that have been excited. On each curve, the
axial, tangential, and obligue modes have been plotted at their respective eigenfrequencies.
When there are relatively few modes and the modes are all well-separated we see that if a
mode frequency coincides with a peak in the sound pressure level curve, this indicates that this
particular mode has been excited; if it coincides with a trough in the curve, then it has not been
excited. If a mode frequency occurs on the curve between a trough and a peak, then either the
mode has not been excited, or it has been excited but it has such a low sound pressure level
that there is no discernible peak. This numerical experiment indicates the difficulty in using
physical experiments to find the mode count where a microphone and a sound source are
placed in a single position. The problem is that counting the peaks in the response is unlikely
to identify all of the modes; this equally applies to vibration measurements used to identify
structural modes of vibration.

When the source is near a corner there are many more peaks in the sound pressure level
curve than when the source is at the centre of the room; hence many more modes are excited
by a corner position than the central point. When the source is near a corner, all the modes
below 100 Hz have been excited and are clustered at or near the peaks in the sound pressure
level curve. In contrast, when the source is at the centre of the room, the first five modes have
not been excited at all, and there are clusters of modes that have not been excited near the
troughs of the sound pressure level curve. The modes that have not been excited have one
or more nodal planes that cut through the source position at the centre of the room (e.g. see
f1.1,1 in Fig. 1.37). Similarly, when the source is mid-way along one wall, the modes that have
not been excited also have one or more nodal planes that cut through the source position (e.g.
see fy0,0 and fy 1,1 in Fig. 1.37).

For field airborne sound insulation measurements in non-diffuse sound fields it is necessary
to excite the majority of the modes in the source room. For this reason, loudspeaker positions
near the corners are used in box-shaped rooms as well as in other shapes of room. In addition
it is necessary to take average measurements from more than one source position. However,
it must also be ensured that the direct sound from the loudspeaker does not cause significant
excitation of the walls or floors compared to excitation by the reverberant sound field.

1.2.7.4 Diffuse and reverberant fields

The Schroeder cut-off frequency is sometimes used to estimate the lowest frequency above
which the sound field can be considered to be diffuse. This is the frequency at which the modal
overlap factor equals three; hence it identifies the lowest frequency above which the sound
energy is relatively uniform in the central zone of a room.

In practice, a diffuse field cannot be realized throughout the entire room volume due to the
fact that rooms are defined by the walls and floors that form the room boundaries. These
boundaries give rise to interference patterns close to the surfaces, edges, and corners; hence
the energy density is not uniform throughout the space. In addition these boundaries absorb
sound (to varying degrees) so that there must be a net power flow from the sound source to the
boundaries, whereas in a diffuse field the net power flow is zero. Under laboratory conditions
it is possible to achieve a suitable degree of diffusivity through careful room design, by using
diffusing elements in the room, and by defining measurement positions away from the room
boundaries. Hence close approximations to diffuse fields in the building acoustics frequency
range only tend to exist in the central zones of large reverberant chambers. Such chambers
are carefully designed and validated for the laboratory measurement of absorption or sound
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Excitation of room modes with three different source positions. Curves for the sound pressure level in the corner position
(Ly, Ly, L;) are shown along with the axial, tangential and oblique mode frequencies to assess which modes are, and which
modes are not excited by the source position. Note that the curves have been offset from each other; this allows the relative
levels along each individual curve to be assessed, but not the relative levels between different curves.

power levels. In laboratory measurements of airborne and impact sound insulation we also
come across close approximations to diffuse sound fields in the source and receiving rooms.

In general it is better to avoid referring to a diffuse sound field in a room because we must
add several caveats to any such statement. At frequencies above the lowest room mode it is
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simpler if we just refer to a reverberant field. This acknowledges the fact that the room response
varies over the building acoustics frequency range due to the existence of one, a few, several,
or many modes in the different frequency bands. It also serves as a reminder that interference
patterns exist at the room boundaries, and that it is only in the central zone of reverberant
rooms that sound fields resemble (to varying degrees) a diffuse field.

1.2.7.5 Energy density

The energy density, w, equals the energy per unit volume. For a sound field comprised of plane
waves, Eq. 1.19 describes the sound intensity, i.e. the energy that flows through a unit surface
area in unit time. Therefore, as a plane wave will travel a distance equal to ¢y in unit time,
the energy density in any reverberant sound field comprised of plane waves (which includes
diffuse or modal sound fields) is

W, = L — (p2>t,s

Co  poc?

(1.129)

Hence the energy density is directly proportional to the temporal and spatial average mean-
square sound pressure, (p%)¢s.

1.2.7.5.1 Diffuse field

As any kind of signal can be described by using many impulses, the steady-state energy density
in a diffuse field can be derived by considering the impulse response of a room (Barron, 1973;
Kuttruff, 1979). We assume that a room contains a point source that generates an impulse at
time, t =0. This point source generates spherical waves for which the intensity is inversely pro-
portional to the square of the distance travelled (Eq. 1.26). At an arbitrary receiver position in the
room, the sound intensity is the sum of the intensity from the direct path and the many indirect
paths involving at least one reflection from a room boundary. For direct propagation from the
source to the receiver, we define the intensity at the receiver to be Iy, after it has travelled the
source—receiver distance, ry. For each propagation path that involves at least one reflection, we
can consider an image source that generates an identical impulse to the actual source at t =0.
At time, t, impulses from the actual source or an image source will have travelled a distance,
cot. For the image sources, a fraction of the sound intensity is absorbed upon each reflection
from the room boundaries; hence from Eq. 1.92 the intensity is attenuated by the factor

exp((;it In (1 —a)) (1.130)

mfp

At an arbitrary receiver point, the intensity from an image source at time, t, is therefore given by

lor?
%0 exp(ﬂln(1 —&)) (1.131)
0 dmfp

At time, t, we now need to determine how many impulses from image sources will arrive at
the receiver in a small time interval, §t. This is equivalent to finding the number of reflections
arriving during this time interval, and can be calculated from the temporal density of reflections
(Eq. 1.49), using

47108 t2

st (1.132)
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Therefore the total intensity arriving at the receiver after a specific time, 4, can be found by
integrating the intensity from all reflections according to

< for2 cot 4rc3t?
/:/ 0 ex (—In 1—&) 0 gt 1.133
. (oot TP\ Gy ") (1133)

and the energy density can be found using

/ W cot
W= — = —exp| —In(1 —@) ) dt 1.134
=a | v p(dmf,, (1-a) (1.134)

where the sound power, W, for the spherical wave source is
W = 4xrly (1.135)

The choice of time, t4, for the lower limit of the integral needs to consider the fact that the direct
sound does not arrive at the receiver until t =ry/co, and that the exponential decay in a diffuse
field can only start after the first reflections arrive at the receiver (i.e. when t > ry/cp). Therefore
if the lower limit of the integral is taken to be t; =0, the energy density will include the time
interval before the direct sound has arrived and the exponential decay has begun. Using t; =0
to estimate the energy density in a diffuse field, w;, gives the classical equation

4w

_ 1.136
Wr CoA ( )

where A=—-StIn(1—®).

The time interval during which the direct sound travels to the receiver can be excluded by using
t1 =ro/co to give an estimate of the energy density that is dependent upon ry (Barron, 1973).
In large spaces such as concert halls, this dependence on source—receiver distance is often
important. However, for sound insulation in typical rooms it is not necessary (or practical) to
relate the energy density to specific source—receiver distances. On the basis that the exponen-
tial decay in a diffuse field can only start after the first reflections arrive at the receiver position;
it is necessary to find a lower limit for the integration that represents the average time taken
to travel from the source to the receiver when there is one reflection. This can be determined
by using the mean free path (Kuttruff, 1979; Vorlander, 1995). Although the mean free path is
the average distance travelled after leaving one boundary and striking the next boundary, it is
reasonable to assume that the average distance from either the source or the receiver to any
room boundary is approximately equal to half the mean free path. Therefore the mean free
path represents the average path length between the source and receiver when there is one
reflection. Taking the lower limit of the integral to be t; = dnfp/Co gives the energy density of
the diffuse sound field, w;, as

W, = 007(1 —a) (1.137)

where A=—StIn(1—@)

If there is significant air absorption then for each image source, the intensity is attenuated by
the factor

exp(it In(1— a)) exp(—mcot) (1.138)
dmfp
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and the resulting energy density is (Vorlander, 1995)
4w A
-7 - 1.1
Wr CoA exp( ST) (1.139)

where A=—StIn(1 —@)+4mV.

Equating Eq. 1.129 to any of the above equations for the diffuse field energy density (Eqs
1.136, 1.137, or 1.139) gives the basic relationship between reverberant sound pressure and
absorption area for a fixed sound power input into a room; namely, that the sound pressure in
a room is reduced by increasing the absorption area, and vice versa. In diffuse fields with an
exponential decay, the decay curve is a straight line over the full 60 dB range; hence there is a
simple and unambiguous relationship between the reverberation time and the absorption area.

Having seen that there is more than one equation for the energy density in a diffuse field,
we need to discuss the equations that are used in practice. Although Eq. 1.139 is the more
accurate equation, it is not always necessary to consider air absorption. In practice, Eq. 1.137
is usually adequate. In most rooms with volumes less than 200m?® and reverberation times
less than 2s at 20°C and 50% RH the error in neglecting air absorption in the calculation of the
diffuse field energy density is only greater than 1 dB in one-third-octave-bands above 3150 Hz.
In the measurement Standards for sound insulation, the classical equation (Eq. 1.136) is used
to derive equations that link the sound power to the reverberant sound pressure level in a room
(Section 3.5.1). This is reasonable in transmission suites (where reverberation times are atleast
1s) because negligible errors are incurred when using Eq. 1.136. However, for field sound
insulation measurements (where reverberation times in furnished rooms are approximately
0.55s), consideration could be given to use of Eq. 1.137 to determine the apparent sound
reduction index (Vorlander, 1995).

1.2.7.56.2 Reverberant sound fields with non-exponential decays

In comparison with diffuse fields, it is more awkward to make a link between the sound power
radiated into a room and the reverberant sound pressure level for a non-diffuse field. For modal
sound fields, some insight can be gained by using normal mode theory and the specific acoustic
admittance of the room boundaries; however, this does not give a completely general solution
that corresponds to the practical situation (Jacobsen, 1982; Bodlund, 1980). For non-diffuse
fields, it is the reverberation time that provides a practical link between the sound power and
the reverberant sound pressure level. The difficulty lies in evaluating decay curves from non-
diffuse fields because they are not straight lines across the entire 60 dB decay range. For this
reason it is necessary to identify which part of the decay curve should be used to calculate the
reverberation time.

From normal mode theory in Section 1.2.6.3.2 we have seen that it is only within the initial 20 or
30dB of the decay curve that the majority of room modes play a role in determining the decay
curve of the frequency band. The late part of the decay is determined by a relatively small
number of modes with longer decay times. In the steady-state situation, energy is stored in all
modes; hence, it is appropriate to determine the reverberation time using an evaluation range
in which the majority of the room modes play a role in forming the decay curve. Furthermore, as
any signal can be represented by a train of impulses, we can describe the steady-state sound
pressure by the energetic sum of a train of impulse responses. For each impulse response, only
the initial 20 dB drop of its decay curve will determine the steady-state sound pressure level to
within 0.1 dB. Therefore T1g, T1s, or T should be used to determine the absorption area, rather
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than T3¢ or Tgp. The energy density in reverberant sound fields with non-exponential decays
can then be estimated by using the equations for the diffuse field energy density (Eqs 1.136,
1.137, and 1.139).

1.2.7.6 Direct sound field

So far we have considered the sound field in the central zone of a room without considering the
sound field close to the sound source, i.e. the direct field. Most sound insulation measurements
use an omnidirectional loudspeaker and we need to consider the direct field near the sound
source in order to assess how far the microphone should be from the loudspeaker when we
want to measure the reverberant sound pressure level in the central zone of the room without
any strong influence from the direct field.

For an omnidirectional source that emits a sound power, W, and is positioned away from the
room boundaries, the energy density of the direct field, wy, at a distance, d, from the source is

w

-7 1.14
M = aced? (1.140)

Figure 1.38 shows the energy density due to the direct and the reverberant fields in a 50 m®
room at distances up to 1 m from the sound source. The energy density due to the direct field
decreases by 6dB every time the distance is doubled. The distance from the sound source
at which the energy density in the direct field (Eq. 1.140) equals the energy density in the
diffuse field (Eq. 1.137) is described as the reverberation distance, r,q. When a~ —In (1 —@)
the reverberation distance can be estimated using

Sta
4 A 1.141
fra 167 ( )

In rooms with volumes less than 150 m® and reverberation times greater than 0.5's, the rever-
beration distance is usually less than 1 m. To measure the reverberant sound pressure level the
preferred option is to position the microphone at distances slightly greater than the reverber-
ation distance. However in most rooms a practical choice for the minimum distance between the
microphone and most loudspeakers is 1 m; this is commonly used for airborne sound insulation
measurements (ISO 140 Parts 3 & 4).

1.2.7.7 Decrease in sound pressure level with distance

There are two main types of room in which there can be a significant decrease in the sound
pressure level with distance from the source: (1) large rooms (often with volumes greater
than 200 m®) with absorbent surfaces and/or large scattering objects and (2) corridors or pas-
sageways, usually with highly absorbent ceilings. Computer models (usually based around a
geometrical ray approach) can be used to calculate the sound pressure level distribution, but
for corridors it is still possible to gain some insight using simpler models.

Long corridors, such as those in flats, offices, and schools, are usually broken up into smaller
lengths of corridor by fire doors. This typically results in sections of corridor that are less
than 30 m in length, and where the dimensions of the cross-section are between 1.5 and 5m.
Noise control measures in the corridor often require absorptive ceilings; hence these elongated
spaces can show a significant decrease in the sound pressure level with distance. As the sound
propagates down the corridor, there are two types of internal damping that reduce the sound
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Figure 1.38

Energy density due to the direct and reverberant fields in a room at distances up to 1 m from the sound source.

pressure level: air absorption (which will be considered as negligible) and absorption by the
corridor surfaces.

For athorough overview of models for long enclosures the reader is referred to the book by Kang
(2002). A simple model can be based on a corridor of infinite length that is divided into a number
of very thin box-shaped sections of depth, dL (Redmore and Flockton, 1977). Effectively we are
considering a large number of two-dimensional sound fields that are coupled together along
the length of the corridor (see Fig. 1.39). The following derivation and the resulting equation
(Eq. 1.145) are different from that in Redmore and Flockton (1977). However, it gives the
same equation that was later determined empirically in scale model experiments of corridors
by Redmore (1982).

It is assumed that the energy density in each section of volume, dV, is uniform and that the
corridor surfaces have an average absorption coefficient, «. We arbitrarily choose a section at
x =0 in this infinite corridor, and follow sound propagating in the positive x-direction. In each
two-dimensional sound field, sound energy impinges upon the corridor surfaces, ¢o/dmfp times
every second; the mean free path for a two-dimensional field is given later in Eq. 1.185. The
power absorbed by the corridor surfaces is

Co A _Ecan

Wips = wdV — = 1.142
2bs O UL~ 7L, L, (1.142)
where A= UdL«, and the perimeter of the corridor section, U=2L, + 2L,.
The absorbed power is related to the loss factor by
Waps = wnE (1.143)
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Corridor divided into sections.

hence equating Eqs 1.142 and 1.143 gives the loss factor as

CoUO(

_ _Gore 1.144
2m2fL, L, (1144)

n

After travelling a distance, d, down the infinitely long corridor, the sound energy is reduced by
the factor exp(—knd), which gives the decrease in the sound pressure level in decibels as

10 1 Uad

Alpf = ———
"= 107 L,L,

(1.145)

Equation 1.145 applies to an infinitely long corridor (i.e. without ends). In practice, sound will
be partially reflected and partially absorbed from the end(s) of the corridor. We now consider a
corridor that extends to infinity in the negative x-direction, but has a termination at x =D (e.g.
at the fire doors). It will be assumed that there are no interference effects between the incident
and reflected sound at the receiver. In addition, we will not consider how the sound is injected
into the corridor; this avoids consideration of the direct field from the sound source. To do this
it is assumed that the thin corridor section at x = 0 starts with uniform energy density, and that
sound propagates in the positive x-direction. The decrease in sound pressure level after the
sound has travelled a distance, d, down the corridor is (Redmore and Flockton, 1977)

AL = —101g (10~ 2knt/10 1 R1Q~ALinr(2D=d)/d)/10) (1.146)
where the surface at the end of the corridor has a reflection coefficient, R.
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Decrease in sound pressure level along a corridor. Two different cross-sections (L, x L,) are shown: A (1.5 x 2.5m) and
B (3 x 3m). The corridor surfaces have average absorption coefficients of 0.1, 0.2, or 0.3. The surface that forms the end of
the corridor has a reflection coefficient, R = 0.95.

Figure 1.40 shows the calculated decrease in level along two different corridors with different
average absorption coefficients. The partial reflection at the end of the corridor causes the
initial decrease in sound pressure level per unit distance to be larger than it is towards the end
of the corridor.

1.2.7.8 Sound fields in frequency bands

So far we have focused on the sound field at single frequencies in box-shaped rooms that
have perfectly reflecting rigid boundaries. We usually measure sound insulation in one-third-
octave or octave-bands in rooms with a wide variety of boundaries. These bands contain many
modes with different decay times and, when considering interaction with the room boundaries,
it becomes more complex to predict this sound field. To look at the superposition of modes that
occurs in real rooms we now look at some example measurements of sound pressure levels
in one-third-octave-bands.

1.2.7.8.1 Below the lowest mode frequency

Below the lowest mode frequency we expect the sound field to be homogeneous and uniform
throughout the space. This assumption is reasonable when there is no significant overlap from
the response of the lowest mode into frequency bands below the lowest mode frequency.

To gain an impression of the sound field we can look at sound pressure level measurements
in a 29 m® source room, and an 18 m® receiving room, both with timber-frame walls and floors
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(Hopkins and Turner, 2005). The lowest mode frequency is calculated to be 39 Hz for the
source room and 59 Hz for the receiving room. Therefore we will look at the 20 Hz one-third-
octave-band because this is well-below the lowest mode in both rooms. A broad-band noise
source was used with measurement positions in a three-dimensional grid (including positions
at the room boundaries). To gain a visual impression of the sound field, sound pressure levels
from three different measurement planes are shown in Figs 1.41a and 1.41b for the source
and receiving rooms respectively. In the source room there is a peak in the sound pressure
level immediately next to the loudspeaker. Further away from the loudspeaker in the source
room, and throughout the receiving room, the spatial variation within a single measurement
plane can be as low as 2dB or as high as 12 dB. Although the sound field is relatively uniform
in some measurement planes it will not always be homogeneous throughout the room volume.
The non-uniform sound field in the receiving room may be attributed to structural modes and
resonances of the walls and floors that occur below the lowest room mode. The mass—spring—
mass resonance frequency of the timber-frame separating wall is estimated to fall in the 31.5Hz
one-third-octave-band.

For field measurements it is worth noting that both source and receiving rooms can have
quite large spatial variations in the sound pressure level below the lowest calculated mode
frequency.

1.2.7.8.2 Reverberant field: below the Schroeder cut-off frequency

In rooms with volumes less than 30 m? the sound field in one-third-octave-bands below 100 Hz
is sometimes dominated by the response of a single mode. However, in the low-frequency
range the situation is usually more complex due to the influence of one, two, or three modes
that fall within a frequency band.

In most dwellings the height (L;) of a room is less than the width (L) and the depth (L,).
Therefore the lowest mode frequency will be fi o or fo 10, and when L, #L,, one of these
modes will usually be the only mode that falls exactly within the lower and upper limits of the
associated one-third-octave-band. Depending on the amount of damping and the bandwidth,
the response from one or more modes in adjacent bands can overlap into this band. As an
example we can look at the measured sound pressure level distribution in a 34 m® receiving
room with masonry/concrete walls and floors for the 50 Hz one-third-octave-band; this has a
measured reverberation time of 1.2s. For this room the Schroeder cut-off frequency is in the
500 Hz band. Broad-band excitation was applied in the source room, so it is representative
of the situation that is encountered in field sound insulation tests. The sound field is shown
in Fig. 1.41c and can generally be described as symmetrical in each plane. The first three
modes are f10,0, fo.1,0, and f1 1o for which the calculated mode frequencies (assuming rigid
walls) are 43, 47, and 64 Hz respectively. Although fy 1 o is calculated to be the only mode that
falls exactly within the limits of the 50 Hz band, there is evidence of overlapping response from
one or both of the f; 00 and f1 1 o modes. This is evident from the nodal planes along both the x
and y-axes where the sound pressure levels are lowest in the middle of both these axes, rather
than just the y-axis as would occur if the response was only due to fy 1 0. We previously noted
that real walls and floors are not rigid and will dissipate energy; hence the sound pressure in
nodal planes will not be zero as implied by normal mode theory for sinusoidal excitation of a
single mode in a room with rigid boundaries. However, these nodal planes still cause a high
degree of spatial variation in the sound field. For the 50 Hz band in this example, there is a
difference of 28 dB between the lowest level in the central zone of the room and the highest
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Measured sound pressure level distribution in rooms. For each figure, the same scale is used in each of the three plots to allow an assessment of the differences between the sound pressure

levels in the different planes; however, different scales are used for different rooms and different frequency bands.
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level that is ~0.5 m from the room boundaries. For sound insulation measurements with broad-
band noise sources, measured data suggests that this difference will usually be between 17
and 28 dB for typical rooms in the low-frequency range (Hopkins and Turner, 2005; Simmons,
1996); background noise will always limit the lowest level that is measurable in the nodal
planes.

The highest sound pressure levels exist in corners and near wall/floor surfaces, with low levels
near the centre of the room. This highlights an important issue for spatial average sound
pressure level measurements in small rooms. Field sound insulation measurement procedures
usually require that the microphone is positioned at a minimum distance of 0.5m from the
boundaries with guidance that this minimum distance should be increased to 1.2m below
100Hz (ISO 140 Part 4). In small rooms this means that the microphone is positioned in
the central zone of the room where the sound pressure level is lowest. Therefore the spatial
average levels are not representative of either the room average sound pressure level or the
level perceived by room occupants who often sit and sleep near the room boundaries.

For a room height, L., which is between 2.1 and 2.4 m, the fy 01 mode will fall within the
63 Hz or 80 Hz one-third-octave-band. This mode gives rise to low sound pressure levels on
the z=L,/2 measurement plane (the plane that lies in the middle of the z-axis) compared to the
levels on the z=0 and the z=L, measurement planes. Figure 1.41d shows the data for the
80 Hz one-third-octave-band in an 18 m? receiving room with timber frame walls and floors with
a measured reverberation time of 0.5 s. For this room the Schroeder cut-off frequency is in the
315 Hz band. We might expect the time-averaged sound pressure level in each measurement
plane for a box-shaped room to be symmetrical in frequency bands containing the first few
modes. However, the spatial variation is asymmetric; this usually occurs when one or more of
the room dimensions are equal to at least one wavelength. In most rooms there are recessed
windows or lobby areas associated with the door, i.e. smaller volumes connected to the main
rectangular space. As the room shape and the surface impedance of the room surfaces become
increasingly irregular with scattering objects in the room, the local mode shapes effectively
become hybrid mode shapes which do not have symmetrical sound pressure fields. Above the
first few modes there is usually a marked degree of asymmetry and complexity in the sound field.
An example is shown in Fig. 1.41e for the 160 Hz one-third-octave-band in the 18 m3 receiving
room of timber-frame construction. Asymmetry not only occurs in the receiving room, but also in
the source room, although this is partly due to higher levels in the direct field of the loudspeaker.

1.2.7.8.3 Reverberant field: at and above the Schroeder cut-off frequency

At and above the Schroeder cut-off frequency the sound field becomes increasingly uniform in
the centre of the room. However, at positions that are very close to the room boundaries there
are still higher sound pressure levels due to the interference patterns.

An example is shown in Fig. 1.41f for the 500 Hz one-third-octave-band in a 34 m® receiving
room with masonry/concrete walls and floors. This frequency band contains the Schroeder cut-
off frequency. Compared to the average level in the centre of the room, the average measured
levels at the wall surfaces are ~3 dB higher, the edges are ~6 dB higher, and the corners are
~8 dB higher; these correspond to the predicted values 3, 6, and 9dB that were discussed
earlier in Section 1.2.7.1.1. Higher sound pressure levels did not occur at a few grid points near
the room surface with a recessed window in the external wall because the microphone was
then ~200 mm further away from the room boundary. This feature can be seen in Fig. 1.41f
where the window position is indicated on the diagram.
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Above the Schroeder cut-off frequency the spatial variation usually decreases significantly so
it is more useful to look at the standard deviation rather than plots of the spatial distribution of
the sound pressure level.

1.2.7.9 Statistical description of the spatial variation

When measuring and predicting the sound pressure level in rooms, it is almost always the
spatial average value that is required. Hence we need to be able to quantify the spatial variation
of the sound pressure level in terms of the normalized variance of the mean-square sound
pressure, and the standard deviation of the sound pressure level in decibels. The normalized
standard deviation, ¢, is the ratio of the standard deviation to the mean, which is squared to
give the normalized variance, 2.

To determine the standard deviation and confidence intervals, itis necessary to know the proba-
bility distribution (probability density function) for the mean-square pressure, or identify one that
gives a reasonable representation of the actual distribution. The standard deviation depends
upon the type of excitation. For sound insulation we almost always use broad-band noise and
measure in frequency bands; although sound insulation against pure tones is occasionally of
interest with environmental noise sources. For frequency band measurements in rooms con-
taining a single omnidirectional sound source emitting broad-band noise, estimates of the stan-
dard deviation can be found in the same way as for sound power measurements in a reverberant
chamber (Schroeder, 1969; Lubman, 1974). For airborne sound insulation measurements we
carry out spatial sampling of the sound pressure in the room that contains the loudspeaker,
the source room. We will assume that the sound pressure is sampled at stationary microphone
positions located at random points in the room; these positions are away from the room bound-
aries and at positions where the direct field from the source is insignificant. In this situation, the
spatial variation of the mean-square pressure is represented by a gamma probability distribu-
tion for either modal or diffuse sound fields (Bodlund, 1976; Lubman, 1968; Schroeder, 1969;
Waterhouse, 1968). This gamma distribution is asymmetric, right-skewed and is bounded at
the lower end of the distribution by the minimum possible value for the mean-square pressure.

In practice it is necessary to consider temporal as well as spatial averaging. Here it is assumed
that the uncertainty due to time-averaging of the random noise signal at each position is
negligible; for further discussion of temporal averaging in measurements see Section 3.3.3.

The valid frequency ranges for the variance and standard deviation formulae in this section
are defined in terms of the Schroeder cut-off frequency. At frequencies between 0.2fs and
0.5fs the normalized variance of the mean-square sound pressure can be estimated from
(Lubman, 1974)

N\
&2(p?) = (1 + —) (1.147)
T
where N is the mode count in the frequency band (Section 1.2.5.2).

The corresponding standard deviation of the sound pressure level in decibels, o4, can be
estimated from Eq. 1.147 by taking account of the gamma distribution using (Craik, 1990)

4.34

022+ 14+ %

Using the statistical modal density to calculate the mode count for use in Eqs 1.147 and 1.148
gives a non-integer mode count compared to the integer value determined from the individual

(1.148)

odB ~
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mode frequencies by counting the number of modes that fall within each frequency band. The
difference between the two methods is rarely large but the statistical approach is more robust. It
accounts for the fact that most rooms are not perfect box-shaped rooms with rigid boundaries;
in practice, a modal response will often occur in a frequency band that is adjacent to the band
in which it was predicted to lie. It also avoids arbitrary decisions when an individual mode is
calculated to lie very close to the boundary between two adjacent frequency bands. By using
a statistical approach at frequencies with such low modal overlap we must expect the actual
standard deviation in decibels to fluctuate about the smooth curve predicted by Eq. 1.148.

If the lower limit of 0.2fs does not include the lowest frequency band of interest, then a rea-
sonable estimate can still be calculated with Eq. 1.148 when the limit is lowered to that of the
frequency band containing the lowest mode frequency (Hopkins and Turner, 2005). As noted
by Lubman, this equation takes no account of other important factors: modal damping (rever-
beration time); combinations of small numbers of different room modes (axial, tangential, or
oblique); and the degree to which the modes are excited. Despite these omissions, it generally
gives estimates within -1 dB of measured values.

In a diffuse field at frequencies above fs, the normalized variance can be calculated from the
bandwidth, B, and the room reverberation time, T, according to (Schroeder, 1969)

1

202 = — 1.14
e = 7014587 (1.149)
for which the corresponding standard deviation in decibels is (Schroeder, 1969)
5.57
(1.150)

78 = T+ 0238BT

In most rooms, Eqgs 1.149 and 1.150 will give reasonable estimates at and above 0.5fg (rather
than above fs); this allows continuity from Eqgs 1.147 and 1.148 across the entire building
acoustics frequency range. Whilst these equations are normally sufficient, it is sometimes
necessary to take account of the direct sound field from the omnidirectional sound source. In
this situation, the normalized variance above 0.5fs can be calculated from (Michelsen, 1982)

1 \/% (ST\FA)3 (1.151)

2(n2\ __
P = 75014887 T | 16020, \ v

where dnin is the minimum distance between the microphone and the sound source.

For airborne sound insulation measurements in both the laboratory and the field, dyn=1m
(ISO 140 Parts 3 & 4), and the difference between Eqgs 1.149 and 1.151 can become significant
in the high-frequency range for low reverberation times and/or large rooms.

For Eqg. 1.151, the corresponding standard deviation in decibels is (Michelsen, 1982)
ods ~ 4.34,/&2(p?) (1.152)

Calculated standard deviations over the building acoustics frequency range (using Eqs 1.148,
1.151, and 1.152) are shown in Fig. 1.42 for a 50 m® room with different reverberation times
and dnin=1m. Above 100 Hz the standard deviation increases as the reverberation time
decreases. Note that these standard deviations are for one-third-octave-bands and that octave-
bands will have lower values; hence octave-bands are sometimes used to reduce the required
number of microphone positions in a room. As an aside it is worth noting that the standard
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Figure 1.42

Predicted standard deviation for the spatial variation of the sound pressure level for a 50m3 source room with different
reverberation times.

deviation for a pure tone in a diffuse sound field is 5.6 dB (Schroeder, 1969); this is much
higher than the standard deviations that typically occur with broad-band noise measured in
one-third-octave or octave-bands over the building acoustics frequency range.

Describing the spatial variation in the receiving room is of equal importance to the source room.
However, the situation is more complex for three main reasons.

Firstly, the sound transmitted into the receiving room is not always broad-band in nature. It
may contain peaks in the sound pressure level at single frequencies, for example at the critical
frequencies of walls/floors/windows, or the mass—spring resonances of wall linings. In reality
this may only occur with a few types of homogeneous isotropic building elements because the
majority of building elements are constructed from small components (e.g. bricks forming a
brick wall) such that there will be spatial variation in the dynamic properties of the element due
to both workmanship and the material properties. This makes it less likely that there will be a
well-defined pure tone for a critical frequency or mass—spring resonance.

Secondly, we are no longer dealing with a single point source; one or more room surfaces are
acting as the sound sources. In the laboratory we assume that all the sound is radiated into
the receiving room by the test element, whereas in the field, it is radiated by both separating
and flanking elements. Michelsen (1982) and Olesen (1992) have investigated the standard
deviation of sound pressure levels in the source and receiving rooms for sound insulation
measurements in both the laboratory and the field. Radiating surfaces in the receiving room
can be represented as an equivalent number of uncorrelated point sources, hence the larger
the surface, the larger the number of point sources. The implication for the standard deviation
in a receiving room is that it should be lower than the source room because of the increased
number of uncorrelated point sources. Measured data does not confirm that lower values
always occur in practice (Michelsen, 1982; Olesen, 1992; Hopkins and Turner, 2005).
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Figure 1.43

Comparison of measured and predicted standard deviations for the spatial variation of the sound pressure level in a 29 m®
source room. Measured data are reproduced with permission from Hopkins and Turner (2005).

Thirdly, the gamma probability distribution may not be a reasonable representation of the
actual distribution for mean-square sound pressure in a receiving room. If we consider the
interaction between all the radiating surfaces and the space it is clear that the mean-square
sound pressure at any point in the room is determined by a large number of variables. By
assuming that these are independent random variables, the sound pressure level will be the
sum of a large number of random quantities. The central limit theorem can therefore be used
to infer that the spatial variation of the mean-square sound pressure will have a log-normal
probability distribution, and the sound pressure level in decibels will have a normal (Gaussian)
probability distribution (Lyon and DeJong, 1995).

Despite these three complexities, empirical evidence suggests that reasonable estimates for
receiving rooms can be found by using the same equations as for source rooms.

Figures 1.43 and 1.44 show measured and predicted standard deviations for a 29 m® source
room and a 34 m® receiving room (Hopkins and Turner, 2005). The microphone positions are
at least 0.5m from the room boundaries and at least 1 m from the sound source. Generally,
there is good agreement between the measurements and the calculated values. The largest
discrepancies tend to occur below 0.5fs; in practice, measured standard deviations will rarely
be greater than 6 dB for typical rooms within this frequency range. The equations discussed
above are only valid for sound fields above the lowest mode frequency. However, the mea-
surements in the source room allow us to see the trend for the standard deviation below the
lowest mode frequency in the 20 to 31.5Hz frequency bands. In this range we assume that
the sound field is uniform. Below the lowest mode frequency the standard deviation rapidly
decreases due to the fading influence of the modes on the sound field. In practice, it is unlikely
that the sound field in both source and receiving rooms can be considered as homogeneous
and uniform in the first few frequency bands below the band that contains the lowest mode
frequency.
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Figure 1.44

Comparison of measured and predicted standard deviations for the spatial variation of the sound pressure level in a 34 m®
receiving room. Measured data are reproduced with permission from Hopkins and Turner (2005).

1.2.8 Energy

Although we are ultimately interested in the temporal and spatial average sound pressure
level in rooms, sound transmission involves energy flow between spaces and structures. This
makes it convenient to work with a single variable, energy; so we need to know the relationship
between the temporal and spatial average values of sound pressure and energy in a room.

The energy in a room can be derived with two different approaches, one using sound pressure,
and the other using sound particle velocity. The latter approach is used to describe the energy
stored in structures such as plates and beams; hence it is included here to highlight the link
between the way we deal with sound in spaces and the vibration of structures.

In both diffuse and non-diffuse fields, we can assume that the sound field is comprised of plane
waves and calculate the sound energy using the plane wave intensity described by Eq. 1.19.
The plane wave intensity quantifies the energy travelling through an imaginary surface of unit
area in 1s, where this surface lies perpendicular to the direction of wave propagation. The
group velocity, ¢4, is defined as the velocity at which wave energy propagates, which for
longitudinal waves in air is the same as the phase velocity, cy. Therefore the energy density
in a reverberant field, w;, that describes the energy in a unit volume is

/
W, = —

1.153
. (1.153)

Hence the energy stored in volume, V, is

<p2>t,sv
Pocg

E=wV= (1.154)

where (p?); s is the temporal and spatial average mean-square sound pressure.
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An alternative way of deriving the room energy is from the product of the mass of air within
the room and the temporal and spatial average mean-square sound particle velocity, (U?); s,
where the latter can be found from the characteristic impedance of air (Eq. 1.18). This gives

PPhs _ (PPesV
PoCs  PoCh

E=mu?s =poV (1.155)

1.2.8.1 Energy density near room boundaries: Waterhouse correction

When calculating the sound energy stored in a reverberant room we need to consider the fact
that energy density is not uniformly distributed throughout the space. Near the room boundaries
the phase relationships between sound waves impinging upon a point are no longer random.
This causes interference patterns and an increase in energy density close to the boundaries
(Section 1.2.7.1).

To determine the total sound energy stored in a reverberant room from the energy calcu-
lated with Eq. 1.154 (using the spatial average sound pressure measured in the central zone
of the room) the energy is multiplied by the following frequency-dependent correction term
(Waterhouse, 1955)

St

1+8T

(1.156)

where St is the total surface area of the room.

This term is widely referred to as the Waterhouse correction which is usually more convenient
to use in decibels,
Sti

CW=1OIg<1+W> (1.157)

In the derivation of the correction term it is assumed that the room surfaces are perfectly
reflecting, which is often a reasonable assumption in the low-frequency range where the term
is most important. It is also assumed that sound waves are incident from all directions upon
a reflecting surface which has dimensions that are large compared to the wavelength. This
will not be a valid assumption where the sound field in the central zone of the room cannot
be classified as reasonably diffuse, and the room dimensions are small. Another important
assumption is that the energy stored in edge and corner zones is relatively small compared to
the energy stored near room surfaces. This is a reasonable assumption in many shapes and
sizes of room when the walls and floors have large surface areas. However, it is not necessarily
appropriate for modal sound fields in the low-frequency range where there are relatively few
oblique modes compared to axial and tangential modes. In this situation, numerical calculations
indicate that the Waterhouse correction sometimes appears to give accurate results because
it overestimates the energy stored near room surfaces (Agerkvist and Jacobsen, 1993). This
compensates for the fact that the energy stored in edge and corner zones is not included in
the correction term.

Example values for the Waterhouse correction are shown in Fig. 1.45 for box-shaped rooms
with volumes in the range 50 to 200 m®. For these rooms the correction term is greater than 1 dB
in the low-frequency range which is often below the Schroeder cut-off frequency. This means
that significant values for the correction term tend to occur at frequencies where the sound field
in the central zone of the room is not a close approximation to a diffuse field. However, as a
rule-of-thumb for the building acoustics frequency range, the Waterhouse correction term tends
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Figure 1.45

Waterhouse correction, Cy, for different room volumes.

to give a reasonable estimate for most empty box-shaped rooms with a minimum volume of
50 m®. This assumes that the sound pressure level in the central zone is adequately sampled.

When calculating the sound power radiated into a room from sound pressure measurements
made in the central zone of a reverberant room, the Waterhouse correction in decibels should
be added to the sound pressure level in decibels. However, we do not need to account for
interference patterns at the room boundaries when we calculate the diffuse field intensity that
is incident upon a surface from the diffuse field sound pressure level. Hence there are some
situations where we need to use the Waterhouse correction and some where we don’t. Specific
applications of the Waterhouse correction that apply to the measurement of sound insulation
are noted in Chapter 3.

1.3 Cavities

Cavities exist in many different parts of a building, for example: ceiling voids, roof voids,
between the joists in timber floors, in thermal glazing units, within cavity walls, and behind wall
linings. They can play an important role in sound transmission because vibration is not only
transmitted via structural connections between the plates that form a cavity, but also by the
sound field in the cavity itself.

As with rooms we will retain use of the convenient box-shaped space but for cavities we will
use L, as the smallest dimension, the cavity depth (see Fig. 1.46).

1.3.1 Sound in gases

Almost all cavities in buildings are filled with air, so Eq. 1.1 for the speed of sound in rooms
is also applicable to cavities. However, cavities such as those in insulating glass units are
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Figure 1.46

Box-shaped cavity.

sometimes filled with other gases. Therefore a more general approach to calculate the phase
velocity, ¢, for any ideal gas is given by

~ yPV _ [yR(T + 273.15)
TV \/KI’IM \/ = M (1.158)

where « is the gas compressibility (adiabatic), p is the gas density, V is the volume occupied
by n moles of a gas, M is the molar mass of the gas (kg/mol), y is the ratio of specific heats
at constant pressure and constant volume which is 1.67 for monatomic gases such as helium,
1.41 for diatomic gases such as air, and 1.33 for polyatomic gases, P is the static pressure
which is 1.013 x 10° Pa for air at atmospheric pressure, R is the universal gas constant which
is 8.314 J/mol.K, and T is the temperature in °C.

Properties of gases that are components of air or gases that are sometimes used in insulating
glass units are listed in the Appendix, Table A1.

1.3.2 Sound in porous materials

Cavities in walls and floors are sometimes partly filled or fully filled with porous materials to
absorb sound energy and provide other benefits such as thermal insulation. Porous materials
are also used around the perimeter of cavities to absorb sound and/or to control the spread of
fire. Some examples are shown in Fig. 1.47.

Porous materials essentially consist of a skeletal frame (which could be formed from fibres,
granules, or a polymer, etc.) that is surrounded by air. A wide range of porous materials are
used in buildings, with a range of frames (e.g. mineral wool, polystyrene balls, open-cell foam,
masonry blocks). Sound transmission through porous materials takes place due to airborne
propagation through the pores and structure-borne propagation via the frame. However, there
are varying degrees of coupling between these types of propagation, and they cannot simply
be assumed to occur independently of each other. For this reason, sound propagation through
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Examples of porous materials used in cavities.

porous materials is considerably more complex than in air; the subject is only touched upon
here to introduce basic concepts and parameters that are needed in other chapters. For a
thorough review of different models used to describe sound in porous materials, the reader is
referred to Allard (1993).

1.3.2.1 Characterizing porous materials

Two simple parameters that can be used to describe the properties of porous materials are
the porosity and the airflow resistance. For a more complete description of the material, other
parameters such as the structure factor, shape factor, and tortuosity can be used to describe
aspects relating to the propagation path through the pores. However, these parameters are
rarely available, more awkward to measure, and are used in more complex models than will
be looked at here.

1.3.2.1.1 Porosity

For porous materials, the porosity, ¢, is defined as

_ Vair
Viuik

(1.159)
where Vj;; is the volume of air within the material and Vi, is the bulk volume (i.e. total volume)
of the material.

For porous materials used in buildings, the porosity is usually in the range, 0.90 < ¢ < 0.99.
For mineral wool it is typically 0.95 < ¢ < 0.99. Mineral wool (i.e. glass or rock fibre) is usually
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made of solid fibres, hence if the material that binds these fibres together has negligible mass,
the porosity can be estimated using

¢ =1 Lok (1.160)
Pribre

where ppyi is the bulk density of the material and pfpre is the density of the fibre.

1.3.2.1.2 Airflow resistance

Sound absorption by, and sound transmission through porous materials is partly described by
their ability to resist airflow. This is quantified by the following parameters: airflow resistance,
specific airflow resistance, and airflow resistivity.

The airflow resistance, R (Pa.s/m®) is defined as
Ap

"o

where Ap is the air pressure difference (referred to as differential pressure) across a layer

of porous material with respect to the atmosphere (Pa), and q, is the volumetric airflow rate
passing through the layer (m®/s). The volumetric airflow rate is

R (1.161)

qu =uS (1.162)

where u is the linear airflow velocity (m/s) and S is the cross-sectional area of the porous
material perpendicular to the direction of airflow (m?).

The specific airflow resistance, Rs (Pa.s/m) applies to a specific thickness of a porous
material; hence it is an appropriate specification parameter for both homogeneous and non-
homogeneous materials as well as materials with a porous surface coating or perforated surface
layer.

Rs = RS (1.163)

The airflow resistivity, r (Pa.s/m?) is the specific airflow resistance per unit thickness, and is
only appropriate as a specification parameter for homogeneous materials.
_SAp RS R

_ _ 1.164
"= dq, T d ~ d (1.164)

where d is the thickness of the layer of porous material in the direction of airflow (m).

NB: Specific airflow resistance and airflow resistivity are sometimes quoted in Rayls and
Rayls/m respectively. The Rayl is used as a unit for the ratio of sound pressure to particle
velocity and is equivalent to Pa.s/m.

For fibrous materials the airflow resistance depends upon the direction of airflow through the
material. These materials are usually supplied and used in rectangular sheets, either cut from
slabs or from a roll, hence the airflow can be measured in two directions as shown in Fig. 1.48:
(1) in the plane of the sheet, the lateral airflow and (2) perpendicular to the plane of the sheet,
the longitudinal airflow. In the literature it is usually measurements of the longitudinal airflow that
are quoted (e.g. Bies and Hansen, 1980). In rooms or cavities where sheets of material are used
to cover a surface it is the longitudinal direction that is needed to calculate the sound absorption
coefficient for the surface. However, narrow cavities are sometimes separated by sheets of
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Airflow resistivity of a sheet of porous material — definition of lateral and longitudinal directions.

fibrous materials that form a junction between the different cavities. Depending on the orien-
tation of these sheets it is either the lateral or longitudinal direction that is needed to calculate
the absorption coefficient for the cavity boundary or sound transmission between cavities.

1.3.2.1.3 Fibrous materials

Fibrous materials are commonly used in cavities of walls and floors. The airflow resistance
of fibrous materials is due to friction between the fibres and the air particles moving between
the fibres, hence it can depend upon: size of fibres, shape/type of fibres (e.g. crimped, hol-
low), density of fibres, number of fibres per unit volume, and fibre orientation/distribution (e.g.
random, stratified/layered, stratified with higher fibre density near the surface of the sheet).

Mineral wool is anisotropic as the fibres tend to lie in planes that are parallel to the plane of
the sheet; the orientation of the fibres within each plane being random. Therefore the airflow
resistivity in the lateral direction is significantly lower than in the longitudinal direction.

For mineral wool (i.e. glass or rock wool) empirical relationships can be found between airflow
resistance and bulk density according to (Bies, 1988; Nichols, 1947)
1+ko

r = KiPour” (1.165)

df?bre
where k; is a constant for a material that is manufactured in a particular way, k is a constant
that depends upon fibre orientation, and dspre is the fibre diameter (microns).

For one type of mineral wool with a known average fibre diameter, the constants k4 and k, can
be found from measured airflow resistivity data for a range of bulk densities. By plotting Ig(r)
against Ig(ppuik), the data points should cluster along straight lines, and linear regression can
be used to determine k4 and k,. An example is shown in Fig. 1.49 for the lateral and longitu-
dinal airflow resistivity of rock wool (random fibre orientation, average dspre =4.75 wm, average
pribre = 2600 kg/m?®, porosity range was 0.94 (highest bulk density) < ¢ < 0.99 (lowest bulk dens-
ity), two different UK manufacturers). For the lateral airflow resistivity, k1 =353, ko = 0.63 over
the bulk density range, 31 < ppuk < 155 kg/m3. For the longitudinal airflow resistivity, k1 = 780,
ko = 0.59 over the bulk density range, 38 < ppuk < 162 kg/m®.

81



Ch01-H6526.tex 19/7/2007 14: 2 Page 82

Sound Insulation
200 000
® [ongitudinal
o Lateral
100 000
ks
g
&
< 10000
R>=0.93
1000
10 100 200
Pouri (kg/m?)
Figure 1.49

Measured airflow resistivity (lateral and longitudinal directions) for rock wool. Individual measurements are shown along with
regression lines. Measured data from Hopkins are reproduced with permission from ODPM and BRE.

Measured airflow resistivities and empirical relationships for other porous materials can be
found from Bies and Hansen (1980), Mechel and Vér (1992), and Mechel (1995). To cover
the full density range for a material it may be necessary to have more than one empirical
relationship, this can occur with fibrous materials that can be produced in a wide range of
fibre diameters. For materials such as glass wool, the combination of different manufacturing
processes and different fibre diameters can lead to empirical relationships that are specific to
one manufacturer and/or density range (Bies, 1988).

To determine empirical relationships for materials other than mineral wool, the form of Eq. 1.165
may not be appropriate. For example, with polyester fibre materials it has been shown that
better correlation can be found between the airflow resistivity and the number of fibres per unit
volume (Narang, 1995).

1.3.2.2 Propagation theory for an equivalent gas

General theory for sound propagation in a fluid-saturated porous elastic material requires con-
sideration of two longitudinal waves and one shear wave (Biot, 1956). Modelling these three
waves requires knowledge of the fluid density, frame density, porosity, airflow resistivity, tor-
tuosity, complex shear modulus, and Poisson’s ratio. In buildings we are usually interested in
air-saturated porous materials, rather than liquid-saturated. This simplifies matters because
with gases it can often be assumed that the skeletal frame is not elastic, and is sufficiently rigid
that it does not move. This allows use of simpler sound propagation models.

82



Ch01-H6526.tex

19/7/2007 14: 2 Page 83

Chapter 1
Air Porous material Air Air  Equivalent gas Air
Po E— Po Po Pett Po
K K = K Keff K
€o €o Co Cpm €o
Figure 1.50

Equivalent gas model used for a porous material in air.

For porous materials with a rigid skeletal frame and porosities close to unity, sound propagation
can be modelled with a single longitudinal wave by using the concept of an equivalent gas to
represent the porous material and the gas (usually air) contained within it (Morse and Ingard,
1968). Within a porous material the compressibility of the gas is altered, and its effective mass
is increased because the flow of the gas is impeded by the porous structure. Hence, the
equivalent gas is described by using an effective gas compressibility, ., and an effective gas
density, pef-

The gas compressibility, «, equals the reciprocal of the bulk compression modulus of a gas, K,
such that
1 _ 1 9o

- - _ 1.1
K= >9P (1.166)

where p is the gas density.

From this point onwards we will assume that the gas in the porous material is always air. The
equivalent gas model is shown in Fig. 1.50. For an infinite medium without internal losses, K
takes real values; K = Py for an isothermal process and K =1.4P, for an adiabatic process,
where Py is the static pressure for air (usually taken as 1.013 x 10° Pa at atmospheric pressure).
However, in a porous material it is necessary to use complex values to include the effect
of internal damping. For sound propagation in typical rooms, the distances are only usually
large enough to require consideration of air absorption in the high-frequency range; this is an
internal loss due to the conversion of sound into heat energy. These internal losses occur due
to both thermal conduction and viscosity, and result from the molecular constitution of the gas;
in an infinite medium the thermal conduction and viscosity contribute almost equally to the
internal damping (Morse and Ingard, 1968). In a porous material, sound propagates close to
the boundaries of the skeletal frame and the losses due to thermal conduction and viscosity
are much larger. Therefore we need to account for these internal losses by using complex
values for both the effective gas compressibility and the effective gas density.

The effective gas compressibility varies over the building acoustics frequency range, and
depends upon heat transfer between the air and the frame. At ‘low’ frequencies, the rate of
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compression and rarefaction for the longitudinal sound wave in a porous material is sufficiently
slow that heat is transferred back and forth between the air and the frame. This means that the
temperature remains relatively constant and the process can be assumed to be isothermal. At
‘high’ frequencies there is insufficient time for this heat transfer to take place, so it becomes
an adiabatic process. There is no general definition of ‘low’ and ‘high’ frequencies. As a rule-
of-thumb for fibrous materials over the building acoustics frequency range, it can be assumed
that ‘low’ corresponds to the low-frequency range, and ‘high’ corresponds to the high-frequency
range, with a transition between isothermal and adiabatic in the mid-frequency range.

The effective gas density also varies with frequency. This can be described in terms of the mass
impedance of the skeletal frame, iomgame (Beranek, 1947). At ‘low’ frequencies where the mass
impedance is small, the compressions and rarefactions of the air particles cause the frame
to move too; hence the effective gas density needs to take account of the mass of the
frame. At ‘high’ frequencies where the mass impedance is large, the frame effectively remains
motionless.

The concept of an equivalent gas allows sound propagation in porous materials to be described
using two parameters, both of which are complex: the complex wavenumber, ko, and the char-
acteristic impedance, Zy pm. Assuming harmonic time dependence for a wave using the term
exp(iwt), the wave equation for sound propagation in the porous material has the same form as
the wave equation for an infinite medium (Eq. 1.14); the difference being that the wavenumber,
k, is replaced by kpm.

The complex wavenumber for sound in a porous material, kpm, is
. w
Kpm = Re{kpm} + ilm{kpm} = . (1.167)

pm

where the phase velocity for sound in the porous material, c,m, is also complex, and equals

1

PPefiKeft

Com = (1.168)

The complex wavenumber is used here to clarify the link between propagation of sound in air
and propagation in a porous material via the wave equation. Note that some texts prefer to use
the propagation constant, I, which is related to the complex wavenumber by

T = ikpm (1.169)

The characteristic impedance for air in a porous material, Zy pm, is determined in the same way
as the characteristic impedance for air in an infinite medium (Eq. 1.18), which gives

Peff
DKot

ZO,pm = g = PeffCpm = (1.170)

The complex wavenumber (Eq. 1.167) and the characteristic impedance (Eq. 1.170) are both
calculated from the effective density and the effective gas compressibility. The latter two param-
eters can be calculated if the structure of the porous material can be represented using idealized
geometry. For example, representing all pores by cylindrical tubes at a specified angle to the
surface of a sheet of porous material, or representing all the fibres in a sheet of fibrous material
by long cylindrical tubes that lie in planes parallel to the surface of the sheet. Microstructural
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models that assume idealized geometry can be quite complicated. However, they can give
an effective density and gas compressibility that adequately represents real porous materials
as well as giving an insight into which parameters are important for sound propagation (e.g.
see Allard, 1993). For many porous materials the geometry is not simple and requires a stat-
istical description. However, an alternative, simpler approach can be taken that avoids direct
calculation of the effective density and the effective gas compressibility whilst retaining use of
the equivalent gas model. This makes use of empirical relationships to determine the complex
wavenumber and the characteristic impedance.

The most widely used empirical equations are those of Delany and Bazley (1969, 1970). These
form a benchmark against which many other theories are tested, and other empirical equations
are compared. They were derived from a large number of measurements on different fibrous
materials. The resulting empirical equations for Zg p,m and kpm only require knowledge of the
airflow resistivity which can be measured or determined from other empirical relationships.
Although these empirical equations were based upon fibrous materials they can be used to
estimate values for porous foams with r < 10 000 Pa.s/m? (Allard, 1993).

The assumption of a rigid skeletal frame allows empirical laws to be used to calculate sound
propagation in isotropic, homogeneous, porous materials. Fibrous materials such as mineral
wool can be considered as relatively homogeneous, although they are formed from layers so
they are anisotropic. However, by considering propagation through the material in only a single
direction, they can be treated as isotropic, homogeneous materials.

Empirical equations are not absolute laws; there are many different materials and there is often
more than one way to group or plot the data to carry out regression analysis. Other empirical
equations to determine the characteristic impedance and the propagation constant for fibrous
materials can be found in the literature (e.g. Mechel and Vér, 1992). A theoretical model for rigid
frame fibrous materials from Allard and Champoux (1992) gives similar values to the Delany
and Bazley equations in the range of validity but improves the low-frequency trends.

The empirical equations of Delany and Bazley (1969, 1970) are
Zo.pm = poCo(1 + 0.0571X~07%* _j0.087X 0-732) (1.171)
and
kom = Re{kpm} + ilm{kpm} = 27’?(1 +0.0978X 0790 _ j0.189x 059 (1.172)

where the variable, X, is

x = f (1.173)

r

The range of validity for Eqs 1.171 and 1.172 is (Delany and Bazley, 1969)
0.01<X <1.0 (1.174)
For the equivalent gas model, the wavelength of sound within the porous material, Apm, is

calculated using

2n

= Reti] (1.175)

Apm
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Figure 1.51

Comparison of the wavelength in porous materials using the equivalent gas model with the wavelength in air. The range of
validity for the Delany and Bazley equations is shown in brackets in terms of frequency.

In Fig. 1.51 the wavelength in air can be compared with the wavelength for porous materials in
air that is calculated using the Delany and Bazley equations. The calculations use a range of
airflow resistivities (2000 to 64 000 Pa.s/m?) that represents porous materials commonly used
in buildings. The range of validity for the Delany and Bazley equations (Eq. 1.174) usually
allows use of the equivalent gas model for a large part, but not all, of the building acoustics fre-
quency range. The wavelength in the equivalent gas is significantly shorter than air in the low-
and mid-frequency ranges, but tends towards the wavelength in air within the high-frequency
range.

The sound pressure for a plane wave propagating through a porous material in the positive
x-direction is described by

p(x, t) = p exp(—ikomx) exp(iot) = p exp(—iRe{kpm}x) exp(Im{kom}x) exp(iot) (1.176)

The definition of a complex wavenumber implies attenuation with distance, hence Im{k,m} is
negative; this can be seen in the empirical equation for fibrous materials (Eq. 1.172). Therefore
the amplitude of the plane wave decreases with distance according to the decaying exponential
term, exp(Im{kpm}x). This gives the decrease in sound pressure level in decibels, ALp, after
propagating a distance, x, through the porous material,

20
The installation of porous materials in air spaces means that it is often necessary to account
for the reflection that occurs when sound enters the material from air, and when it exits the
material into air. This is described in Section 4.3.9 in the calculation of the normal incidence
sound reduction index for porous materials.
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In some cases there is no air space between the porous material and the plate that forms
part of a wall or floor, such as a cavity wall where a porous material fills the cavity. For a
plate undergoing bending wave vibration that is immediately next to a porous material, sound
transmission from the plate into and through the porous material may need to use Biot theory
for the porous material to take account of the shear wave and two longitudinal waves that can
propagate within it. In this case, the simplified assumption of an equivalent gas may no longer
be appropriate.

1.3.3 Local modes

From Eq. 1.54 the mode frequencies of closed cavities are calculated using

foqr = ;\/<£>2+<fy>2+([z>2 (1.178)

1.3.3.1 Modal density

To calculate the cavity modal density across the building acoustics frequency range we not
only need to consider three-dimensional sound fields like in rooms, but also one-dimensional
(p#0 and g =r=0), and two-dimensional (p #0, g #0, and r =0) sound fields. Hence we
can represent cavities as a one-dimensional space of length, Ly, a two-dimensional space of
surface area, S=LL,, and a three-dimensional space of volume, V =L,L,L,.

One-, two-, and three-dimensional sound fields can occur in lightweight walls and floors where
cavities are formed by a framework of studs or joists. In these cases, the one or two-dimensional
modal density can be determined by using Eq. 1.178 to calculate the mode frequencies; the
number of modes that fall within each band are then divided by the bandwidth. As with rooms
it is simpler to use the following statistical approaches.

For along (Lx), narrow (L), and thin (L) cavity at low frequencies there is a one-dimensional
sound field consisting purely of axial modes. The modal density is calculated in the same way
as for structural waves on beams (Section 2.5.1.4), hence

2L,
c

nip(f) = (1.179)

At frequencies at and above fj 1 o, but below fy o 1, the cavity acts as a two-dimensional space
that supports axial and tangential modes. To count the number of modes the eigenvalues are
arranged in a two-dimensional lattice as shown in Fig. 1.52 (Price and Crocker, 1970). Eigen-
values that lie along the x and y-axes represent axial modes; those that lie on the coordinate
plane kck, (excluding the eigenvalues on the axes) represent tangential modes. The area
associated with each eigenvalue is a rectangle with an area of nZ/LXLy (which equals 72/S).
The number of modes below a specified wavenumber, k, is equal to the number of eigenvalues
that are contained within one-quarter of the area of a circle with radius, k. However, one-half
of the area associated with each axial mode falls outside the permissible area in k-space that
can only have zero or positive values of ky and k. Therefore calculating the number of modes
is a two-step process. The first step is to divide wk?/4 by 7%/S to give an estimate for the num-
ber of tangential modes that also includes one-half of the axial modes. The second step is to
account for the other halves of the axial modes that lie on the x and y-axes by taking one-half
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Figure 1.52
Mode lattice for a two-dimensional space. The vector corresponding to eigenvalue, kz 3, is shown as an example. The shaded

area indicates the fraction of the area associated with axial modes that falls outside the permissible area in k-space. The area
enclosed by a circle with radius, k, encloses eigenvalues below wavenumber, k.

of k/(n/(Lx +Ly)). The sum of these two components gives the number of modes, N(k), below
the wavenumber, k, where

K2S k(L +L,)

N(k) = — 1.1
(k) 4 + 2 (1.180)
Hence, from Eq. 1.57 the modal density is

nao(r) = 240 4 bt by (1.181)

c? c

For cavities that are not box-shaped, and for cavities where there is ambiguity about whether
it is reasonable to assume rigid boundaries for one or two of the four boundaries (i.e. those
that lie along the planes where x=0, x=L,, y=0, and y =L,), the modal density can be
calculated by using only the first term in Eq. 1.181,

2nfS
nao(f) = =5 (1.182)
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The crossover point from a two-dimensional to a three-dimensional sound field occurs at the
frequency where there is a half wavelength across the smallest dimension, L., which is usu-
ally the cavity depth. This corresponds to the axial mode fy,1, the first cross-cavity mode,
where

c

— 1.183
2L, (1.183)

foo1 =
At and above fy o 1 there are axial, tangential, and oblique modes, hence the cavity acts as a
three-dimensional space for which the modal density is

47‘[f2V JTfST LT
_— — 1.184
c3 2¢2 + 8c ( )

n3p(f) =

where St is 2(LyLy +LyL,+LyL;)and Lt is 4(Ly + L, +L;).

For cavities that are not box-shaped, and for box-shaped cavities in the high-frequency
range, a reasonable estimate of the modal density is found by using only the first term in
Eq. 1.184.

The statistical mode count in a frequency band is calculated from the modal density using
Eq. 1.63. Mode counts are now used to gain an insight into the distribution of modes for two
common cavities, a timber joist floor cavity and a wall cavity (see Fig. 1.53). The timber joist
floor cavity is long, narrow, and thin; in the low-frequency range this results in only axial modes
along the longest dimension, L. Above the first cross-cavity mode in the 800 Hz band there is
then a rapid increase in the number of modes with increasing frequency. In contrast, the wall
cavity has a two-dimensional sound field over the majority of the building acoustics frequency
range with the first cross-cavity mode in the 2500 Hz band.

As with rooms, the distribution of the different mode types is useful in determining which internal
cavity surfaces should be lined with absorbent material to reduce the sound level in the cavity.
We can take the timber joist floor cavity as an example. To absorb sound in the low-frequency
range where there are only axial modes along Ly, absorbent material could be positioned over
the surfaces perpendicular to the x-axis at the ends of the cavity where Ly =0m and Ly =4 m.
In practice, floor cavities are often partially or fully filled with absorbent material along their
entire length to absorb sound energy stored in axial, tangential, and oblique modes.

1.3.3.2 Equivalent angles

Equivalent angles for local modes in rooms were introduced in Section 1.2.5.4. Figure 1.54
shows equivalent angles for the timber joist floor cavity and wall cavity described in Fig. 1.53.
These can be compared with the equivalent angles for a 50 m® room (refer back to Fig. 1.16).
Below the first cross-cavity mode, 6, =0°, because the sound field is two-dimensional and
there is a limited range of angles. Above the first cross-cavity mode the range of angles tends
to cover the full range from 0° to 90°; however, the elongated shape of the timber joist floor
cavity means that the distribution of angles between 0y, 6,, and 6, is uneven when compared
with the 50 m® room.

Compared with rooms, the small volumes and elongated shapes associated with typical cavities
means that in the building acoustics range there is often a limited range of angles from which
the sound waves will arrive at any point in the space.

89



Ch01-H6526.tex 19/7/2007 14: 2 Page 90

Sound Insulation

(a) Timber joist floor cavity

10000 3 . . .
Timber joist floor cavity O Axial modes
1 L,=4m,L,=04m,L =0.225m
1000 4 fo01 = 762 Hz Tangential modes
B Oblique modes
i 100
=] E
g E
5] ] i
o T ~
° ] i
<
Eo 10 §
I
0.1
20 315 50 80 125 200 315 500 800 1250 2000 3150 5000
One-third-octave-band centre frequency (Hz)
(b) Wall cavity
10 000 3
1 Wall cavity O Axial modes
1 L,=4m,L,=25m,L,=0.075m )
1000 3 f0;0,1 = 2287 Hz Tangential modes
§ B Oblique modes
i 100 §
= E
3 ] -
8 ] | | -
2 E i
(=] 10 =
= 03
1
0.1 T
20 315 50 80 125 200 315 500 800 1250 2000 3150 5000
One-third-octave-band centre frequency (Hz)
Figure 1.53

Mode count for a timber joist floor cavity and a wall cavity.

1.3.4 Diffuse field

A diffuse field in a cavity is defined in the same way as for rooms. However, when there is a
two-dimensional sound field we need to account for the fact that waves can only arrive from
directions within one plane rather than from all possible directions in three-dimensional space.

Compared to rooms, cavities have much smaller volumes and the sound field can only usually
be considered as diffuse over a narrow part of the building acoustics frequency range.
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Figure 1.54

Equivalent angles for the modes of a timber joist floor cavity and a wall cavity.
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1.3.4.1 Mean free path

As with rooms, the mean free path is only defined for the situation where all reflections from the
boundaries are diffuse. When a cavity acts as a three-dimensional space, the mean free path
is the same as for rooms and is defined in Eq. 1.47. The mean free path for a two-dimensional
space has already been derived in Section 1.2.3.1 and is given by (Kosten, 1960)

7S
dmfp = 7 (1.185)

where U is the perimeter of the cavity (U = 2L, + 2L, for a rectangular cavity with a depth, L,).

1.3.5 Damping

In rooms, absorptive material is often distributed in one of two ways: either it is distributed over
all the surfaces, or one or two of the room surfaces provide the majority of the absorption area
(e.g. highly absorbent tiles that cover the ceiling). In cavities there is more scope to vary the
distribution of absorbent material; it can be placed within the cavity volume as well as over the
surfaces.

The implications of one, two, and three-dimensional sound fields in cavities becomes apparent
when we consider the position of the absorption within the cavity. Below the first cross-cavity
mode there are only axial and tangential modes in the cavity, hence sound waves are only
incident upon the perimeter of the cavity. To absorb sound in this frequency range, absorptive
material needs to be placed around the perimeter of the cavity. In fact, this is sometimes the
only practical place to position the absorption. An example of this is high performance windows
in music studios, where two or more glazing units are separated by wide cavities. To increase
the absorption of sound at and above the first cross-cavity mode the two main surfaces that
face into the cavity also need to be absorptive.

Cavities within plasterboard and masonry walls are often filled or partially filled with absorbent
porous material. This introduces additional internal losses as sound waves propagate through
the porous material.

Cavities tend to have relatively small volumes which often contain additional absorbent material
so it is not usually necessary to consider air absorption for the building acoustics frequency
range.

1.3.5.1 Reverberation time

Sound fields in cavities rarely approximate a diffuse field in either two or three dimensions,
hence the decay curves tend to show various degrees of curvature. The reasons for this are
similar to those previously discussed for non-diffuse fields in rooms; normal mode theory indi-
cates that the degree of curvature varies depending upon the combination of axial, tangential,
and oblique modes in a frequency band.

Reverberation times in cavities tend to be shorter than those in rooms; examples are shown
in Fig. 1.55 which were measured using T4q, T+s, Or Too.

1.3.5.2 Internal losses

Below the frequency of the first cross-cavity mode, the internal loss factor is determined by
the absorption of the surface at the cavity perimeter. For locally reacting surfaces, Eq. 1.76
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Figure 1.55

Examples of measured reverberation times in cavities. (a) Timber joist floor cavity. Ly =4.2m, L, =0.4m, and L, =0.225m.
Areas L,L, are fair-faced masonry. Areas LL, are timber joists. Area L,L, (upper) is chipboard. Area L,L, (lower) is
plasterboard. (b) Masonry wall cavity. Ly =3.6m, L,=5.0m, and L, =0.075m. Areas LyL,, LyL, and L,L, (left side) are
fair-faced masonry. Area L, L, (right side) is 455 mm, 28 kg/m® mineral wool (cavity stop). Measured data from Hopkins are
reproduced with permission from ODPM and BRE.

gives the angle-dependent sound absorption coefficient, however, to simplify the calculation it
is assumed that ay = g cos(#), which gives (Price and Crocker, 1970)

o Spapcy
nii = 272FV

(1.186)

where Sp is the surface area of the cavity perimeter and ap is the average statistical sound
absorption coefficient for the cavity perimeter. For box-shaped cavities, Sp=2(LyL,+L,L;)
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and ap = Zﬁﬂ Skak/Sp where Sy and «, correspond to the area and statistical absorption
coefficient for each side of the cavity perimeter. If the statistical absorption coefficients are
not available and the perimeter surface is locally reacting, then @p can be estimated from the

normal incidence absorption coefficient, «g, using (Price and Crocker, 1970)
Vg

op = Zao (1.187)

At and above the frequency of the first cross-cavity mode, the internal loss factor is
_ Stacy
Y
where St is the total area of all the cavity surfaces and @ is the average statistical sound absorp-

tion coefficient for all the cavity surfaces. For box-shaped cavities, St =2(LxL, + LxL, +LyL;)
anda = Zﬁﬂ Skak /St where S¢ and «y correspond to each surface of the cavity.

nii (1.188)

Near the frequency of the first cross-cavity mode an issue arises in using Egs 1.186 and
1.53 to calculate the internal loss factor. This is because there is often a significant difference
between the values for two-dimensional and three-dimensional sound fields. Over the building
acoustics frequency range, this causes a sharp transition in the predicted internal loss factor
and the predicted reverberation time. In practice, damping measurements inside real cavities
indicate a more gradual transition. In the prediction of sound transmission, this is not usually a
problem as a sharp transition will not normally occur in the predicted sound insulation because
of the existence of many other sound transmission paths.

1.3.5.2.1  Sound absorption coefficient: Locally reacting porous materials

Calculation of the internal loss factor requires the normal incidence or statistical sound absorp-
tion coefficient for the cavity boundaries. For porous materials the absorption coefficient can
be calculated by treating the material as an equivalent gas and using wave theory to calculate
the specific acoustic impedance or admittance (e.g. see Allard, 1993). This can make use
of equations such as those of Delany and Bazley (Section 1.3.2.2) or Allard and Champoux
(1992) to determine Zp pm and kpm for the equivalent gas.

It is assumed that the porous material is locally reacting with a thickness, h, and is positioned
a distance, d, from a rigid non-porous surface that has an infinite impedance (see Fig. 1.56).
For this calculation, most masonry/concrete walls and floors can be assumed to be rigid.
The calculations in this section are equally applicable to rooms where locally reacting porous
materials are placed near masonry/concrete walls or floors.

The normal incidence and statistical absorption coefficients can be calculated using Eqs 1.79
and 1.81 respectively where the specific acoustic admittance is calculated using

1
2nfd
1 ( iZo 5 tBN(Komh) tan(?> - 5o )

Bas = Pre — iBim =
Zas  \ P0%0 tan(Z) 4 2% tan(komh)

(1.189)

When d =0, the porous layer is next to the rigid surface (often referred to as rigid backing).
Equation 1.189 then reduces to

Bas = e — ifim = —— = <_iZ°“’m S )1 (1.190)
as = PR T Im = 7 e\ poco  tan(komh) '
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Figure 1.56

Absorber: porous material — air gap - rigid surface. Equivalent gas model used to represent the porous material.

When d =na/2 for n=1, 2, 3, etc., the specific acoustic admittance calculated from Eq. 1.189
is the same as Eq. 1.82, and the porous material can be considered as rigidly backed.

Examples for the statistical absorption coefficient are shown in Fig. 1.57 for a range of airflow
resistivities from 2000 to 64 000 Pa.s/m?2. Two thicknesses of porous material are considered,
h=0.025m and h=0.1m, each of which have air gaps of d =0m and d=0.1m. For rigid
backing, increasing the thickness of the material from 25 to 100 mm significantly increases
the absorption coefficient in the low- and mid-frequency ranges. However, by using a 100 mm
air gap with the 25 mm material it is possible to achieve similarly high values to the 100 mm
material with rigid backing in the low- and mid-frequency ranges; this is at the expense of lower
absorption coefficients in the high-frequency range. With an air gap, the curve for the absorption
coefficient has a ripple with troughs that tend to become less pronounced with increasing airflow
resistivity. In practice, this ripple is less pronounced due to the use of frequency bands, variation
in material properties, and variation in d due to workmanship.

The airflow resistance of porous materials tends to increase with increasing bulk density, but
there is no simple rule that porous materials with low or high airflow resistivity will always give
the highest absorption coefficients over the building acoustics frequency range. To determine
suitable values of r, h, and d, it is necessary to identify which part of the frequency range
requires the highest absorption coefficients. There are a large number of permutations for
these three variables, and measured absorption coefficients for a specific combination are not
always available. In order to assess their effect it is usually sufficient to calculate the absorp-
tion coefficient as described in this section. For fibrous materials, a wide range of densities
are available (typically 10 to 200 kg/m3) which gives a wide range of airflow resistivities from
which to choose a specific material. However, commonly available materials come in a limited
range of thicknesses, which, in combination with the cavity dimensions will limit the choice of
handd.
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1.3.5.3 Coupling losses

5000

Calculation of the coupling loss factors involving the cavity are discussed in Section 4.3.5.3.

1.3.5.4 Total loss factor

The total loss factor equals the sum of the internal and coupling loss factors. For most cavities in
walls and floors that have absorptive surfaces, the coupling loss factors are much smaller than
the internal loss factor, and the latter provides a reasonable estimate of the total loss factor.
As with rooms, Eq. 1.107 can be used to calculate the total loss factor from the reverberation
time and vice versa.

1.3.5.5 Modal overlap factor

The modal overlap factor for cavities is calculated using Eq. 1.109.
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1.3.6 Energy

Calculation of the sound energy stored in a cavity is calculated using Eq. 1.154 in the same
way as for rooms.

1.4 External sound fields near building fagades

To assess the airborne sound insulation of the building fagcade from external sound sources it is
necessary to measure the sound pressure levels both inside and outside the building. Having
looked at the internal sound field, we will now look at the external sound field near a fagade.

The sound pressure level near the fagade depends upon: the position of the microphone in
relation to the fagade and the ground, diffraction effects from the edges of the fagade, diffraction
effects from protruding or recessed elements on the building fagade (e.g. balconies), sound
propagation from the source (including the effects of ground impedance, fagade impedance,
and meteorological conditions), the orientation of the sound source, and the type of sound
source outside the building (e.g. point source, line source).

Microphone positions relative to the fagade and the ground often differ depending upon whether
the primary aim is to measure the fagade sound insulation, or measure/predict the environmen-
tal noise near the fagade. In the latter case, the measurements/predictions are often used at a
later point in time to estimate sound transmission into the building via the fagade; it is clearly
advantageous if the microphone positions are the same or the levels can be accurately con-
verted. For field measurements of fagade sound insulation, the microphone is usually attached
to the surface of the fagade at variable heights that depend upon the building element that is
being measured, or positioned 2 m in front of the facade at a height of 1.5 m above the floor of
the receiving room (ISO 140 Part 5). Environmental noise measurements are taken at a variety
of different positions; often at a height of 1.2, 1.5, or 4 m above floor level, and at distances
between 1 and 2 m in front of the fagade (ISO 1996 Part 1).

In practice we often need to convert sound pressure levels near the building fagade to free-
field levels in the absence of the fagade and vice versa. This section therefore looks at the
difference between the external sound pressure level with the fagade to the level without the
fagade (i.e. the change in level due to the presence of the fagade).

1.4.1 Point sources and semi-infinite fagcades

For fagcade sound insulation measurements made with a loudspeaker and some environmental
noise sources it is appropriate to consider a point source. We therefore start by looking at the
sound field generated by a point source in the vicinity of a facade. By creating the image sources
for this situation as shown in Fig. 1.58, we see that the sound travels from the source (S) to
the receiver (R) via four different paths: the first path is the direct path from the source to the
receiver, the second path involves a single reflection from the ground, the third path involves
a single reflection from the ground and a single reflection from the fagade, and the fourth path
involves a single reflection from the fagcade. The path lengths in terms of the distance, d, from
the source, or image source, to the receiver are also indicated in this diagram.

We will assume that: (a) the source emits spherical waves, (b) the ground and facade
are perfectly reflecting with no phase change upon reflection (c) all reflections are specular
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Fagade

Ground

Figure 1.58

External fagade sound pressure level measurements. Source (S) and receiver (R) orientation with image sources () for the
different propagation paths.

(d) the fagade has dimensions that are very large compared to the wavelength (i.e. a semi-
infinite plate), and (e) there are no other fagades nearby that significantly affect the sound
field. Therefore we will not concern ourselves with diffraction from the edges of the wall or with
different impedances for the ground and the fagade. The assumption of specular reflection is
reasonable for this situation, particularly below 1000 Hz; it can generally be assumed that real
facades have small scattering coefficients (Ismail and Oldham, 2005).

We are interested in the difference between the sound pressure level in front of the fagade and
the free-field level without the fagade. This requires the ratio of the total mean-square sound
pressure, p?, to the mean-square sound pressure, (p1 + p2)?; the latter term corresponds to
the combination of the direct path between source and receiver (path length d¢), and the path
in which the sound is reflected directly from the ground to the receiver (path length d,). The
sound pressure for spherical waves at single frequencies is taken from Eq. 1.22, hence the
required ratio is

2

exp(—ikd exp(—ikd: exp(—ikd: exp(—ikd.
Xp(—i 1)+ Xp(—1 2)+ Xp(—i 3)+ Xp(—ikdy)

2
e __ | d d; R (1.191)
(b1 + p2)?)t exp(—ikdy) = exp(—ikds)
+
d1 d2

Now we can calculate the change in level due to the presence of the fagade for different
distances of the receiver from the fagade. For fagade sound insulation measurements, the
external microphone is usually at a distance of 2m from the fagade or on the surface of the
fagade (ISO 140 Part 5); hence we will use these to define the minimum and maximum dis-
tances for the range of interest. To illustrate the effect of intermediate distances we will look at
300mm and 1m.

For measurements on the surface of the fagade there are usually physical limitations that deter-
mine how close the microphone can be positioned to the surface. For a half-inch microphone
(12.7 mm diameter) attached to the fagade with the axis of the microphone parallel to the plane
of the fagade, we can assume that the fagade-receiver distance is 6.35mm (i.e. the distance
from the fagade surface to the centre of the microphone diaphragm). Figure 1.59 shows the
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Figure 1.59

Change in the sound pressure level due to the presence of the fagade for receiver positions at four different distances, d, from
the fagade (single frequencies from 0.25 to 1000 Hz). Source-receiver-fagade geometry is indicated in the sketch.

calculated level difference for four different fagade-receiver distances at frequencies up to
1000 Hz. For a half-inch microphone attached to the surface of a fagade there is a constant
level difference of 6 dB, this is referred to as pressure doubling. As the microphone is moved
further away from the fagade we see that there are interference minima in the spectrum due
to destructive interference between the different propagation paths. These occur due to the
different distances travelled by the sound waves along each of the different paths. For the vari-
ous combinations of paths, the path difference in metres corresponds to a phase difference
in radians. Destructive interference occurs where the path length difference, Adyg, between
paths p and q, corresponds to a phase difference of an odd number of 7 radians,

Ad
21 /\”" =2n+Nrx (1.192)
where n=0,1, 2, 3, etc.
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The upper frequency shown in this example has been limited to 1000 Hz because at higher
frequencies, turbulent air in the outdoor environment tends to reduce the coherence between
the waves that travel along the different propagation paths (Attenborough, 1988; Quirt, 1985).
As a result, this simple model is no longer appropriate, and sharp minima in the spectrum due
to destructive interference are less likely to occur above 1000 Hz.

In practice we usually deal with frequency bands rather than single frequencies. For frequency
bands the same ratio can be calculated from the band centre frequency using

di\? [di\? [di\?
”(@) +(<73) +<d7)

2d 2d 2d
+ S R(Ad1) + S R(Ads) + SER(Ad)
do ds ds
242 242 2
2 + - R(Ad3) + ——-R(Ad24) + ——R(Ads4)
<p )t _ d2d3 d2d4 d3d4 (1 193)
((p1 + Pp2)?) di\?> 2d '
‘ 1+ (—1) + “N R(Adhn)
do do

where the autocorrelation function, R(Ad,q) for each path length difference (magnitude), Adp,,
is (Delany et al., 1974)

A 2w Ad, . (27B_ Ad,
R(Adyg) = i ki 1.194
(A5q) 27B Adpq COS( A ) Sm( A ( )

for which 1 is the wavelength corresponding to the band centre frequency, and B, is calculated
from the lower and upper frequency limits of the band, fi and f,, using B = (f, — i)/(f, + ).
B, =0.115 for one-third-octave-bands.

For one-third-octave-bands between 50 and 1000 Hz the change in level due to the presence
of the facade is shown in Fig. 1.60 (source and receiver positions are the same as in Fig. 1.59).
The change in level is 6 dB for a half-inch microphone attached to the surface of the facade.
One advantage of using surface measurements is that if the microphone is positioned very
close to the surface, we can avoid interference minima in the building acoustics frequency
range, although there will be small departures from pressure doubling in the high-frequency
range. This allows us to make the convenient assumption of pressure doubling. In contrast, the
fagcade-receiver distance of 300 mm provides an example of the variation that can be introduced
when measurements are not made on the surface of the fagade. With this particular combination
of source—receiver—fagade geometry there is an interference dip around the 315Hz band. If,
for example, we were to change the fagade-receiver distance from 300 to 200 mm, we would
shift the interference dip into a different frequency band. This dependence on the specific
geometry of each situation illustrates the importance of well-defined measurement positions for
comparative measurements of the sound field near fagades. For a fagade-receiver distance of
1 or 2m there are dominant interference minima in the low-frequency range. However the one-
third-octave-bands get wider as the frequency increases and the interference effects begin to
average out. For fagade-receiver distances of 1 or 2m in the mid-frequency range, the change
in level tends towards 3 dB; this is referred to as energy doubling.

For a point sound source, such as a loudspeaker in the low-frequency range, the above discus-
sion indicates that the sound pressure level will also vary over the surface of a fagade due to
the different interference patterns that occur with different source—receiver—fagade geometries.
In the mid- and high-frequency ranges, loudspeakers tend to become increasingly directional
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Figure 1.60

Change in the sound pressure level due to the presence of the fagade for receiver positions at different distances from the
facade.

and no longer act as point sources, hence the variation in sound pressure level over the fagade
is also affected by the directionality of the loudspeaker.

Although several assumptions have been made in this basic model, it adequately illustrates
the general trends. In practice there are other factors that affect the depth and frequency of the
interference minima. The finite impedance of the ground causes a phase change upon reflection
from the ground, so to improve the model it is necessary to incorporate measurements of the
ground impedance (e.g. see Ogren and Jonasson, 1998). Compared to the ground, relatively
little information is available on the impedance of facades. However, fagade surfaces are rarely
highly porous and tend to have low-absorption coefficients (typically less than 0.1 in the low-
and mid-frequency ranges). For this reason, the assumption of a perfectly reflecting surface is
often reasonable.

1.4.1.1 Effect of finite reflector size on sound pressure levels near the fagade

As real fagades are of finite size, we need to look at the effects of diffraction from the edges of
a facade. The sound field in front of finite size reflectors can be considered as the combination
of the four geometrical wave paths (as previously considered for the semi-infinite reflector),
combined with edge or boundary diffraction waves. To assess diffraction we will look at indoor
scale-model measurements because it is awkward to control all the relevant parameters with
outdoor measurements near real buildings. Results are taken from scale model experiments in
a semi-anechoic chamber with a concrete floor, and a 30 mm thick square reflector (varnished
board) to represent the facade. Good agreement between these measurements and predictions
using Integral Equation Methods (IEM) allow conclusions to be drawn purely by using measured
data (Hopkins and Lam, 2008). A 1:5 scale model was used for the measurements, but all the
results shown and discussed in this section are scaled-up to the situation for real fagades (i.e.
full-size). The source was a small loudspeaker positioned in the vertical plane perpendicular to
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the center line of the reflector. The receiver position was offset from this plane by one-twelfth of
the reflector dimension to avoid perfect symmetry in the set-up that might be unrepresentative
of the situation in practice. Five square reflectors were tested that represented full-size fagades
with side dimensions of 2, 3, 4, 5, and 6 m.

Figure 1.61 shows the change in level due to two square reflectors (6 x 6 m and 2 x 2 m) with
a facade-receiver distance of 2m. Measured data is shown alongside the prediction for a
semi-infinite reflector (Eq. 1.191). Compared to the semi-infinite reflector, diffraction from the
edges of the finite reflector affects the frequency of the peaks and troughs as well as their
values. As one would expect, this is more pronounced for the smaller reflector. For small
reflectors, the receiver will be relatively close to the edges and the edge diffracted pressure
can significantly change the interference pattern in comparison to the semi-infinite reflector.
The 6 x 6 m reflector can be taken as being representative of the facade of a detached house,
and diffraction can be considered to have negligible effect on measured levels above 100 Hz.
For the 2 x 2m reflector, diffraction can have a significant effect below 1000 Hz; in practice,
most fagades are much larger than this, but it is used here to represent small square protruding
sections of a building (e.g. bay window, entrance hall, enclosed balcony).

For practical purposes we need to assess the difference between finite size reflectors and a
semi-infinite reflector in one-third-octave-bands; this is done using the difference between the
measured and the predicted (Eq. 1.193) change in level due to the presence of the fagade.
Figure 1.62 shows this level difference for a fagade—receiver distance of 2m. For square
reflectors with side dimensions between 3 and 6 m, the level differences are generally less
than 3dB in the low-frequency range. The differences are larger with the 2 x 2m reflector,
particularly at 63 Hz, but they are generally less than 3dB across the low- and mid-frequency
ranges. Environmental noise measurements are often taken using a fagade—receiver distance
between 1 and 2m. Figure 1.63 shows the level difference for 11 different fagade-receiver
distances in 0.1 m steps from 1 to 2 m for each of four different square reflectors (side dimen-
sions between 3 and 6 m). In the low-frequency range there are significant differences between
the semi-infinite and the finite reflectors due to diffraction. In the mid-frequency range these
differences are negligible and these finite reflectors can be treated as semi-infinite. The level
differences for the 2 x 2 m reflector are shown separately in Fig. 1.63; these indicate that it is
not appropriate to treat this small reflector as semi-infinite in both the low- and mid-frequency
ranges.

In practice there are so many permutations of source—receiver—facade geometry that it is
difficult to make a definitive statement about the conditions in which diffraction effects will
be negligible. As a rule-of-thumb for a point source near the ground, and fagade-receiver
distances between 1 and 2m, diffraction effects are only likely to be significant in the low-
frequency range for fagades with dimensions <5m.

1.4.1.2 Spatial variation of the surface sound pressure level

Facade elements such as windows or doors often have lower airborne sound insulation than
the wall around them. Hence, field measurement of the apparent sound reduction index is
often needed for these elements. This requires measurement of the average surface sound
pressure level over the element. A spatial average is needed for all elements regardless of
the source—receiver—fagade geometry; usually between three and ten microphone positions
on the surface of the element (ISO 140 Part 5).
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Figure 1.61

Comparison of measured and predicted data for the change in the sound pressure level due to the presence of the fagade.
Source-receiver-fagade geometry is indicated in the sketch. Measured data reproduced with permission from Hopkins and

Lam (2008).
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Figure 1.62

Difference between the measured (finite reflector) and predicted (semi-infinite reflector) change in level due to the presence of
the fagade. Fagade—receiver distance of 2m. Measured data are reproduced with permission from Hopkins and Lam (2008).

For protruding or recessed building elements, the spatial variation over the surface can be
affected by a combination of diffraction, shielding, and, within a recess, the existence of a
sound field that partly resembles a two-dimensional reverberant field (sometimes referred to
as a niche effect). It is quite common for windows to be installed in a recess. Figure 1.64 shows
the effect of measuring the surface sound pressure level within a 200 mm deep frame (1 x 1 m)
attached to the surface of a masonry fagade (Quirt, 1985). A single measurement within the
frame is seen to be unrepresentative of the average from eight positions. Measurements on a
1.2 x 1.2m window with recess depths of 120 and 320 mm indicate that the spatial variation
over the surface of a window is larger with a deeper recess (Jonasson and Carlsson, 1986). To
get a more accurate estimate of the average surface sound pressure level, more microphone
positions may be needed with deep recesses (=300 mm), than with shallower ones (=100 mm).

1.4.2 Line sources

Facade sound insulation is often assessed using road traffic noise, which can be represented
by a line source. The details of a model for a line source are not discussed here, but the basic
principle involves approximating a line source by a line of closely spaced incoherent point
sources. For a line source comprising many incoherent point sources, air absorption starts to
become significant towards the ends of the line source and therefore needs to be included in the
model (ISO 9613 Part 1). An overview of a suitable spherical wave propagation model for each
point source which incorporates the ground impedance can be found from Attenborough (1988).

To gain a practical insight into the sound field near fagades with a line source it is more useful
to look at the statistics of measured data. Hall et al. (1984) took measurements at houses
on 33 different sites with road traffic as the sound source to assess the level measured at
a distance of 2m from the fagcade using a microphone on the fagade surface (one position

104



Ch01-H6526.tex

19/7/2007 14: 2 Page 105

Chapter 1
15
Finite reflector size (m)

129 --=3x3

\

. ——-4x4
9 L.

X:";“\\\ -—=5x5
61 23\ — 6x6

Measured minus predicted change in SPL
due to the presence of a fagade (dB)

50 63 80 100 125 160 200 250 315 400 500 630 800 1000
One-third-octave-band centre frequency (Hz)

Finite reflector size (m)

Measured minus predicted change in SPL
due to the presence of a fagade (dB)
w

- 9 T T T T T T T T T T T T
50 63 80 100 125 160 200 250 315 400 500 630 800 1000
One-third-octave-band centre frequency (Hz)

Figure 1.63

Difference between the measured (finite reflector) and predicted (semi-infinite reflector) change in level due to the presence
of the fagade. For each reflector size the 11 curves correspond to fagade-receiver distance in 0.1m steps from 1 to 2m
inclusive. Measured data are reproduced with permission from Hopkins and Lam (2008).

only). The microphone height above ground level was unspecified although it was the same
for both the surface and the 2 m measurement. The results are shown in Fig. 1.65. By assuming
pressure doubling (6 dB) for the fagade microphone, the assumption of energy doubling (3 dB)
for the microphone that is 2m from the fagade can be assessed by comparing the difference
between these two microphone positions with a value of 3 dB. In the low-frequency range the
assumption of energy doubling is invalid due to large fluctuations caused by the interference
pattern. In the mid- and high-frequency ranges the assumption of energy doubling is reason-
able when we consider the mean of many measurements; however, from the minimum and
maximum values in Fig. 1.65 we see that this assumption is not always valid for an individual
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Figure 1.64

Change in the surface sound pressure level on a wall due to the addition of a 200 mm deep frame (1 x 1 m). The loudspeaker
was placed on the ground at a distance of 25 m from the mid-point of the frame, with sound incident upon the surface at an
angle of 60°. NB: The angle prescribed for fagade insulation measurements with a loudspeaker in ISO 140 Part 5 is 45° + 5°
rather than 60°. Measured data are reproduced with permission from Quirt (1985) and the National Research Council of

Canada.
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Sound pressure levels measured at houses on 33 different sites to assess the level that is measured 2 m from the fagade with
road traffic as the sound source. Measurements were made with a microphone on the fagade surface, and at a distance of
2m from the fagade. Measured data are reproduced with permission from Hall et al. (1984).
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measurement. This presents a problem if we need to accurately convert individual measure-
ments in frequency bands from the 2 m microphone position to a different microphone position
near the fagade. This will rarely be possible due to the uncertainty in the many factors that
affect the sound propagation paths. Usually we can only make reasonable estimates when
we want to convert the mean value of many measurements for either frequency bands, or an
A-weighted level.
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