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ABSTRACT 

This paper is concerned with the applicability of a time series model for the 
separation of the rej7ected noise energy by rough reflecting surfaces into 
diffuse and geometrically reflected noise. For the derivation of the theore- 
tical model a combination of theory of geometrical acoustics and statistical 
acoustics was used. Here the measured noise at the receiver position is 
assumed to be the superposition of three types of noise: the direct which 
follows the inverse square law, the geometrically reflected which follows 
Snell’s law, and the d@use noise which propagates omnidirectionally and 
decays following an exponential law. The solution of the problem is 
finally achieved in the time domain statistically, by the use of time series 
analysis. 
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1 INTRODUCTION 

For an accurate determination of the reverberation time of a room, the 
basic assumption is that the noise field is completely diffuse. A diffuse 
sound field is such that at any position, sound waves are incident from all 
directions with equal intensities and random phase relations. Since the 
degree of diffusion is related to the accuracy of measurement, it must be 
properly defined. In most cases the commonly used models are based on a 
combination of the direct and the reverberant field. The reverberant field, 
which sometimes is regarded as diffuse, is the field that is made up of 
waves which have been reflected at least once from various surfaces of the 
room. In some cases, as for example with low absorption the reflected 
noise energy and hence the corresponding reverberant field have properties 
closer to the direct than the diffuse noise field. 
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In the present paper we assume the reverberant field is diffuse and try to 
find statistically a relation between the factors of diffusion and geome- 
trically reflected noise. According to this method the idealised sound field 
at the observation point at any time consists of the superposition of three 
components: the direct noise, with duration close to one mean free path 
time, the geometrically reflected noise, with duration several mean free 
path times, and the diffuse noise field, which has the longer life, close to 
the reverberation time TAO. The reverberant sound is assumed to propagate 
omnidirectionally and to decay exponentially. The reflected noise follow- 
ing the laws of geometrical acoustics is regarded as direct sound emitted 
by image sources lying in virtual space. The evaluation of the degree of 
diffusion by each reflecting surface is achieved using time series analysis 
and is based on the time arrival of energy to the observation point. Since 
the model is a statistical one, it deals with the mean values and the devia- 
tions about the mean, neglecting the nature of sound waves and the 
characteristics of the reflecting surface. This is the basic advantage of the 
method. 

2 MODEL ESTABLISHMENT 

As a descriptor of noise we use the noise energy, which is a linear quantity 
and which can be described by the average relative squared noise 
pressures. As a source of noise, a white noise source is used. The latter, in 
the statistical sense, is a source emitting a series of randomly distributed 
impulses equally spaced in the time axis. 

Since the time series used here does not have zero mean, we subtract the 
mean m from each measurement to obtain a zero mean series. In this paper 
we use y to denote the original data (noise energy), and z for the devia- 
tions from the mean. We exclude from consideration regions too close to 
the source and too close to the boundaries of the room. The dimension of 
the room under consideration is large compared with the greatest wave- 
length of the frequency band under consideration. The reflecting ability of 
each surface depends upon the angle of incidence. The calculated geo- 
metrically reflected noise field at the observation point is a sum of reflected 
rays corresponding to random incidence and the values of the parameters 
used are the mean values. In addition we assume that the reverberant 
field at the received position is representative of that in the room as a 
whole. 

Under the assumptions stated above, in this model, we divide the 
reflected energy fraction (1 -a) into two terms, namely the term g( l-u) 
which is the fraction of speculary reflected energy and the term (1 -g)( 1 -a) 
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Fig. 1. Reflection and diffusion of sound by plane surfaces. j and d are the reflection and 
diffusion factors respectively. 

which is the fraction of energy scattered in non-specular directions. In other 
words we define the mean geometrical energy reflection factor (J), which is 
defined as the ratio of the sound energy geometrically reflected from the 
walls to the incident one, and the mean diffuse sound energy factor (d), 
which is defined as the diffuse sound energy to the incident one (see Fig. l), 
i.e. 

j=g(l -a) 

d= (1 -g)(l -u) 

j+d=r 

(1) 

where a, r, g are the absorption, reflection and geometrically reflection 
coefficients, respectively. 

3 NOISE FIELD CALCULATION 

Suppose a small room contains a white noise source lying near the centre 
of symmetry of the room, and an observation point inside the room. A 
sampling of noise with sampling period t, equal to the time spacing of the 
emitted noise impulses is performed. Each noise measurement at the 
observation point is assumed to be the superposition of the three types of 
noise: the diffuse, the direct and the geometrically reflected. Consequently 
for each measurement at time t we can write: 

yt=xt+Rt+Dt+n, (2) 

where Yt is the total energy density corresponding to time t, xt is the direct 
noise energy density at time t, Rt is the reflected noise energy density at 
time t, Dt is the diffuse noise energy density at time t, and n, is uncorelated 
random noise. 
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Analytically for the received noise we can make the following assump- 
tions. 

3.1 Dir& noise 

For the direct sound field we can assume that the distance-receiver is 
small compared with the quantity Ct,, where C is the speed of sound and 
c, the sampling interval; then the air absorption, the time delay and the 
spherical divergence are negligible. This means that the direct sound 
depends only upon the emission time t and the distance between source 
and receiver that is assumed to be constant. In addition according to the 
assumption stated above this distance is small so that no delay of the 
received direct noise exists. 

3.2 Reflected noise 

In order to compute the geometrically reflected noise in a given enclosure 
we can use the image source principle. The general restriction for this 
method is that the typical dimensions of the room must be large compared 
to the wavelength of the highest frequency under consideration and that 
the walls must be plane surfaces, (though non-plane surfaces can be easily 
approximated by plane surfaces with sufficient accuracy). The mirror 
image source method is based on the construction of the mirror image of 
a point sound source. For image sources we can attach the following 
property: each image source is a directional point source. The emitted 
noise energy to the direction of image source-receiver is proportional to 
the reflected noise energy, but the emitted noise energy to all other direc- 
tions is propo~ional to the diffuse one. When we say all other directions 
we mean emission to a hemisphere directed toward the observation point. 
With this assumption the sound field is reduced to the free field case that 
can be solved deterministically but indirectly. 

For the number of visible image sources up to the order i we can use the 
approximate formula: 

where Ct, is the distance of the farther image source under consideration, 
This equation was derived for rectangular shapes only, but it has been 
shown that it may be applied as well to enclosures of any shape.’ 

Following the rules of geometric acoustics we can construct the whole 
set of image sources (first or higher order) in the virtual space. Having the 
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Fig. 2. Image source contribution on measured noise at time t. 

observation point as centre, (see Fig. 2), we can draw spherical shells of 
radius r and thickness dr: 

ri = iCt, , dr=Cdt, i= 1, 2, . . . 

From the whole set of image sources, only the sources placed inside the 
spherical shells of radius iCt, and thickness dr (which is supposed to be 
very small compared with Ct,) contribute to the measurements taken at 
the time instants t - it,. 

According to eqn (3) it is- reasonable to assume a constant volume 
density of image sources. For the contribution to the total energy density 
from image sources located inside a spherical shell, of radius t, we assume 
the inverse square law, so we can write:2 

&=-- Wt-i dNref e-mr. r 
4nC r2 

J “m 4nr2dr = $ eVmrjlWt_i dt 

where wt-[ is the source power corresponding to time t - it,, R is the 
contribution to the geometrically reflected noise from the image sources 
emissions which correspond to the i shell, e-mr is the air absorption, 1, is 
the mean free path. 

Inside the virtual space only the imaginary sources up to order p located 
inside the successive spherical shells of radius iCt, contribute to the geo- 
metrically observed noise at the observation point at the time instants 
t - it,. The strength of each image source inside the spherical shell of radius 
Cit, is proportional to the real source strength at time t - it,. Assuming a 
constant sampling time t, if we replace the time delay it, simply by i, for 
the reflected noise energy density as is observed at the successive instants 
of time, from all spherical shells up to order p we can write: 
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RI = JI AxI- + JzA2x,_z + . . . JpAPxt_p 

R,-I = Ji A.+2 + J2A 
2 xl-3 + . . . Jp APx(-~-, 

Rt-m = JI Axl-m-1 + J~A=x~,+~ + . . . JpAP~t_m_p 

(5) 

where 

and A = ehrnCts is the air absorption. 
In the case of symmetric absorption we can write: 

jj=j, j2=j2, . ..jn=jn 

3.3 Diffuse n&e 

The perfectly diffuse field is a field satisfying the criterion that the energy 
per unit volume and per unit solid angle of propagation direction B(e) be 
independent of the direction e. Here we assume that the diffusion of noise 
builds up the diffuse noise field, or in other words the diffuse noise is that 
noise which is not coming directly either from the real or the imaginary 
sources. This assumption defines a field close to the perfectly diffuse one. 
During the reverberation process two conflicting mechanisms determine 
the magnitude of diffuse noise at time t. The first is related to the decay of 
noise. Assuming that the diffuse noise is uniform throughout the room, 
then it is decaying with time following the exponential law: 

where 

Dt = BADpI (6) 

B = C?-1342t,/T 
(7) 

The index c- 1 has the same meaning as in eqn (4). 
The second mechanism is related to the reflections of noise energy. 

During successive reflections a flow of diffuse noise energy is added con- 
tinuously into the room (see Fig. 1). For the total diffuse noise energy 
density at time t, as is shown in the Appendix, we can write: 

Dt = BALL1 + FA(R,_, + xl_{) (8) 

where F is a function of reflection and diffusion factors which are 
constants for a given room. Since under the assumptions stated above the 
diffuse noise energy at time t is the sum remaining after the decay feqn 8) 
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and that created by the reflections between the time t and At, for the 
diffuse noise energy at the successively instants of time, according to the 
energy balance principle we can write: 

D1 = BAD,_, + FA(R,_t + Xl_,) 

D,_i = BAD,_* + FA(R,_2 + x1-*) (9) 

D,_, = BAD,_,_I + FA(R,_,_, + xt-& 

Eliminating D,-i by successive substitutions we can write for eqn (9): 

D, =FA(Rt-I + XI-I) + FBA2(R,w2 + x4 

+ FB2A3(lL3 + x1-3) + . . . 
(10) 

4 DIFFUSION FACTOR CALCULATION 

Taking into account eqns (5) and (10) in eqn (2), we can write for JJ,: 

YI =xt + (J+ 1;3Ax,-, + (J2 + JF+ BF)A2~,_2 

+ (J3 + J2F+ JFB + Fp)A3~,_3 + . . . + n, 
(11) 

or subtracting the mean: 

zt = xr + (J+ F)Axt_l + (J2 +-JF + BF)A2~,_2 

+(J3+J2F+JFB+Fti)A3~r_3+...+n,-[p+(J+F) Ap...] 
(12) 

The physical meaning of eqns (11) and (12) is that the received noise at the 
observation point inside a large enclosure is the output of a linear time 
invariant system with input train of equispaced in time random impulses, 
independent and normally distributed. The output data are not now 
independent because of the reverberation process. Figure 3 shows the 
probability density functions of emitted and received noise signals. In this 
figure we can see that the deviations from the zero mean of the received 
noise samples at the observation point is considerably smaller compared 
with the emitted noise samples. This is a consequence of the existence of 
the diffuse noise energy density. The problem can be solved statistically 
with the use of time series models. In these models the observations are 
assumed to be the output of a black box system, in which the unobser- 
vable input is a realization from a zero mean, white noise process. A 
moving average model MA(p) is closer to the physical meaning of the 
reverberation process. A moving average model of order p [MA(p)] is a 
time series model in which the current deviation of a series from its mean 
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Fig. 3. Probability density functions, of emitted and received noise signal. 

is a linear combination of the current and previous shocks which entered 
to the system. The general form of this model is:3p5 

Z{ = x/ - 01X&l - &x*-2 - 03X&j.. . - Qpxt_p + y, (13) 

Equation (13) represent a MA(p) model. The use of MA models have two 
disadvantages: the first is that it is not possible always to obtain explicit 
solution for Oi, and the second that in the case of rooms with low 
absorption the order of the model (which is a finite memory model) is 
large, and this means high cost in computation time and low accuracy of 
calculations, 

In order to avoid these problems we can use the autoregressive models. 
According to the duality property of the MA and AR processes, if the 
invertibility condition is fulfilled, it can be shown that the MA(p) can be 
represented by an order q autoregressive AR(q) model. An AR(q) model is 
an infinite memory model in which the current value of the time series can 
be expressed as a linear aggregate of its previous values, and a random 
shock. The general form of an AR(q) model is: 



Diffusion of sound by reflecting surfaces 75 

Zt = xr + wr-1 + @2Yr-2 + @3yr-3 + * * * %$5-q + yr (14) 

To guarantee the invertibility of a MA(q) the solutions of the equation 

1 - etz - &z . . , - e,zq = 0 (15) 

have to be outside the complex unit circle.6 
By successive substitutions of yi in eqn (14) we finally find the MA 

inverted form of the AR process: 

zf = xt + iptxt-1 + (a: + !D’~)xN + (a; + 2a2@‘1 + @3)xI_3 + . . . n; (16) 

Comparing eqns (12), (14) and (16) we can write: 

Figure 4 shows the whole process in terms of energy flow in the time 
domain for a room, with symmetric absorption. In this figure x,-i, 
xt-2, . . . are the emitted noise impulses from imaginary noise sources corre- 
sponding to times t - At, t - 2At,...x, is the real source emission at time t. 

The upper row corresponds to the diffuse energy flow, and the lower row 
corresponds to the flow of speculary reflected noise energy. The blocks in 
the middle feed the room with new diffused noise energy, due to suc- 
cessive reflections. The flow of energy corresponds to a narrow band noise 
signal. 

In constructing the AR(q) model we can use the partial autocorrelation 
(pacf) to tell us how many parameters to include in the model. If the cut 

5-3 5-2 
3-1 xt 

Fig. 4. Energy flow diagram from real and imaginary noise sources in time domain. J, F, B 
are dimensionless constant factors. 
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off lag of the sample pacf is p there is a strong evidence that an AR(q) 

model in appropriate. For a more precise determination of the model 
order here we used the Akaike’s final prediction error (FPE).7 The FPE 
computes a measure over all possible model orders and chooses the model 
order that minimizes the measure. For an AR process the FPE is defined 
as: 

where s’, is the residual sum of squares. Using this criterion, an estimate p 

is chosen such that 

FPE(p) = min{ FPE(k) Ik = 1, 2, . . . m) 

Summing all stated above, the solution of the following non-linear equa- 
tion will give us the value of the diffusion factor: 

@‘1 = AjN+Ad 
j” _ bN 

j-b (19) 

Where N is the mean number of successive reflections during the sampling 
interval, given by: 

Equation (19) can be solved numerically. The required parameters for 
the evaluation of the degree of the diffusion are: the room’s dimensions, 
the reverberation time (T&, the reflection or absorption coefficient, the 
sampling interval, and the autoregressive coefficient of x,_~, Qi. 

In some cases the value of absorption coefficient is unknown. The decay 
curve can be used for an approximate evaluation of this value. The decay 
curve in logarithmic scaling is not always a straight line. In most cases we 
can distinguish more than one slope (see Fig. 5).*-12 Since the geometrical 
reflected noise has short duration, compared with the reverberation time, 
we can assume that generally the first, and possibly the second or third, 
slope corresponds to the decay of the total noise field, and the last distinct 
slope to the pure diffuse one. An extrapolation of the first and last slope 
evaluates two different reverberation times (Tea), an early and a late one. 
The early reverberation decay time can be used for the calculation of the 
mean absorption coefficient using, for example, the Eyring’s or Sabine’s 
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Fig. 5. Decay curve of noise in a room. 

formula. The late one can be used for the diffuse noise energy decay. 
Eyring’s formula which relates the mean absorption coefficient a to the 
reverberation time when the air absorption is taken into account is given 
by:13 

T= 
0.161 V 

4mV - Sln(1 - ~2) (21) 

Numerical example 

To confirm experimentally the validity of the method an experiment was 
carried out in an empty small amphitheatre of the University of Patras, in 
the absence of background noise and flutter echo. The room’s volume was 
500 m3, with total wall area of 460 m2. The excitation signal (a series of 
equispaced in time, normally distributed impulses) was written on a tape 
recorder. As noise source an omnidirectional loudspeaker was used. A 
second tape recorder was used to pick up the received and emitted noise 
signals simultaneously. An omnidirectional microphone was used as 
receiver placed in different points near the centre of symmetry of the room 
under test. Figure 6 shows the experimental set-up. An extrapolation of 
the measured Early Decay Time (EDT) which is based on an evaluation of 

TAR REccQmI WE -2 

Fig. 6. Experimental set-up. 
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Final Prediction Error 

US 

Fig. 7. Application of FPE for model selection. 

the decay in the range from 0 to -10 dB, gave a reverberation time Tbo = 
l-45 set, and a late one at 1.55 sec. Under the experimental conditions 
(temperature 25”C, centre frequency fc = 2000 Hz) the corresponding 
air absorption factor was 4~2 = 0.0114 m-i. Application of the Eyring 
formula indicates a mean total absorption coefficient of 0.1. Figure 3 
shows the emitted and received noise signal consisted of 512 noise samples 
for the above room and sampling interval t, = O-1 sec. The FPE evaluation 
for model selection and the calculation of the autoregressive coefficients, 
was made by a computer program, based on the algorithm described in 
Ref. 7. Figure 8 shows the FPE for the room under test which suggests an 
AR( 1) model. The solution of eqn (18) gives <pi = 0.46. A numerical 
solution of eqn (19) gives d = 0.47. 

5 DISCUSSION 

In this paper we try to find statistically a relation between the diffuse and 
the reflected noise by reflecting surfaces in order to evaluate the degree of 
the diffusion of incident rays on reflecting surfaces. The performance of 
each room can be described by a MA(oc) model or according to the 
invertibility property of time series by an AR(p) model. The order of the 
model depends upon the reverberation time T, and sampling interval t,. 

In most cases use of FPE, which gives the order p, gave the values p = 1 
but in some cases p was 4-10. Here we assume that the change of slope in 
the reverberation decay curve, if there is no flutter echo, is caused by the 
elimination of the geometrically reflected noise which has very short life 
compared with the perfectly diffuse noise. Since in most cases the observed 
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slopes has no definite limits, an extrapolation of the EDT and the last 10 
dB decay (-50 to -60) dB can be used. The numerical solution of eqn (19) 
in some cases can give more than one acceptable real root. In this case a 
repetition of the experiment, with smaller sampling interval reduces the 
degree of eqn (19). The great numbers of objects that are located inside the 
room and the shape of the reflecting walls are the main reasons for the 
deviations of calculated diffuse noise from the real one. The results pre- 
sented above are for a particular room. They can be applied to any other 
rooms as well. Although the excitation signal was a narrow band noise 
signal centred at a frequency of 2 kHz, the dependence on the frequency of 
the calculated parameters was not examined. The application of the 
method to rooms with parallelepiped shape, which indicates a higher 
order of autoregressive models, needs further investigation. 
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APPENDIX 

Assume a room of vohnne Y and total surface area S. At time f the source 
emits a random shock. For large values of sampling interval t, the number 
of reflections N during this interval is nearly equal to 

jjT=t,_cts 
tc ZC 

(AI) 

where tc is the mean free path time and I, is the mean free path given by:‘” 

Suppose that the energy density corresponding to direct and geomet~~ally 
reflected noise at time t is DD,. Then: 

DDt, je-mCfcDfttr j2e-2mcrcD~t, j3e-3mcfcD~r, . . . , jNe-NmctCDr)t WI 

are the reflected and not absorbed (by the air) energy density. 
This process supplies new diffuse noise energy to the room. After each 

reflection the diffuse noise energy density is increased by the quantity. 

dDDt , dje- mCtcDDt, dj2ewhctcDDt, dj3e-3mctcDgt, . . . , 

dj Ne-~~Ci~~~~ 

Supposing that each of this quantity is decaying independently with 
time following the exponential law, according to the energy balance 
equation, the totally remaining diffuse noise energy at the end of the 
considered interval (t,) is: 

b N-1 deemcrc DD, + bN-2de-2mctcjDl)(t_lJ 

+ ~N-3de-3mc~~j2DD(t_1) + _ _ _ +jN-lde-(N-l)mCtcDD(‘-I) 
W) 

where b = e-13.8**clT, which implies: B = bN = e-13’82*s/T, 

Taking into account the air absorption we can write for (A4): 

~N-lde-mCtce-(N-l)mCt,~Dt + bN-*de-2mC*~e-(N-2)“CtCiDoo 
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After some algebraic calculations we can write for (A5): 

dDDre-(N-lhCrs [ 7-l + by-2 + bzy-3 + . . . ZP-‘1 

= d&,te-N’W w W) 

Thus the diffuse noise energy can be written: 

where 

IIt = BAD,_1 + FA(R,_I + Xl-l) (A? 

F=d[fN-bNlzdJ-B 
E-~l - j-b 


