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First, an approximate theory of reverberation in rectangular rooms is formulated as a specular
reflection field based on the image source method. In the formulation, image sources are divided into
axial, tangential, and oblique groups, which chiefly contribute to the corresponding groups of normal
modes in wave acoustics. Consequently, the total energy decay consists of seven kinds of exponential
decay curves. Second, considering surface scattering on walls with scattering coefficients, an
integrated reverberation theory for nondiffuse field is developed, where the total field is divided into
specular and diffuse reflection fields. The specular reflection field is simply formulated by substituting
specular absorption coefficients, while the diffuse reflection field is assumed to be a perfectly diffuse
field, of which energy is supplied from the specular reflection field at each reflection. Finally, a
theoretical case study demonstrates how surface scattering affects the energy decay in rectangular rooms
with changing the aspect ratio and the absorption distribution. © 2012 Acoustical Society of America.
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I. INTRODUCTION

In the field of room acoustics, reverberation is one of
the most important aspects for judging acoustical qualities of
every kind of room, thus it is to be quantified, predicted, and
controlled. For this reason, a variety of theories of reverbera-
tion in rooms have been proposed, originated from Sabine’s
formula' on the assumption of perfectly diffuse field, modi-
fied by Eyring,2 Norris,3 Millington,4 Sette,5 Kuttmff,ﬁ’7 and
others. The first two classical formulas are still widely used
for room acoustics design, although they cannot take into
account room shapes and absorption distribution.® Actually,
the classical formulas often underestimate the reverberation
time of usual rooms, most of which have rectangular shapes
and nonuniform absorption distribution.

For rectangular rooms, an empirical formula was first
proposed by Fitzroy,” and followed by Pujolle,' Hirata,""
Arau—Puchades,12 Nilsson,13, Neubauer,14 and others. Fitz-
roy’s formula empirically assumes the arithmetic mean of
reverberation times of the three orthogonal directions, while
Arau-Puchades’s formula assumes the geometric mean with
a theoretical consideration. Both of the formulas are simple
to calculate, but do not work adequately in various situations.
Hirata derived a reverberation theory based on the image
source method, decomposing the sound field into one-, two-,
and three-dimensional fields with frequency dependence.
At first sight, this approach seems to correspond to the nor-
mal mode theory based on wave acoustics; however, some
discrepancy is seen due to a misunderstanding in the theoret-
ical development.

Generally, surface scattering tends to heighten field dif-
fuseness, resulting in a decrease in reverberation time, but
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the effect strongly depends on room shapes and absorption
distribution.'>™"” In a room with regular shape and nonuni-
form absorption, the effect of surface scattering can be great,
and conversely, with irregular shape and uniform absorption,
it can be small or negligible. Recently, as a measure of the
efficiency of surface scattering, the scattering coefficient has
been widely used for geometric acoustic simulation.'® Its
measurement method was already standardized in ISO
17497-1,19 and computational methods are also available for
predicting it.*>*' However, up to now there exists no rever-
beration theory including the scattering coefficient, which
must be based on some theory for nondiffuse field, although
some research has been concerned with sound fields includ-
ing both specular and diffuse reflections.”*

In this paper, first, an approximate theory of reverbera-
tion in rectangular rooms is formulated as a specular reflec-
tion field based on the image source method by modifying
Hirata’s theory. Second, considering surface scattering on
walls with scattering coefficients, an integrated reverberation
theory for nondiffuse field is developed, where the total field
is divided into specular and diffuse reflection fields. Finally,
a theoretical case study is presented to demonstrate how sur-
face scattering affects the energy decay of nondiffuse fields
in rectangular rooms, with changing the aspect ratio and the
absorption distribution.

Il. REVERBERATION OF SPECULAR REFLECTION
FIELD IN RECTANGULAR ROOMS

A. Specular field of image sources

As illustrated in Fig. 1, a regular arrangement of image
sources is determined for a point source in a rectangular
room. When the energy density of the reflection field is dis-
cussed with space average for both source and receiver, a
continuous distribution of image sources is considered with
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FIG. 1. Image sources of a rectangular room.

a representative receiving point at the center of the room. For
image sources at equal distances from the receiving point, the
number of sources, distance attenuation, and wall absorption
are estimated on the condition that only specular reflections
occur throughout the paths. If the real source of the sound
power W is stopped at =0 in the steady state, the average
energy density of the three-dimensional specular field is formu-
lated in spherical coordinates, as follows (z > 0):
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where ¢ is the sound speed, L, -, is the length of each side,
and 0(,;) is the absorption coefficient averaged by the geo-
metric mean of two reflection coefficients in each direction.
Because of alternate reflections between the parallel surfa-
ces, the geometric average is used, represented by

Onye) = 1= \/(1 N o‘-j(y,z)) (1 N O‘Jf_(y,Z))’ 2)

where o .y are the absorption coefficients of two parallel
walls. Generally, Eq. (1) is composed of direction-dependent
multiple exponentials, and numerical integration is required
to evaluate the exact energy decay.®

In a similar way to the classical reverberation theory, a
single exponential decay function is roughly assumed, where
the mean free path for oblique sources [, is approximately
equal to the theoretical value for the three-dimensional
perfectly diffuse field /[, =4 V/S (see the first section of the
Appendix),25 with the room volume V' =L,L,L., and the total
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surface area S=2(L.L, + L,L. + L.L,). Furthermore, the
area-weighted arithmetic mean of absorption coefficients for
the three directions is used as represented by

LyL35 + L.L3" + LL, 3,
o =
o LyL.+L.L+LL,

3)

where o, ) is the geometric mean of random-incidence
absorption coefficients in each direction according to Eq. (2).
Consequently, Eq. (1) is approximated by
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with Ay = Aop/4, Aop = Sotgep and ey = — In(1 — ogp).
For a general expression, the quantity A is defined as the room
absorption factor taking into account the ratio of incident in-
tensity to energy density, thus giving AV =g /1 throughout
this paper.

Equation (4) is regarded as a first approximation for the
specular field of oblique sources, in a similar form to Eyr-
ing’s formula using Millington’s average absorption coeffi-
cient for each pair of parallel walls. However, it includes the
contributions of axial and tangential sources that are more
apt to deviate from the average decay. In the following, one-,
two-, and three-dimensional specular fields are considered
by dividing image sources into axial, tangential, and oblique
groups, which chiefly contribute to the corresponding groups
of normal modes in wave acoustics.

B. Specular fields of axial sources

Consider the image sources near the x axis in the angular
ranges within *0, and within *0, to the positive and negative
x directions, as illustrated in Fig. 2. The x-axial sources lead
to normal incidence to the x-directional walls (in yz plane),
and grazing incidence to the y- and z-directional walls. If the
off-axial path differences from an x-axial source to the room
in y and z directions are, respectively, within 1/4 wavelength
(m/2 in phase), the image source chiefly contributes to x-axial
modes in wave acoustics. For far x-axial sources at small
angles of 0,.), the maximum path differences are expressed
by Ay & Ly sin Oy) & Ly 0y.), thus the critical angles are
generally defined as
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FIG. 2. Axial image sources for the x axis in the xy plane.
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with the angular frequency w.

At the critical angles 0,.), the frequency of normal reflec-
tions on the x-directional walls is expressed by n,, ~ c¢/L,, and
those of grazing reflections on the y- and z-directional walls
bY Ravyz) = € 8in Oyo)/Lyo) = cOy/Ly-). In the angular ranges,
the average reflection frequency for the x direction, 71, = n,y,
and those for the y and z directions, 72,yy(z) & Nayy(-) /2. By lim-
iting the angular ranges of integration in Eq. (1), the energy
density of the one-dimensional specular field from x-axial
sources is formulated as follows:

=" a-
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where the one-dimensional mean free path /,=L,, and the
contribution of axial sources to the one-dimensional field is
assumed quadruple to that of oblique sources to the three-
dimensional field due to the coherence in the two off-axial
directions, in accordance with the ratio of normalization fac-
tors in the mode theory. Regarding wall absorption,

¢ 20VA,,

A =244, Aux=2L,L.0gs, ogax=—In(1—04y),

o= 1= (1—ag) (1 —af)™ (1 —af)™, ©)
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Saxy(z) = i ~ 4(DL§(Z)’ (8)
where & is the normal-incidence absorption coefficient of
the x-directional walls, and &gz are the grazing-incidence
absorption coefficients of the y- and z-directional walls, con-
sidered as the geometric mean for parallel walls according to
Eq. (2). In the strict sense, the above-presented normal and
grazing incidence correspond to incidence from the angular
ranges of axial sources with frequency dependence; accord-
ingly, a database of directional absorption coefficients is
needed. Practically, rough estimates of the normal- and
grazing-incidence coefficients are available on the assumption
of local reaction (see the second section of the Appendix). The
total average absorption coefficient for the one-dimensional
field, a,,, is given by taking into account the reflection fre-
quency in each direction, with &, the ratios of average
reflection frequency of the y and z to the x direction.

In Eq. (7), the geometric mean weighted with average
reflection frequency is given, for the reason that the reflec-
tion frequency in each direction is almost independent for
axial sources. However, it is not valid for an extreme case in
which that either grazing-incidence absorption coefficient
&f(z) = 1, because the contribution of x-axial sources per-
fectly vanishes in Eq. (6), even if one of the y- and z-direc-
tional walls has perfect absorption.
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C. Specular fields of tangential sources

In a similar way to axial sources, consider the image
sources near the xy plane in the angular range within =0, to
the xy plane, which lead to random incidence to the x- and y-
directional walls, and grazing incidence to the z-directional
walls (in xy plane). Again, if the off-tangential path differ-
ence from an xy-tangential source to the room in z direction
is within 1/4 wavelength (/2 in phase), the image source
chiefly contributes to the xy-tangential modes. Thus, the crit-
ical angles by Eq. (5) are in common with axial and tangen-
tial sources.

In the angular range, the average frequency of reflec-
tions for the x- and y-directional walls is 71y, ~ c/ Ly, with
the two-dimensional mean free path [, = nL.L,/2(L, + L)
(see the first section of the Appendix), and the average fre-
quency of grazing reflections for the z-directional walls,
iy & ny;/2 =~ c0,/2L.. Similar to Eq. (6), the energy density
of the two-dimensional specular field from xy-tangential
sources is formulated as follows:

2W (> =1 \r/l; _gyro./or, 2 (20:)dr
Eiy(’):TJ., (1= )T (1 — gy ==
2W meL.L, [~ /by
T 202 L (1= o)
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C 2(,{)‘/149()v 14

€))

where the contribution of tangential sources to the two-
dimensional field is assumed double that of oblique sources to
the three-dimensional field due to the coherence in the off-
tangential direction. Regarding wall absorption, Aw = Aw /T,
Awy = 2(Ly + Ly) L 0gyy, gy = —In(1 — o),

oty =1 — (1 —a)(1 - &)™, (10)
Lo~ + L.o"
o= Y (an
xy Ly+L,
iz ncLyLy
&, = (12)

oy 8oLy + L)L

where o, is the area-weighted arithmetic mean of random-
incidence values for the two directions, considering alternate
reflections by Eq. (2), and o, is the total average absorption
coefficient for the two-dimensional field, with & the ratio of
average reflection frequency of the z direction to the x and y
directions. Note that Eq. (10) is again not valid if one of the
z-directional walls has perfect absorption yielding o = 1,
because the contribution of xy-tangential sources perfectly
vanishes in Eq. (9).

D. Reverberation of total specular field

Equation (1) includes the contributions of axial and
tangential sources, and Eq. (9) also includes that of axial
sources. Summing up Egs. (1), (6), and (9), excluding the
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above-presented duplicate contributions, the total energy
density of specular fields in the room is expressed by

E5(t) = W |;§°b exp (— CIL“/Ob t)
¢ ob
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+> = exp(—Trﬂ, (13)

X ax
where the proportion of sources in each group is denoted by
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with the total edge length L=4(L, + L, + L.). Conse-
quently, the reverberation of the total specular field is com-
posed of seven kinds of exponential decay, arising from one
oblique, three tangential, and three axial source groups. Each
decay rate in decibels per unit time is given by

D(s>b( )y — 1010%103 ’ CAOb(Lx‘y,ax)/Va (14)

txy,ax
with the relation

min (D5, D3 ,D3)) < min (DS, D} D}

ay? try? “tyz) Ftzx

) < D5,. (15)

Equation (13) entirely corresponds to the approximate
expression derived from the normal mode theory in wave
acoustics.”®*” The critical angles for axial and tangential image
sources can be interpreted in view of normal mode distribution
in wavenumber space, as illustrated in Fig. 3. Supposing the
ranges dominated by axial modes to be within the middle to the
adjacent oblique modes, the critical angles are determined by

= ksin 0},(2) ~ key(z), (16)
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FIG. 3. Axial modes in the xy plane in wavenumber space.
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which is consistent with Eq. (5). Thus it can be stated that
the angular ranges for axial and tangential image sources
approximately correspond to axial and tangential modes in
wavenumber space.

It should be noted that the present theory includes three
reasonable modifications to the original theory by Hirata,'' on
the critical angles, the averaging of absorption coefficients,
and the ratios of normalization factors. In the original theory,
different angular ranges were derived from an ambiguous dis-
cussion, resulting in some discrepancy with the expression
based on the normal mode theory. Regarding absorption coef-
ficients, alternate reflections between parallel walls were not
considered, and arithmetic averages weighted with reflection
frequency were given regardless of one- or two-dimensional
field, thus finally leading to different decay rates.?®

In the modified theory, geometric averages are used
with regard to independence of reflection frequencies. How-
ever, if it is applied to extreme cases where one of the walls
has perfect absorption, all of the one-dimensional fields and
a two-dimensional field that is tangential to the absorptive
wall vanish completely. Therefore the modified theory is
not applicable to such cases, specifically with perfect absorp-
tion for grazing incidence. If the original theory is applied
to the cases, none of the one- and the two-dimensional
fields vanish, even a one-dimensional field that is normal to
the absorptive wall. It is not realistic from a different aspect,
so the original theory is also not applicable to such cases,
specifically those with perfect absorption for normal
incidence.

lll. REVERBERATION IN RECTANGULAR ROOMS
WITH SURFACE SCATTERING

A. Specular and diffuse fields with surface scattering

The scattering coefficient of a diffuse surface is defined
as the ratio of nonspecularly reflected energy to total reflected
energy.'® By introducing the scattering coefficients of wall
surfaces, sound energy propagating from image sources can
be divided into specular and diffuse components at each
reflection. One possible assumption is that the specular reflec-
tion field is composed of arriving components that are never
scattered at all reflections from image sources to a receiving
point. On that assumption, the energy density of the specular
field is simply given by replacing all values related to absorp-
tion coefficient with those related to specular absorption coef-
ficient f=0o + (1 — o)s, with s the scattering coefficient.
Accordingly, Eq. (13) is modified by substituting all kinds of
B, Pg, B, and f for a, og, A, and/i, as follows:

ES(t) = W {;"b exp ( —d‘g/()b l)
¢ ob

2?txy ( CBAtxy )
+ ——eXp| ————t
va: B try b 4

) 7)
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23, p( v
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thus each decay rate is also modified as

Diusyar) = 1010g10 - by /V- (18)

txy,ax)

As illustrated in Fig. 4, it is assumed that a part of the
specular energy is transformed into diffuse energy at each
refection, and after the transition, the diffuse energy is
decayed by perfectly diffuse reflections and finally arrives to
a receiving point by random incidence. With respect to an ar-
bitrary distance 7’ from an image source, the rate of scattered
energy in a very small path is given by

lim 1—(1-— =
dr'—0 dr'—0

19)

with Sgp = Sob/4, Sob = SSeeps and Sgep=—In (1 — Sop).
The average scattering coefficient for the three-dimensional
specular field is given by

Sob =

LyLo(1 = &)8, + L.L,(1 — &)5} + LL,(1 — &
LyL(1 —6}) + LoLy (1 — &) + LyLy(1 —

where 5, is the geometrical mean of random-incidence
scattering coefficients of two parallel walls, considering
alternate reflections by Eq. (2), and sy, is assumed the arith-
metic mean weighted with area and reflection coefficient for
the three directions. Estimating the energy scattered at /' and
decayed before and after the transition, and subsequently
integrating it with respect to r/ throughout the path, the
energy density of the diffuse field for oblique sources is for-
mulated as follows:

random incidence

FIG. 4. Transition from specular to diffuse reflections.

J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012

W oo [T ¥/l r—1") /1, SEObdrldr
ER(0) = | ] (1= o1 =)
ct 0
w o r/l, /1 dr
— 1 _ T 1 _ ob]
c :uobJ . [( O(r) ( ﬁob) ] 1%
W [ 1 ox cArt 1 ox céobt
- ¢ Hob _Ar p % éob p Vv ’

1)

with gy, = Sen/(Bop — A;), and the mean free path for
the diffuse field /.. In the specular reflection path before
the transition, the energy is decayed with Bop = Bop /4, Bob
= SﬁEOb? ;BEob = *1[1(1 - ﬁob) = 0Eob T SEobs while in the dif-
fuse reflection path after the transition, the energy is decayed
with A, = A:/4, A, = Sog,, o, = —In(1 — o), where o, is the
area-weighted mean of random-incidence absorption coeffi-
cients. The relations /,, ~ [. and o, > o, hold for oblique
sources, thus resulting in B;(,b > Ar and 0 < g, < 1.

B. Diffuse fields of axial and tangential sources

Considering axial image sources as mentioned previ-
ously, and referring to Eqs. (6) and (21), the energy density
of the diffuse field from x-axial sources is formulated as
follows:

Ex (1) :EJ‘” J" (1— Zg‘;)r’/& (1- Bi)r’()y/ZLy

CJe Jo
~g o/ SEaxdr’
% (1 _ﬁf)l 9;/2LZ(1 _ocr)(l—r )/1e S‘Ea;‘ r
» 2(20,)(20.)dr
4nv
Wrc?L, (< [ " L
_" x 1— ‘r/.\-l_r(' ")/l
| | a-pa e
Saudr dr
>< S—
Vv Vv

(22)

with p,, = Sax / (B.M. —Ar), where the contribution of axial
sources to diffuse field is equal to that of oblique sources due to
random incidence to the room. Regarding wall scattering,
Sar = Sar/2, Sax=2L,L.Sgar Sgar=—In(1 — s,,), and similar
to Eq. (7),

Sw =1 (1= §0)(1 = §8)™ (1 — 58)", (23)

with s the normal-incidence scattering coefficient of the
x-directional walls and §§<Z the grazing-incidence scattering
coefficients of the y- and z-directional walls, considered as
the geometric mean for parallel walls according to Eq. (2).
Again, because the above-presented normal- and grazing-
incidence coefficients are the averages within the frequency-
dependent angular range, a database of directional scattering
coefficients is needed, which can be obtained by the
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free field measurement'® or numerical computation.”® If the
one-dimensional specular field decays more rapidly than the
diffuse field (B, > A,), u,, > 0. Otherwise, the sign of the
inequality is changed, where the decay of the diffuse field is
obeyed by the one-dimensional specular field, and a flutter
echo is liable to occur. In the singular case that B = A,,
Eq. (22) can be transformed into

2 A A
D) = W ke s LEACV (e} o)
ax ¢ 207V Pray A, \%

Similar to absorption coefficient, it should be noted that
Eq. (23) is not valid for an extreme case in which either
grazing-incidence scattering coefficient 55 ., = 1, because
the specular component of x-axial sources perfectly vanishes
in Eq. (17), even if one of the y- and z-directional walls has
perfect diffusion.

In a similar way to axial sources, the energy density of
the diffuse field from xy-tangential sources is formulated as
follows:

Ll
B0 =L | =By gy
(r—") /1, SErydr’ 27(20. )dr

X (1 — oy
(=) ly 4V
w nCLxLy < /Ly (r=r")/1,
G A 1_ Xy 1_ " T
e o=y -a
§txydr’dr
X —_—
Vv Vv
W rcL,L, 1 . CA;
= — = X —_
¢ 20v M7 P TY
1 cﬁuy )]
——exp| — t)], 25
B p( v *

with g, = Sty/(Buy — A;). Regarding wall scattering,
Stxy = Sl.xy/nv St_xy:2(Lx + Ly)Lsttxyv SEwy = —In(1 — Stxy)’
and similarly to Egs. (10) and (11),

swp = 1 — (1= 5,)(1 — 58", (26)

o L= E)S L1 - )] o
O L - a) + L&)

assuming the arithmetic mean weighted with area and reflec-
tion coefficient for the two directions. Again, pg, >0 if
ém, > A,, otherwise changing the sign of the inequality. In
the singular case that I§txy = Ar, Eq. (25) can be transformed
nto

TABLE I. Dimensions and absorption coefficients of rectangular rooms.

Case L,(m) L,(m) L.(m) o oy o oy/L: oLy oL
la 10 10 10 0.35 035 035 1:1: 1

1b 10 10 10 0.15 030 0.60 1:2:4

2a 20 10 5 0.30 030 0.30 1:2:4

2b 20 10 5 0.10 020 0.40 1:4: 16
2330 J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012
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— Total}
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— Dob
== Dixy
—=— Diyz
Dzx
=+ Dax
- Day
Daz

Diffuse

Energy Density Level (dB)

Tima (5]

(k) 2000 Hz

(&) 500 Hz

FIG. 5. Energy decay of specular, diffuse, and total fields for case 1b, with a
scattering coefficient of 0.1: (a) 500 Hz, (b) 2000 Hz. Abbreviations: Specu-
lar/diffuse fields in subtotal (S/D), of oblique sources (Sob/Dob), of xy-tan-
gential sources (Stxy/Dtxy), of x-axial sources (Sax/Dax).

EB (1) = W meLiLy spuy 1 + AtV exp ﬁt
Y ¢ 20V Pgy,

T

(28)

Note that Eq. (26) is again not valid if one of the z-direc-
tional walls has perfect diffusion with yielding §¢ =1,
because the specular component of xy-tangential sources
perfectly vanishes in Eq. (17).

Specular Specular

Energy Density Level (dB)

0 0.5 1 0 0.5 1

Time (=) Time {s)
{a) 500 Hz {b) 2000 Hz

FIG. 6. Energy decay of specular, diffuse, and total fields for case 2b, with a
scattering coefficient of 0.1: (a) 500 Hz, (b) 2000 Hz. Abbreviations: See
Fig. 5.
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C. Reverberation of total diffuse field

Similar to the total specular field, summing up Egs. (21), (22), and (25) and excluding the duplicate contributions of axial
and tangential sources, the total energy density of diffuse fields in the room is expressed by

w 1 A, 1 cA, 1 By
E°(1) = - {Vobﬂob L‘TCXP <— % f) —E—e"p( ) + Z Voo My l exp( Vv f) - B—CXP <—%f>1
r ob Xy txy

cA 1
§ -t
+ YaxMax l exp ( Vv ) B

where Yop(y.av) are the proportions of sources as denoted for
Eq. (13). At =0, the total energy density in the steady state
is expressed by

w SEob SEtx SEax
EP(0) = —— [ gy b 37, 2B S )
CAr ob ﬁEob z\}: o ﬁ Etxy Z M ﬁEax

X

(30)

1 - exp[* (*Bob(u’y.ax) -

DRy (1) = DP

B
— t
(-5

Ar) ct)V]

} ) (29)

It is confirmed that if all wall surfaces are perfectly
diffuse with s — 1, sg/fg — 1, thus resulting in EP(0)
— W/cA,.

The reverberation of the total diffuse field is also appa-
rently composed of seven kinds of decay, but double expo-
nential decay. With the decay rate of the three-dimensional
perfectly diffuse field, DP = 10log,,e - cA./V each rate is
given by

txy,ax

In Eq. (31), just after stopping the source (¢ — 0),
Don(uy M>( ) — 0; that is, all seven groups of sources do
not immediately start to decay. In the late decay ( — o0),
Dy,(t) — DY < Dy, for oblique sources, while Dy, /(r) —
min DD DtsM (ax) for axial and tangential sources, where the

decay rates of thé specular fields D toy(ar) AT€ given by Eq. (18).

W, CcA; 1 — oy Bob -
E(t):? [ATexp<—7t>+“/ob B exp| — v t —|—2y:“/txy =

with K = Vobtob + ny’Vtxyquy + Zx’yavc:ua.x'

Consequently, the reverberation of the room is apparently
composed of eight kinds of exponential decay, of which decay
rates correspond to seven rates for the specular fields

w A; + Sop 24, +StU
E O - = "D A7+ T~
( ) CAl- Vob Bob Z m B

Xy ty
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D. Integrated reverberation in rectangular rooms

On account that specular and diffuse reflection fields are
superposed, the reverberation of an actual room is generally
observed as the overall energy decay. Adding the energy den-
sity of specular and diffuse fields by Eqs. (17) and (29), the
overall energy density in a rectangular room is expressed by

2= Iy < txy > < By )
——exp| — t) + ) exp| — t),
5, P Z Vax P
(32)
D(S)b(m ax)» and one rate for the diffuse field DP. The relation by

Eq. (15) holds among the former seven rates, thus the total

decay rate approaches min (D, D3, D3, ,D3.) in the late decay.

At t=0, the overall energy densny is expressed by

+Scu

4A
Z Vax B :

(33)

ax
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Considering actual rooms in the mid and high frequency
range, oblique sources are usually dominant in the steady
state, thus roughly giving

~ W oErtsen W

E(0) ~ o 2Er T SEob o W
() CAr ﬂEob _CAr

(34)

where the ratio of specular to diffuse field is og./Sgob-
Accordingly, the energy density ratio of diffuse to total field
in decibels is given by

RP(0) ~ —10log, (1 + ;‘fb) : (35)
0

which depends on the average scattering coefficient for
oblique sources with the conventional average absorption
coefficient. In the late decay (t — ), if DP is the minimum
rate (A, < BAax<y7Z)), the energy of the specular field vanishes
earlier than the diffuse field, thus R°(r) — 0. Otherwise, the
contribution of one of axial source groups lingers with the
minimum rate among Dix( o) and the energy is balanced
between the specular and the diffuse fields as follows:

which depends on the average scattering and absorption
coefficients for the one-dimensional field, with the conven-
tional average absorption coefficient.

IV. THEORETICAL CASE STUDY
A. Conditions of rectangular rooms

As a case study in rectangular rooms, the influences of
room aspect ratio, absorption distribution, and surface scat-
tering on reverberation are investigated by the present
theory. As shown in Table I, four types of rooms are given,
all of which have a volume of 1000 m® and an absorption
area of 210 m?, additionally assuming that absorption and
scattering coefficients have no dependence on incidence
angle, and the latter has an uniform value for all surfaces.
Based on the two classical theories, Sabine’s reverberation
time is 0.77s for all cases, whereas Eyring’s is 0.62s for
cases la and 1b, and 0.65 s for cases 2a and 2b. In the fol-
lowing, energy density levels relative to Lo= 10log;o(W/c)
are calculated for the specular and the diffuse fields of axial,
tangential, and oblique sources in each and subtotal, and for
the total field.

B. Results and discussion

D Ar -B ax(y,z) .
R™(1) — —10logy | 1 +4——3—— |, (36) Figures 5 and 6 show the energy decay curve of each
ax(y.2) component, calculated for cases 1b and 2b with a scattering
coefficient of 0.1, at 500 and 2000 Hz. It is seen that the
0
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FIG. 7. Energy decay of specular, diffuse, and total fields at 500 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case la, (b) case 1b, (c) case

2a, (d) case 2b.
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FIG. 8. Transient proportion of specular and diffuse to the total energy at 500 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case 1a, (b)

case 1b, (c) case 2a, (d) case 2b.

decay curve of the specular field for every source group is
straight, but not for the diffuse field. Regarding frequency
dependence, the energy density levels of axial and tangential
sources are relatively higher at the lower frequency, thus the
curvature of the total decay is more remarkable, especially
in case 2b.

Figure 7 shows the energy decay curves calculated at
500 Hz for all cases, uniformly changing the scattering coef-
ficient from 0.05 to 0.8. In case la with cubic shape and uni-
form absorption, surface scattering does not affect the total

J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012

decay, but it has a remarkably affect in the other cases. It is
seen that with increasing the scattering coefficient the specu-
lar field decays rapidly, which suppresses the curvature of
the total decay. However, the change of scattering coefficient
from 0.4 to 0.8 hardly affects the total decay in all cases.
Figure 8 shows the transient proportion of specular and
diffuse energy to total energy in the decay curves of Fig. 7.
It is seen that at the beginning of the curves the balance
between specular and diffuse energy depends on the scatter-
ing coefficient, but not on the cases under the condition of an
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FIG. 9. Reverberation time T3 at 500 and 2000 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case la, (b) case 1b, (c) case 2a, (d) case 2b.
Four types of lines represent theoretical values by Sabine, Eyring, Fitzroy, and Arau-Puchades.

equal absorption area. Regarding the components of the
specular energy, it is observed that the three-dimensional
field is dominant at the beginning, thus validating the
approximation by Eq. (35). In the late decay, the ratio of dif-
fuse energy converges to a nonzero value with increasing the
ratio of one-dimensional specular energy, if the scattering
coefficient is below some value that depends on the cases.
This tendency can be confirmed by Eq. (36), which specifies
the above-mentioned condition as Ar > éax.

Figure 9 shows the reverberation time T3 in the decay
range from —5 to —35dB at 500 and 2000 Hz for all cases,
with changing the scattering coefficient from 0.05 to 0.8. For
reference, the theoretical values by Sabine, Eyring, Fitzroy,
and Arau-Puchades are indicated regardless of scattering
coefficient. In all cases, the calculated values are almost
equal to Eyring’s if the scattering coefficient is above 0.4.
On the other hand, with the lowest scattering coefficient of
0.05, increases of 5% to 30% to Eyring’s are observed in
cases 1b and 2a, while drastic increases of two to three times
in case 2b, which are considerably beyond Fitzroy’s. Up to
now the present theory does not take into account additional
scattering from the edges of a room, which can occur due to
a difference of absorption coefficients between adjacent
walls. Generally, the effect of edge scattering can be greater
at lower frequencies, which will suppress reverberation of
specular fields to some extent. Therefore the calculated
reverberation time may be rather overestimated in rooms
with very low surface scattering.

V. CONCLUSIONS

An approximate theory of reverberation in rectangular
rooms with specular and diffuse reflections was newly devel-
oped based on the image source method by introducing scat-
tering coefficients of wall surfaces. First, it was described
that the specular reflection field is decomposed into one-,
two-, and three-dimensional fields with frequency depend-
ence, and its formulation corresponds to the approximate
expression by the normal mode theory in wave acoustics.
Second, an integrated theory for specular and diffuse fields
was formulated with scattering coefficients, which expresses
that the total energy decay is apparently composed of seven
kinds of exponential decay for specular fields and one for the
three-dimensional diffuse field. Finally, a theoretical case
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study demonstrated the following effects of surface scatter-
ing on energy decay in rectangular rooms: (a) With an irreg-
ular aspect ratio or nonuniform absorption distribution, the
curvature of the total decay occurs if the scattering coeffi-
cient is low; (b) in the steady state, the balance between
specular and diffuse energy is determined by the absorption
and scattering coefficients; (c) in the late decay, the diffuse
field or one of one-dimensional specular fields is dominant
depending on the scattering coefficient.

However, the present theory has some problems to be
further investigated for practical use. First of all, the theory
is based on an approximation for specular fields that assumes
single exponential decay for each group of image sources. In
the strict sense, each source can have a different decay rate,
which leads to a somewhat curvature in each group.”*°
Consequently, some discrepancy from the true decay will
occur in rooms with extremely irregular aspect ratio or non-
uniform absorption distribution. Regarding absorption and
scattering coefficients, the theory involves normal- and
grazing-incidence values in addition to random-incidence
values. For the normal and grazing incidence, the critical
angle changes depending on the frequency and the size of a
wall, which makes it troublesome to evaluate the values. A
rough estimation for absorption coefficients, presented in the
second section of the Appendix, may be a practical way to
be tested. Furthermore, it should be noted that the theory is
not applicable for an extreme case in which one of walls has
perfect absorption or diffusion. A different problem may
arise from the fact that the theory takes into account surface
scattering on the walls, but not considering edge scattering
around the walls. The influence of edge scattering should not
be negligible at lower frequencies, thus some way is needed
to include it.

As mentioned previously, the scope of the present
theory should be intricately limited by many factors. Future
work on validating the theory by experimental measurement
and computational simulation, and also by comparing with
other theories in various kinds of rooms is recommended.
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APPENDIX

1. Approximation of mean free paths for specular
fields

Although there exist well-known arguments on the mean
free path,>>*!? the inverse of mean reflection frequency with
respect to sound speed is considered as the value for a specu-
lar field of image sources. The three-dimensional mean reflec-
tion frequency for all image sources is represented by

B B _ . 27(26.) B B B
Mage = Y (Muy + ic) an T D (ar + flagy + M)
X

Xy

e — rn Jn( tny 4 n)sin0d0de = S5 (A1)
Nyy; = 4n o Jo Ny ny n; » = 4V,
with  n,=clsin 0 cos ¢l/L,, n,=clsin 0sin @l/L,, and

n,=clcos OI/L,, giving the mean free path for the specular
field as equal to the value for the perfectly diffuse field,
I,=4V/S. By excluding axial and tangential sources, Eq.
(A1) is modified for oblique sources as follows:

Nop =

2(20,)(20-
Z( )(26.)

27(20,)
1_ p
Z 4z * 4r

Xy

with Qx(y,z) the critical angles, 7,y /1,,(;) for x-axial sources,
and 7y, 71;; for xy-tangential sources (see Secs. IIB and
11 C). Thus, the mean free path for oblique sources is approx-
imately given by

AV —ncS/w

R Sy | A3
S—2€L/w<r7 (A3)

lob

for which a further approximation, /., ~ /;, can be assumed
for a relatively large room at mid and high frequencies.

In the same way, the two-dimensional mean reflection
frequencies are modified for tangential sources except axial
sources, as follows (in xy plane):

_ ﬁxy - (ﬁax + ’_la.xy) 22_07_2} - (’_lay + ﬁayx) Qi—if
oy = 20, 20,
2n 21
nc 1
Ny ig , (Ad)
20 L,

with the original value, 7iy, = ¢/l = 2¢(Ly + Ly)/nLLy.
Thus, the mean free paths for tangential sources except axial
sources are approximately given by

I nlLy, — nc(Ly +Ly) /20
(L + L) — mc/o

<y, (AS)

for which a further approximation, /., ~ [,,, can be assumed

)y’
as well.

2. Estimation of normal- and grazing-incidence
absorption coefficients

If local reaction is assumed on wall surfaces, the direc-
tional absorption coefficient is theoretically given by
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2(20y)(20.) el
4n sy

R Ty oS (A2)
4oV

vy — 4r, cos 0 (A6)

(racos 0 + 1)* + (x, cos 0)*

where 1, and x, are the resistance and the reactance of nor-
malized impedance for normal incidence. With statistical
averaging, the random-incidence coefficient is given by

/2 /2
Uy = J oy cos 0 sin Hdﬁ/ J cos 0sin 0d0
0 0

8ry - r2—x2 tan—! [
= —n__"% _an
rz 4 x2 Xn (P2 +x2) 14+

n 2 2
7mln[(l + 1) +xn]},

(A7)
which was first derived by Paris.*?

In the same way, limiting the incidence angles from O to
0., that is a critical angle defined by Eq. (3), the quasi-nor-
mal-incidence coefficient for the corresponding axial sources
is expressed by

8ry 2 _ y2

2
= (r2 +x2) sin?0, {1 — cosle +xn(rilﬁ Jr;ﬁ)
1[ xn(1 — cos 0;) }
(1 +7a)(1 4 rncos ) + x2 cos O,
(14 ry)° + 22
(14 rycos 0c)* + (x, cos 00)2] }
(A8)

X tan—

'n
) 2
r[l + xﬂ

For a small angle of 0., Eq. (A8) is almost equal to the true
normal-incidence coefficient,

4r,

_—, A9
(rn+1)2+xﬁ (A9)

Op = 0y =

because the angle dependence is fairly weak near the normal
direction in Eq. (A6). Consequently, in the present reverber-
ation theory, true normal-incidence coefficients can be used
regardless of the critical angle.
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On the other hand, limiting the incidence angles from 7/2—0,. to /2, the grazing-incidence coefficient for the correspond-

ing axial or tangential sources is expressed by

8r =X Xp sin 0, r
. in 6 n N tan~! n c - n 1[1‘02 92:| A10
oy (r2 + x2) sin 20, { sin 0, +xn(r§ +x2) an <1+rn sin 0C> 22 n|(14r,sin0.)” + (x, sin 6;) (A10)
For a small angle of 0, that satisfies |x,|0. < 1 + r,0., Eq. (A10) is approximated by
8, [2r + (rg + x3)0c]0c 2 2
o A n n n 1 1 ) 0 0 o
Oy (r2 +xﬁ)0§ { 1+ 7,0, n[(1+r0c)" + (xa0c)] ¢, ( )

and furthermore, if a real impedance is assumed (x,, = 0),

8 1 2
Ay A 1+—— —In(1+r, ,
e a0, + 1+r0. 1,0, n(l+70c)

(A12)

which results in o, ~ 8/r,0. for r,0. > 1, and o, ~ (8/3)
ral. — 4(1‘n0C)2 for r,0. < 1. Certainly it is difficult to evalu-
ate a grazing-incidence coefficient that strongly depends on
the critical angle, whereas Eq. (A12) may be useful for a
rough estimate from a measured absorption coefficient.
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