
Approximate theory of reverberation in rectangular rooms
with specular and diffuse reflections

Tetsuya Sakumaa)

Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa,
Chiba 277-8563, Japan

(Received 22 August 2011; revised 26 July 2012; accepted 26 July 2012)

First, an approximate theory of reverberation in rectangular rooms is formulated as a specular

reflection field based on the image source method. In the formulation, image sources are divided into

axial, tangential, and oblique groups, which chiefly contribute to the corresponding groups of normal

modes in wave acoustics. Consequently, the total energy decay consists of seven kinds of exponential

decay curves. Second, considering surface scattering on walls with scattering coefficients, an

integrated reverberation theory for nondiffuse field is developed, where the total field is divided into

specular and diffuse reflection fields. The specular reflection field is simply formulated by substituting

specular absorption coefficients, while the diffuse reflection field is assumed to be a perfectly diffuse

field, of which energy is supplied from the specular reflection field at each reflection. Finally, a

theoretical case study demonstrates how surface scattering affects the energy decay in rectangular rooms

with changing the aspect ratio and the absorption distribution. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4747001]
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I. INTRODUCTION

In the field of room acoustics, reverberation is one of

the most important aspects for judging acoustical qualities of

every kind of room, thus it is to be quantified, predicted, and

controlled. For this reason, a variety of theories of reverbera-

tion in rooms have been proposed, originated from Sabine’s

formula1 on the assumption of perfectly diffuse field, modi-

fied by Eyring,2 Norris,3 Millington,4 Sette,5 Kuttruff,6,7 and

others. The first two classical formulas are still widely used

for room acoustics design, although they cannot take into

account room shapes and absorption distribution.8 Actually,

the classical formulas often underestimate the reverberation

time of usual rooms, most of which have rectangular shapes

and nonuniform absorption distribution.

For rectangular rooms, an empirical formula was first

proposed by Fitzroy,9 and followed by Pujolle,10 Hirata,11

Arau-Puchades,12 Nilsson,13, Neubauer,14 and others. Fitz-

roy’s formula empirically assumes the arithmetic mean of

reverberation times of the three orthogonal directions, while

Arau-Puchades’s formula assumes the geometric mean with

a theoretical consideration. Both of the formulas are simple

to calculate, but do not work adequately in various situations.

Hirata derived a reverberation theory based on the image

source method, decomposing the sound field into one-, two-,

and three-dimensional fields with frequency dependence.

At first sight, this approach seems to correspond to the nor-

mal mode theory based on wave acoustics; however, some

discrepancy is seen due to a misunderstanding in the theoret-

ical development.

Generally, surface scattering tends to heighten field dif-

fuseness, resulting in a decrease in reverberation time, but

the effect strongly depends on room shapes and absorption

distribution.15–17 In a room with regular shape and nonuni-

form absorption, the effect of surface scattering can be great,

and conversely, with irregular shape and uniform absorption,

it can be small or negligible. Recently, as a measure of the

efficiency of surface scattering, the scattering coefficient has

been widely used for geometric acoustic simulation.18 Its

measurement method was already standardized in ISO

17497-1,19 and computational methods are also available for

predicting it.20,21 However, up to now there exists no rever-

beration theory including the scattering coefficient, which

must be based on some theory for nondiffuse field, although

some research has been concerned with sound fields includ-

ing both specular and diffuse reflections.22–24

In this paper, first, an approximate theory of reverbera-

tion in rectangular rooms is formulated as a specular reflec-

tion field based on the image source method by modifying

Hirata’s theory. Second, considering surface scattering on

walls with scattering coefficients, an integrated reverberation

theory for nondiffuse field is developed, where the total field

is divided into specular and diffuse reflection fields. Finally,

a theoretical case study is presented to demonstrate how sur-

face scattering affects the energy decay of nondiffuse fields

in rectangular rooms, with changing the aspect ratio and the

absorption distribution.

II. REVERBERATION OF SPECULAR REFLECTION
FIELD IN RECTANGULAR ROOMS

A. Specular field of image sources

As illustrated in Fig. 1, a regular arrangement of image

sources is determined for a point source in a rectangular

room. When the energy density of the reflection field is dis-

cussed with space average for both source and receiver, a

continuous distribution of image sources is considered with
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a representative receiving point at the center of the room. For

image sources at equal distances from the receiving point, the

number of sources, distance attenuation, and wall absorption

are estimated on the condition that only specular reflections

occur throughout the paths. If the real source of the sound

power W is stopped at t¼ 0 in the steady state, the average

energy density of the three-dimensional specular field is formu-

lated in spherical coordinates, as follows (t� 0):

ESðtÞ¼
ð2p

0

ðp

0

ð1
ct

W

4pcr2
ð1�~axÞrsinhcosu=Lx

�ð1�~ayÞrsinhsinu=Lyð1�~azÞrcosh=Lz
r2 sinhdrdhdu

LxLyLz
;

(1)

where c is the sound speed, Lx(y,z) is the length of each side,

and ~axðy;zÞ is the absorption coefficient averaged by the geo-

metric mean of two reflection coefficients in each direction.

Because of alternate reflections between the parallel surfa-

ces, the geometric average is used, represented by

~axðy;zÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1� aþxðy;zÞ

��
1� a�xðy;zÞ

�r
; (2)

where a6
xðy;zÞ are the absorption coefficients of two parallel

walls. Generally, Eq. (1) is composed of direction-dependent

multiple exponentials, and numerical integration is required

to evaluate the exact energy decay.8

In a similar way to the classical reverberation theory, a

single exponential decay function is roughly assumed, where

the mean free path for oblique sources lob is approximately

equal to the theoretical value for the three-dimensional

perfectly diffuse field lr¼ 4 V/S (see the first section of the

Appendix),25 with the room volume V¼LxLyLz, and the total

surface area S¼ 2(LxLy þ LyLz þ LzLx). Furthermore, the

area-weighted arithmetic mean of absorption coefficients for

the three directions is used as represented by

aob ¼
LyLz~a

r
x þ LzLx~a

r
y þ LxLy~a

r
z

LyLz þ LzLx þ LxLy
; (3)

where ~ar
xðy;zÞ is the geometric mean of random-incidence

absorption coefficients in each direction according to Eq. (2).

Consequently, Eq. (1) is approximated by

ES
obðtÞ ¼

ð1
ct

W

4pcr2
ð1� aobÞr=lob

4p2dr

V

¼ W

cÂob

exp � cÂob

V
t

 !
; (4)

with Âob ¼ Aob=4; Aob ¼ SaEob and aEob ¼ � lnð1� aobÞ:
For a general expression, the quantity Â is defined as the room

absorption factor taking into account the ratio of incident in-

tensity to energy density, thus giving Â/V¼ aE=l throughout

this paper.

Equation (4) is regarded as a first approximation for the

specular field of oblique sources, in a similar form to Eyr-

ing’s formula using Millington’s average absorption coeffi-

cient for each pair of parallel walls. However, it includes the

contributions of axial and tangential sources that are more

apt to deviate from the average decay. In the following, one-,

two-, and three-dimensional specular fields are considered

by dividing image sources into axial, tangential, and oblique

groups, which chiefly contribute to the corresponding groups

of normal modes in wave acoustics.

B. Specular fields of axial sources

Consider the image sources near the x axis in the angular

ranges within 6hy and within 6hz to the positive and negative

x directions, as illustrated in Fig. 2. The x-axial sources lead

to normal incidence to the x-directional walls (in yz plane),

and grazing incidence to the y- and z-directional walls. If the

off-axial path differences from an x-axial source to the room

in y and z directions are, respectively, within 1/4 wavelength

(p/2 in phase), the image source chiefly contributes to x-axial

modes in wave acoustics. For far x-axial sources at small

angles of hy(z), the maximum path differences are expressed

by Dy(z) � Ly(z) sin hy(z) � Ly(z)hy(z), thus the critical angles are

generally defined as

FIG. 1. Image sources of a rectangular room.

FIG. 2. Axial image sources for the x axis in the xy plane.
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hxðy;zÞ ¼
pc

2xLxðy;zÞ
; (5)

with the angular frequency x.

At the critical angles hy(z), the frequency of normal reflec-

tions on the x-directional walls is expressed by nax � c/Lx, and

those of grazing reflections on the y- and z-directional walls

by naxy(z)¼ c sin hy(z)/Ly(z) � chy(z)/Ly(z). In the angular ranges,

the average reflection frequency for the x direction, �nax � nax,

and those for the y and z directions, �naxyðzÞ � naxyðzÞ=2. By lim-

iting the angular ranges of integration in Eq. (1), the energy

density of the one-dimensional specular field from x-axial

sources is formulated as follows:

ES
axðtÞ ¼

4W

c

ð1
ct

ð1� ~an
xÞ

r=Lxð1� ~ag
yÞ

rhy=2Ly

� ð1� ~ag
z Þ

rhz=2Lz
2ð2hyÞð2hzÞdr

4p

¼ 4W

c

pc2Lx

2x2V2

ð1
ct

ð1� aaxÞr=lx dr

¼ 4W

c

pc2Lx

2x2VÂax

exp � cÂax

V
t

 !
(6)

where the one-dimensional mean free path lx¼ Lx, and the

contribution of axial sources to the one-dimensional field is

assumed quadruple to that of oblique sources to the three-

dimensional field due to the coherence in the two off-axial

directions, in accordance with the ratio of normalization fac-

tors in the mode theory. Regarding wall absorption,

Âax¼2Aax; Aax¼2LyLzaEax; aEax¼�lnð1�aaxÞ;
aax¼1�ð1�~an

xÞð1�~ag
yÞ

eaxyð1�~ag
z Þ

eaxz ; (7)

eaxyðzÞ ¼
�naxyðzÞ

�nax
� pcLx

4xL2
yðzÞ

; (8)

where ~an
x is the normal-incidence absorption coefficient of

the x-directional walls, and ~ag

yðzÞ are the grazing-incidence

absorption coefficients of the y- and z-directional walls, con-

sidered as the geometric mean for parallel walls according to

Eq. (2). In the strict sense, the above-presented normal and

grazing incidence correspond to incidence from the angular

ranges of axial sources with frequency dependence; accord-

ingly, a database of directional absorption coefficients is

needed. Practically, rough estimates of the normal- and

grazing-incidence coefficients are available on the assumption

of local reaction (see the second section of the Appendix). The

total average absorption coefficient for the one-dimensional

field, aax, is given by taking into account the reflection fre-

quency in each direction, with eaxy(z) the ratios of average

reflection frequency of the y and z to the x direction.

In Eq. (7), the geometric mean weighted with average

reflection frequency is given, for the reason that the reflec-

tion frequency in each direction is almost independent for

axial sources. However, it is not valid for an extreme case in

which that either grazing-incidence absorption coefficient

~ag

yðzÞ ¼ 1, because the contribution of x-axial sources per-

fectly vanishes in Eq. (6), even if one of the y- and z-direc-

tional walls has perfect absorption.

C. Specular fields of tangential sources

In a similar way to axial sources, consider the image

sources near the xy plane in the angular range within 6hz to

the xy plane, which lead to random incidence to the x- and y-

directional walls, and grazing incidence to the z-directional

walls (in xy plane). Again, if the off-tangential path differ-

ence from an xy-tangential source to the room in z direction

is within 1/4 wavelength (p/2 in phase), the image source

chiefly contributes to the xy-tangential modes. Thus, the crit-

ical angles by Eq. (5) are in common with axial and tangen-

tial sources.

In the angular range, the average frequency of reflec-

tions for the x- and y-directional walls is �ntxy � c=lxy, with

the two-dimensional mean free path lxy¼pLxLy/2(Lx þ Ly)

(see the first section of the Appendix), and the average fre-

quency of grazing reflections for the z-directional walls,

�ntz � ntz=2 � chz=2Lz. Similar to Eq. (6), the energy density

of the two-dimensional specular field from xy-tangential

sources is formulated as follows:

ES
txyðtÞ ¼

2W

c

ð1
ct

ð1� ~ar
xyÞ

r=lxyð1� ~ag
z Þ

rhz=2Lz
2pð2hzÞdr

4pV

¼ 2W

c

pcLxLy

2xV2

ð1
ct

ð1� atxyÞr=lxy dr

¼ 2W

c

pcLxLy

2xVÂtxy

exp � cÂtxy

V
t

 !
;

(9)

where the contribution of tangential sources to the two-

dimensional field is assumed double that of oblique sources to

the three-dimensional field due to the coherence in the off-

tangential direction. Regarding wall absorption, Âtxy ¼ Atxy=p;
Atxy ¼ 2ðLx þ LyÞLzaEtxy, aEtxy¼�ln(1 � atxy),

atxy ¼ 1� ð1� ~ar
xyÞð1� ~ag

z Þ
etz ; (10)

~ar
xy ¼

Ly~a
r
x þ Lx~a

r
y

Ly þ Lx
; (11)

etz ¼
�ntz

�ntxy
� p2cLxLy

8xðLx þ LyÞL2
z

; (12)

where ~ar
xy is the area-weighted arithmetic mean of random-

incidence values for the two directions, considering alternate

reflections by Eq. (2), and atxy is the total average absorption

coefficient for the two-dimensional field, with etz the ratio of

average reflection frequency of the z direction to the x and y
directions. Note that Eq. (10) is again not valid if one of the

z-directional walls has perfect absorption yielding ~ag
z ¼ 1,

because the contribution of xy-tangential sources perfectly

vanishes in Eq. (9).

D. Reverberation of total specular field

Equation (1) includes the contributions of axial and

tangential sources, and Eq. (9) also includes that of axial

sources. Summing up Eqs. (1), (6), and (9), excluding the
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above-presented duplicate contributions, the total energy

density of specular fields in the room is expressed by

ESðtÞ ¼ W

c

cob

Âob

exp � cÂob

V
t

 !"

þ
X

xy

2ctxy

Âtxy

exp � cÂtxy

V
t

 !

þ
X

x

4cax

Âax

exp � cÂax

V
t

 !#
; (13)

where the proportion of sources in each group is denoted by

cob ¼ 1� pcS

4xV
þ pc2L

8x2V
;

ctxy ¼
pcLxLy

2xV
1� cðLx þ LyÞ

xLxLy

� �
; cax ¼

pc2Lx

2x2V
;

with the total edge length L¼ 4(Lx þ Ly þ Lz). Conse-

quently, the reverberation of the total specular field is com-

posed of seven kinds of exponential decay, arising from one

oblique, three tangential, and three axial source groups. Each

decay rate in decibels per unit time is given by

DS
obðtxy;axÞ ¼ 10log10e � cÂobðtxy;axÞ=V; (14)

with the relation

min ðDS
ax;D

S
ay;D

S
azÞ < min ðDS

txy;D
S
tyz;D

S
tzxÞ < DS

ob: (15)

Equation (13) entirely corresponds to the approximate

expression derived from the normal mode theory in wave

acoustics.26,27 The critical angles for axial and tangential image

sources can be interpreted in view of normal mode distribution

in wavenumber space, as illustrated in Fig. 3. Supposing the

ranges dominated by axial modes to be within the middle to the

adjacent oblique modes, the critical angles are determined by

p
2LyðzÞ

¼ k sin hyðzÞ � khyðzÞ; (16)

which is consistent with Eq. (5). Thus it can be stated that

the angular ranges for axial and tangential image sources

approximately correspond to axial and tangential modes in

wavenumber space.

It should be noted that the present theory includes three

reasonable modifications to the original theory by Hirata,11 on

the critical angles, the averaging of absorption coefficients,

and the ratios of normalization factors. In the original theory,

different angular ranges were derived from an ambiguous dis-

cussion, resulting in some discrepancy with the expression

based on the normal mode theory. Regarding absorption coef-

ficients, alternate reflections between parallel walls were not

considered, and arithmetic averages weighted with reflection

frequency were given regardless of one- or two-dimensional

field, thus finally leading to different decay rates.28

In the modified theory, geometric averages are used

with regard to independence of reflection frequencies. How-

ever, if it is applied to extreme cases where one of the walls

has perfect absorption, all of the one-dimensional fields and

a two-dimensional field that is tangential to the absorptive

wall vanish completely. Therefore the modified theory is

not applicable to such cases, specifically with perfect absorp-

tion for grazing incidence. If the original theory is applied

to the cases, none of the one- and the two-dimensional

fields vanish, even a one-dimensional field that is normal to

the absorptive wall. It is not realistic from a different aspect,

so the original theory is also not applicable to such cases,

specifically those with perfect absorption for normal

incidence.

III. REVERBERATION IN RECTANGULAR ROOMS
WITH SURFACE SCATTERING

A. Specular and diffuse fields with surface scattering

The scattering coefficient of a diffuse surface is defined

as the ratio of nonspecularly reflected energy to total reflected

energy.18 By introducing the scattering coefficients of wall

surfaces, sound energy propagating from image sources can

be divided into specular and diffuse components at each

reflection. One possible assumption is that the specular reflec-

tion field is composed of arriving components that are never

scattered at all reflections from image sources to a receiving

point. On that assumption, the energy density of the specular

field is simply given by replacing all values related to absorp-

tion coefficient with those related to specular absorption coef-

ficient b¼ a þ (1 � a)s, with s the scattering coefficient.

Accordingly, Eq. (13) is modified by substituting all kinds of
~b, bE, B, and b̂ for ~a, aE, A, and Â, as follows:

ESðtÞ ¼ W

c

cob

B̂ob

exp � cB̂ob

V
t

� ��

þ
X

xy

2ctxy

B̂txy

exp � cB̂txy

V
t

� �

þ
X

x

4cax

B̂ax

exp � cB̂ax

V
t

� �#
; (17)

FIG. 3. Axial modes in the xy plane in wavenumber space.
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thus each decay rate is also modified as

DS
obðtxy;axÞ ¼ 10log10e � cB̂obðtxy;axÞ=V: (18)

As illustrated in Fig. 4, it is assumed that a part of the

specular energy is transformed into diffuse energy at each

refection, and after the transition, the diffuse energy is

decayed by perfectly diffuse reflections and finally arrives to

a receiving point by random incidence. With respect to an ar-

bitrary distance r0 from an image source, the rate of scattered

energy in a very small path is given by

lim
dr0!0

1� ð1� sobÞdr0=lob ¼ lim
dr0!0

1� exp � sEobdr0

lob

� �

! sEobdr0

lob

¼ Ŝobdr0

V
;

(19)

with Ŝob ¼ Sob=4; Sob ¼ SsEob, and sEob¼�ln (1 � sob).

The average scattering coefficient for the three-dimensional

specular field is given by

sob ¼
LyLzð1� ~ar

xÞ~sr
xþ LzLrð1� ~ar

yÞ~sr
y þ LxLyð1� ~ar

zÞ~sr
z

LyLzð1� ~ar
xÞ þ LzLxð1� ~ar

yÞ þ LxLyð1� ~ar
zÞ

;

(20)

where ~sr
xðy;zÞ is the geometrical mean of random-incidence

scattering coefficients of two parallel walls, considering

alternate reflections by Eq. (2), and sob is assumed the arith-

metic mean weighted with area and reflection coefficient for

the three directions. Estimating the energy scattered at r0 and

decayed before and after the transition, and subsequently

integrating it with respect to r0 throughout the path, the

energy density of the diffuse field for oblique sources is for-

mulated as follows:

ED
obðtÞ¼

W

c

ð1
ct

ðr

0

ð1�bobÞr
0=lobð1�arÞðr�r0Þ=lr sEobdr0

lob

dr

V

¼W

c
lob

ð1
ct

½ð1�arÞr=lr �ð1�bobÞr=lob �dr

V

¼W

c
lob

1

Âr

exp �cÂr

V
t

 !
� 1

B̂ob

exp �cB̂ob

V
t

� �" #
;

(21)

with lob ¼ Ŝob=ðB̂ob � ÂrÞ, and the mean free path for

the diffuse field lr. In the specular reflection path before

the transition, the energy is decayed with B̂ob ¼ Bob=4; Bob

¼ SbEob; bEob¼�ln(1 � bob)¼ aEob þ sEob, while in the dif-

fuse reflection path after the transition, the energy is decayed

with Âr ¼ Ar=4, Ar¼ SaEr, aEr¼�ln(1 � ar), where ar is the

area-weighted mean of random-incidence absorption coeffi-

cients. The relations lob � lr and aob� ar hold for oblique

sources, thus resulting in B̂ob � Âr and 0�lob� 1.

B. Diffuse fields of axial and tangential sources

Considering axial image sources as mentioned previ-

ously, and referring to Eqs. (6) and (21), the energy density

of the diffuse field from x-axial sources is formulated as

follows:

ED
axðtÞ¼

W

c

ð1
ct

ðr

0

ð1�~b
n

xÞ
r0=Lxð1�~b

g

yÞ
r0hy=2Ly

�ð1�~b
g

z Þ
r0hz=2Lzð1�arÞðr�r0Þ=lr sEaxdr0

lx

� 2ð2hyÞð2hzÞdr

4pV

¼W

c

pc2Lx

2x2V

ð1
ct

ðr

0

ð1�baxÞr
0=lxð1�arÞðr�r0Þ=lr

� Ŝaxdr0

V

dr

V

¼W

c

pc2Lx

2x2V
lax

1

Âr

exp �cÂr

V
t

 !"

� 1

B̂ax

exp �cB̂ax

V
t

� ��
; (22)

with lax ¼ Ŝax=ðB̂ax � ÂrÞ, where the contribution of axial

sources to diffuse field is equal to that of oblique sources due to

random incidence to the room. Regarding wall scattering,

Ŝax ¼ Sax=2, Sax¼ 2LyLzsEax, sEax¼�ln(1 � sax), and similar

to Eq. (7),

sax ¼ 1� ð1� ~sn
xÞð1� ~sg

yÞ
eaxyð1� ~sg

z Þ
eaxz ; (23)

with ~sn
x the normal-incidence scattering coefficient of the

x-directional walls and ~sg

yðzÞ the grazing-incidence scattering

coefficients of the y- and z-directional walls, considered as

the geometric mean for parallel walls according to Eq. (2).

Again, because the above-presented normal- and grazing-

incidence coefficients are the averages within the frequency-

dependent angular range, a database of directional scattering

coefficients is needed, which can be obtained by theFIG. 4. Transition from specular to diffuse reflections.
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free field measurement18 or numerical computation.20 If the

one-dimensional specular field decays more rapidly than the

diffuse field ðB̂ax > ÂrÞ; lax � 0. Otherwise, the sign of the

inequality is changed, where the decay of the diffuse field is

obeyed by the one-dimensional specular field, and a flutter

echo is liable to occur. In the singular case that B̂ax ¼ Âr,

Eq. (22) can be transformed into

ED
axðtÞ ¼

W

c

pc2Lx

2x2V

sEax

bEax

1þ Ârct=V

Âr

exp � cÂr

V
t

 !
: (24)

Similar to absorption coefficient, it should be noted that

Eq. (23) is not valid for an extreme case in which either

grazing-incidence scattering coefficient ~sg

yðzÞ ¼ 1, because

the specular component of x-axial sources perfectly vanishes

in Eq. (17), even if one of the y- and z-directional walls has

perfect diffusion.

In a similar way to axial sources, the energy density of

the diffuse field from xy-tangential sources is formulated as

follows:

ED
txyðtÞ ¼

W

c

ð1
ct

ðr

0

ð1� ~b
r

xyÞ
r0=lxyð1� ~b

g

z Þ
r0hz=2Lz

� ð1� arÞðr�r0Þ=lr sEtxydr0

lxy

2pð2hzÞdr

4pV

¼ W

c

pcLxLy

2xV

ð1
ct

ðr

0

ð1� btxyÞr
0=lxyð1� arÞðr�r0Þ=lr

� Ŝtxydr0

V

dr

V

¼ W

c

pcLxLy

2xV
ltxy

1

Âr

exp � cÂr

V
t

 !"

� 1

B̂txy

exp � cB̂txy

V
t

� ��
; (25)

with ltxy ¼ Ŝtxy=ðB̂txy � ÂrÞ. Regarding wall scattering,

Ŝtxy ¼ Stxy=p, Stxy¼ 2(Lx þ Ly)LzsEtxy, sEtxy¼�ln(1 � stxy),

and similarly to Eqs. (10) and (11),

stxy ¼ 1� ð1� ~sr
xyÞð1� ~sg

z Þ
etz ; (26)

~sr
xy ¼

Lyð1� ~ar
xÞ~sr

x þ Lxð1� ~ar
yÞ~sr

y

Lyð1� ~ar
xÞ þ Lxð1� ~ar

yÞ
; (27)

assuming the arithmetic mean weighted with area and reflec-

tion coefficient for the two directions. Again, ltxy� 0 if

B̂txy > Âr, otherwise changing the sign of the inequality. In

the singular case that B̂txy ¼ Âr, Eq. (25) can be transformed

into

ED
txyðtÞ ¼

W

c

pcLxLy

2xV

sEtxy

bEtxy

1þ Ârct=V

Âr

exp � cÂr

V
t

 !
:

(28)

Note that Eq. (26) is again not valid if one of the z-direc-

tional walls has perfect diffusion with yielding ~sg
z ¼ 1,

because the specular component of xy-tangential sources

perfectly vanishes in Eq. (17).

TABLE I. Dimensions and absorption coefficients of rectangular rooms.

Case Lx (m) Ly (m) Lz (m) ax ay az ax/Lx: ay/Ly: az/Lz

1a 10 10 10 0.35 0.35 0.35 1: 1: 1

1b 10 10 10 0.15 0.30 0.60 1: 2: 4

2a 20 10 5 0.30 0.30 0.30 1: 2: 4

2b 20 10 5 0.10 0.20 0.40 1: 4: 16

FIG. 5. Energy decay of specular, diffuse, and total fields for case 1b, with a

scattering coefficient of 0.1: (a) 500 Hz, (b) 2000 Hz. Abbreviations: Specu-

lar/diffuse fields in subtotal (S/D), of oblique sources (Sob/Dob), of xy-tan-

gential sources (Stxy/Dtxy), of x-axial sources (Sax/Dax).

FIG. 6. Energy decay of specular, diffuse, and total fields for case 2b, with a

scattering coefficient of 0.1: (a) 500 Hz, (b) 2000 Hz. Abbreviations: See

Fig. 5.
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C. Reverberation of total diffuse field

Similar to the total specular field, summing up Eqs. (21), (22), and (25) and excluding the duplicate contributions of axial

and tangential sources, the total energy density of diffuse fields in the room is expressed by

EDðtÞ ¼ W

c
coblob

1

Âr

exp � cÂr

V
t

 !
� 1

B̂ob

exp � cB̂ob

V
t

� �" #
þ
X

xy

ctxyltxy

1

Âr

exp � cÂr

V
t

 !
� 1

B̂txy

exp � cB̂txy

V
t

� �" #(

þ
X

x

caxlax

1

Âr

exp � cÂr

V
t

 !
� 1

B̂ax

exp � cB̂ax

V
t

� �" #)
; (29)

where cob(txy,ax) are the proportions of sources as denoted for

Eq. (13). At t¼ 0, the total energy density in the steady state

is expressed by

EDð0Þ ¼ W

cÂr

cob

sEob

bEob

þ
X

xy

ctxy

sEtxy

bEtxy

þ
X

x

cax

sEax

bEax

 !
:

(30)

It is confirmed that if all wall surfaces are perfectly

diffuse with s ! 1, sE/bE ! 1, thus resulting in EDð0Þ
! W=cÂr.

The reverberation of the total diffuse field is also appa-

rently composed of seven kinds of decay, but double expo-

nential decay. With the decay rate of the three-dimensional

perfectly diffuse field, DD
r ¼ 10log10e � cÂr=V each rate is

given by

DD
obðtxy;axÞðtÞ ¼ DD

r

1� exp½�
�
�B̂obðtxy;axÞ � Âr

�
ct=V�

1�
�

Âr=B̂obðtxy;axÞ

�
exp½�

�
B̂obðtxy;axÞ � Âr

�
ct=V�

: (31)

In Eq. (31), just after stopping the source (t ! 0),

DD
obðtxy;axÞðtÞ ! 0; that is, all seven groups of sources do

not immediately start to decay. In the late decay (t ! 1),

DD
obðtÞ ! DD

r � DS
ob for oblique sources, while DD

txyðaxÞðtÞ !
min
�

DD
r ;D

S
txyðaxÞ

�
for axial and tangential sources, where the

decay rates of the specular fields DS
txyðaxÞ are given by Eq. (18).

D. Integrated reverberation in rectangular rooms

On account that specular and diffuse reflection fields are

superposed, the reverberation of an actual room is generally

observed as the overall energy decay. Adding the energy den-

sity of specular and diffuse fields by Eqs. (17) and (29), the

overall energy density in a rectangular room is expressed by

EðtÞ¼W

c

lr

Âr

exp �cÂr

V
t

 !
þcob

1�lob

B̂ob

exp �cB̂ob

V
t

� �
þ
X

xy

ctxy

2�ltxy

B̂txy

exp �cB̂txy

V
t

� �
þ
X

x

cax

4�lax

B̂ax

exp �cB̂ax

V
t

� �" #
;

(32)

with lr ¼ coblob þ
P

xyctxyltxy þ
P

xcaxlax.

Consequently, the reverberation of the room is apparently

composed of eight kinds of exponential decay, of which decay

rates correspond to seven rates for the specular fields

DS
obðtxy;axÞ, and one rate for the diffuse field DD

r . The relation by

Eq. (15) holds among the former seven rates, thus the total

decay rate approaches min (DD
r ;D

S
ax;D

S
ay;D

S
az) in the late decay.

At t¼ 0, the overall energy density is expressed by

Eð0Þ ¼ W

cÂr

cob

Âr þ Ŝob

B̂ob

þ
X

xy

ctxy

2Âr þ Ŝtxy

B̂txy

þ
X

x

cax

4Âr þ Ŝax

B̂ax

" #
: (33)
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Considering actual rooms in the mid and high frequency

range, oblique sources are usually dominant in the steady

state, thus roughly giving

Eð0Þ � W

cÂr

aEr þ sEob

bEob

� W

cÂr

; (34)

where the ratio of specular to diffuse field is aEr/sEob.

Accordingly, the energy density ratio of diffuse to total field

in decibels is given by

RDð0Þ � �10log10 1þ aEr

sEob

� �
; (35)

which depends on the average scattering coefficient for

oblique sources with the conventional average absorption

coefficient. In the late decay (t!1), if DD
r is the minimum

rate (Âr � B̂axðy;zÞ), the energy of the specular field vanishes

earlier than the diffuse field, thus RD(t) ! 0. Otherwise, the

contribution of one of axial source groups lingers with the

minimum rate among DS
axðy;zÞ, and the energy is balanced

between the specular and the diffuse fields as follows:

RDðtÞ ! �10log10 1þ 4
Âr � B̂axðy;zÞ

Ŝaxðy;zÞ

 !
; (36)

which depends on the average scattering and absorption

coefficients for the one-dimensional field, with the conven-

tional average absorption coefficient.

IV. THEORETICAL CASE STUDY

A. Conditions of rectangular rooms

As a case study in rectangular rooms, the influences of

room aspect ratio, absorption distribution, and surface scat-

tering on reverberation are investigated by the present

theory. As shown in Table I, four types of rooms are given,

all of which have a volume of 1000 m3 and an absorption

area of 210 m2, additionally assuming that absorption and

scattering coefficients have no dependence on incidence

angle, and the latter has an uniform value for all surfaces.

Based on the two classical theories, Sabine’s reverberation

time is 0.77 s for all cases, whereas Eyring’s is 0.62 s for

cases 1a and 1b, and 0.65 s for cases 2a and 2b. In the fol-

lowing, energy density levels relative to L0¼ 10log10(W/c)

are calculated for the specular and the diffuse fields of axial,

tangential, and oblique sources in each and subtotal, and for

the total field.

B. Results and discussion

Figures 5 and 6 show the energy decay curve of each

component, calculated for cases 1b and 2b with a scattering

coefficient of 0.1, at 500 and 2000 Hz. It is seen that the

FIG. 7. Energy decay of specular, diffuse, and total fields at 500 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case 1a, (b) case 1b, (c) case

2a, (d) case 2b.
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decay curve of the specular field for every source group is

straight, but not for the diffuse field. Regarding frequency

dependence, the energy density levels of axial and tangential

sources are relatively higher at the lower frequency, thus the

curvature of the total decay is more remarkable, especially

in case 2b.

Figure 7 shows the energy decay curves calculated at

500 Hz for all cases, uniformly changing the scattering coef-

ficient from 0.05 to 0.8. In case 1a with cubic shape and uni-

form absorption, surface scattering does not affect the total

decay, but it has a remarkably affect in the other cases. It is

seen that with increasing the scattering coefficient the specu-

lar field decays rapidly, which suppresses the curvature of

the total decay. However, the change of scattering coefficient

from 0.4 to 0.8 hardly affects the total decay in all cases.

Figure 8 shows the transient proportion of specular and

diffuse energy to total energy in the decay curves of Fig. 7.

It is seen that at the beginning of the curves the balance

between specular and diffuse energy depends on the scatter-

ing coefficient, but not on the cases under the condition of an

FIG. 8. Transient proportion of specular and diffuse to the total energy at 500 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case 1a, (b)

case 1b, (c) case 2a, (d) case 2b.
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equal absorption area. Regarding the components of the

specular energy, it is observed that the three-dimensional

field is dominant at the beginning, thus validating the

approximation by Eq. (35). In the late decay, the ratio of dif-

fuse energy converges to a nonzero value with increasing the

ratio of one-dimensional specular energy, if the scattering

coefficient is below some value that depends on the cases.

This tendency can be confirmed by Eq. (36), which specifies

the above-mentioned condition as Âr > B̂ax.

Figure 9 shows the reverberation time T30 in the decay

range from �5 to �35 dB at 500 and 2000 Hz for all cases,

with changing the scattering coefficient from 0.05 to 0.8. For

reference, the theoretical values by Sabine, Eyring, Fitzroy,

and Arau-Puchades are indicated regardless of scattering

coefficient. In all cases, the calculated values are almost

equal to Eyring’s if the scattering coefficient is above 0.4.

On the other hand, with the lowest scattering coefficient of

0.05, increases of 5% to 30% to Eyring’s are observed in

cases 1b and 2a, while drastic increases of two to three times

in case 2b, which are considerably beyond Fitzroy’s. Up to

now the present theory does not take into account additional

scattering from the edges of a room, which can occur due to

a difference of absorption coefficients between adjacent

walls. Generally, the effect of edge scattering can be greater

at lower frequencies, which will suppress reverberation of

specular fields to some extent. Therefore the calculated

reverberation time may be rather overestimated in rooms

with very low surface scattering.

V. CONCLUSIONS

An approximate theory of reverberation in rectangular

rooms with specular and diffuse reflections was newly devel-

oped based on the image source method by introducing scat-

tering coefficients of wall surfaces. First, it was described

that the specular reflection field is decomposed into one-,

two-, and three-dimensional fields with frequency depend-

ence, and its formulation corresponds to the approximate

expression by the normal mode theory in wave acoustics.

Second, an integrated theory for specular and diffuse fields

was formulated with scattering coefficients, which expresses

that the total energy decay is apparently composed of seven

kinds of exponential decay for specular fields and one for the

three-dimensional diffuse field. Finally, a theoretical case

study demonstrated the following effects of surface scatter-

ing on energy decay in rectangular rooms: (a) With an irreg-

ular aspect ratio or nonuniform absorption distribution, the

curvature of the total decay occurs if the scattering coeffi-

cient is low; (b) in the steady state, the balance between

specular and diffuse energy is determined by the absorption

and scattering coefficients; (c) in the late decay, the diffuse

field or one of one-dimensional specular fields is dominant

depending on the scattering coefficient.

However, the present theory has some problems to be

further investigated for practical use. First of all, the theory

is based on an approximation for specular fields that assumes

single exponential decay for each group of image sources. In

the strict sense, each source can have a different decay rate,

which leads to a somewhat curvature in each group.29,30

Consequently, some discrepancy from the true decay will

occur in rooms with extremely irregular aspect ratio or non-

uniform absorption distribution. Regarding absorption and

scattering coefficients, the theory involves normal- and

grazing-incidence values in addition to random-incidence

values. For the normal and grazing incidence, the critical

angle changes depending on the frequency and the size of a

wall, which makes it troublesome to evaluate the values. A

rough estimation for absorption coefficients, presented in the

second section of the Appendix, may be a practical way to

be tested. Furthermore, it should be noted that the theory is

not applicable for an extreme case in which one of walls has

perfect absorption or diffusion. A different problem may

arise from the fact that the theory takes into account surface

scattering on the walls, but not considering edge scattering

around the walls. The influence of edge scattering should not

be negligible at lower frequencies, thus some way is needed

to include it.

As mentioned previously, the scope of the present

theory should be intricately limited by many factors. Future

work on validating the theory by experimental measurement

and computational simulation, and also by comparing with

other theories in various kinds of rooms is recommended.
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FIG. 9. Reverberation time T30 at 500 and 2000 Hz, with changing the scattering coefficient from 0.05 to 0.8: (a) Case 1a, (b) case 1b, (c) case 2a, (d) case 2b.

Four types of lines represent theoretical values by Sabine, Eyring, Fitzroy, and Arau-Puchades.
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APPENDIX

1. Approximation of mean free paths for specular
fields

Although there exist well-known arguments on the mean

free path,25,31,32 the inverse of mean reflection frequency with

respect to sound speed is considered as the value for a specu-

lar field of image sources. The three-dimensional mean reflec-

tion frequency for all image sources is represented by

�nxyz ¼
1

4p

ð2p

0

ðp

0

ðnx þ ny þ nzÞ sin hdhdu ¼ cS

4V
; (A1)

with nx¼ c|sin h cos u|/Lx, ny¼ c|sin h sin u|/Ly, and

nz¼ c|cos h|/Lz, giving the mean free path for the specular

field as equal to the value for the perfectly diffuse field,

lr¼ 4 V/S. By excluding axial and tangential sources, Eq.

(A1) is modified for oblique sources as follows:

�nob ¼
�nxyz �

X
xy

ð�ntxy þ �ntzÞ
2pð2hzÞ

4p
þ
X

x

ð�nax þ �naxy þ �naxzÞ
2ð2hyÞð2hzÞ

4p

1�
X

xy

2pð2hzÞ
4p

þ
X

x

2ð2hyÞð2hzÞ
4p

� �nxyz

1� 2cL

xS

1� pcS

4xV

; (A2)

with hx(y,z) the critical angles, �nax, �naxyðzÞ for x-axial sources,

and �ntxy, �ntz for xy-tangential sources (see Secs. II B and

II C). Thus, the mean free path for oblique sources is approx-

imately given by

lob �
4V � pcS=x
S� 2cL=x

< lr; (A3)

for which a further approximation, lob � lr, can be assumed

for a relatively large room at mid and high frequencies.

In the same way, the two-dimensional mean reflection

frequencies are modified for tangential sources except axial

sources, as follows (in xy plane):

�ntxy ¼
�nxy � ð�nax þ �naxyÞ

2hy

2p
� ð�nay þ �nayxÞ

2hx

2p

1� 2hy

2p
� 2hx

2p

� �nxy

1� pc

2x
1

Lx þ Ly

1� c

2x
Lx þ Ly

LxLy

; (A4)

with the original value, �nxy ¼ c=lxy ¼ 2cðLx þ LyÞ=pLxLy.

Thus, the mean free paths for tangential sources except axial

sources are approximately given by

ltxy �
pLxLy � pcðLx þ LyÞ=2x

2ðLx þ LyÞ � pc=x
< lxy; (A5)

for which a further approximation, ltxy � lxy, can be assumed

as well.

2. Estimation of normal- and grazing-incidence
absorption coefficients

If local reaction is assumed on wall surfaces, the direc-

tional absorption coefficient is theoretically given by

ah ¼
4rn cos h

ðrn cos hþ 1Þ2 þ ðxn cos hÞ2
; (A6)

where rn and xn are the resistance and the reactance of nor-

malized impedance for normal incidence. With statistical

averaging, the random-incidence coefficient is given by

�ar ¼
ðp=2

0

ah cos h sin hdh

	ðp=2

0

cos h sin hdh

¼ 8rn

r2
n þ x2

n

1þ r2
n � x2

n

xnðr2
n þ x2

nÞ
tan�1 xn

1þ rn

� �


� rn

r2
n þ x2

n

ln½ð1þ rnÞ2 þ x2
n�
�
; (A7)

which was first derived by Paris.33

In the same way, limiting the incidence angles from 0 to

hc, that is a critical angle defined by Eq. (3), the quasi-nor-

mal-incidence coefficient for the corresponding axial sources

is expressed by

�an ¼
8rn

ðr2
n þ x2

nÞ sin 2hc

1� cos hc þ
r2

n � x2
n

xnðr2
n þ x2

nÞ




� tan�1 xnð1� cos hcÞ
ð1þ rnÞð1þ rn cos hcÞ þ x2

n cos hc

� �

� rn

r2
n þ x2

n

ln
ð1þ rnÞ2 þ x2

n

ð1þ rn cos hcÞ2 þ ðxn cos hcÞ2

" #)
:

(A8)

For a small angle of hc, Eq. (A8) is almost equal to the true

normal-incidence coefficient,

�an � a0 ¼
4rn

ðrn þ 1Þ2 þ x2
n

; (A9)

because the angle dependence is fairly weak near the normal

direction in Eq. (A6). Consequently, in the present reverber-

ation theory, true normal-incidence coefficients can be used

regardless of the critical angle.
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On the other hand, limiting the incidence angles from p/2–hc to p/2, the grazing-incidence coefficient for the correspond-

ing axial or tangential sources is expressed by

�ag ¼
8rn

ðr2
n þ x2

nÞ sin 2hc

sin hc þ
r2

n � x2
n

xnðr2
n þ x2

nÞ
tan�1 xn sin hc

1þrn sin hc

� �
� rn

r2
n þ x2

n

ln ð1þrn sin hcÞ2 þ ðxn sin hcÞ2
h i
 �

: (A10)

For a small angle of hc that satisfies jxnjhc	 1 þ rnhc, Eq. (A10) is approximated by

�ag �
8r2

n

ðr2
n þ x2

nÞh2
c

½2rn þ ðr2
n þ x2

nÞhc�hc

1þ rnhc

� ln½ð1þ rnhcÞ2 þ ðxnhcÞ2�

 �

; (A11)

and furthermore, if a real impedance is assumed (xn¼ 0),

�ag �
8

rnhc

1þ 1

1þ rnhc

� 2

rnhc

lnð1þ rnhcÞ
� �

; (A12)

which results in �ag � 8=rnhc for rnhc 
 1, and �ag � ð8=3Þ
rnhc � 4ðrnhcÞ2 for rnhc	 1. Certainly it is difficult to evalu-

ate a grazing-incidence coefficient that strongly depends on

the critical angle, whereas Eq. (A12) may be useful for a

rough estimate from a measured absorption coefficient.
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