


Building Acoustics

Building or architectural acoustics is taken in this book to cover all aspects of sound
and vibration in buildings. The book covers room acoustics but the main emphasis is
on sound insulation and sound absorption and the basic aspects of noise and vibration
problems connected to service equipment and external sources. Measuring techniques
connected to these fields are also brought in. It is designed for advanced level engi-
neering studies and is also valuable as a guide for practitioners and acoustic con-
sultants who need to fulfil the demands of building regulations.

It gives emphasis to the acoustical performance of buildings as derived from the
performance of the elements comprising various structures. Consequently, the physical
aspects of sound transmission and absorption need to be understood, and the main
focus is on the design of elements and structures to provide high sound insulation and
high absorbing power. Examples are taken from all types of buildings. The book aims
at giving an understanding of the physical principles involved and three chapters are
therefore devoted to vibration phenomena and sound waves in fluids and solid media.
Subjective aspects connected to sound and sound perception is sufficiently covered by
other books; however, the chapter on room acoustics includes descriptions of measures
that quantify the “acoustic quality” of rooms for speech and music.

Tor Erik Vigran is professor emeritus at the Norwegian University of Science and
Technology, Head of the Acoustic Committee of Standards Norway, the Norwegian
standardization organization, and member of several working groups within ISO/TC 43
and CEN/TC 126.
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field in the sound is a superposition of plane waves. As seen from the formula, the 
intensity at the boundaries differs only by the constant 4, different from the 
corresponding one in a plane progressive wave. Introducing this result into Equation 
(4.25) we get 
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Obviously, the pressure root-mean-square value here must be interpreted as a short-time 
averaged variable, i.e. the averaging must be performed over a time interval much less 
than the reverberation time. The general solution of this equation is given by 
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The constant K is determined by the initial conditions. We shall look into two special 
cases, applying this solution.        

4.5.1.1 The build-up of the sound field. Sound power determination 

We now assume that the sound pressure is zero when the source is turned 
on, ( 0 , which gives at 0p t )
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The sound will then build up arriving at a stationary value when the time t goes to 
infinity. The RMS-value of the sound pressure becomes 
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The equation then gives us the possibility of determining the sound power emitted by a 
source by way of measuring the mean square pressure in a room having a known total 
absorbing area. For laboratories this type of room is called a reverberation room and 
procedures for such measurements are found in international standards (see e.g. ISO 
3741).
 A couple of important points concerning such measurements must be mentioned. 
As pointed out above, one has to determine the time and space averaged value of the 
sound pressure squared. This is accomplished either by measurements using a 
microphone (or an array of microphones) at a number of fixed positions in the room or 
by a microphone moved through a fixed path in the room (line, circle etc.). One must, 
however, avoid positions near to the boundaries where the sound pressure is 
systematically higher than in the inner parts of the room.  Waterhouse (1955) has shown 
that the sound pressure level at a wall, at an edge and at a corner, respectively, will be 3, 
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6 and 9 dB higher than the average level in the room. This is also easily demonstrated by 
direct measurements. Restricting the determination of the average sound pressure level to 
the inner part of a room, normally half a wavelength away from the boundaries, implies 
that we are “losing” a part of the sound energy. One therefore finds that the standards 
include a frequency-dependent correction term, the so-called Waterhouse correction to 
compensate for this effect and the power is then calculated from 
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where S is the total surface area of the room. In addition, the standard ISO 3741 includes 
some minor corrections for the barometric pressure and temperature and furthermore, the 
absorption area A is substituted by the so-called room constant R where 
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and where is the mean absorption factor of the room boundaries. Normally, the mean 
absorption factor is required to be small for laboratory reverberation rooms making this 
correction also small. However, in the high frequency range (above 8–10 kHz) this may 
not be the case, especially due to air absorption (see section 4.5.1.3).

4.5.1.2 Reverberation time 
Turning off the sound source when the stationary condition is reached, i.e. setting 

2
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2p t p  at time t = 0, and W = 0 for t > 0, we get
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As the reverberation time T is defined by the time elapsed for the sound pressure level to 
decrease by 60 dB, or equivalent, that the sound energy density has decreased by a factor 
10-6, we write 
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which gives us the reverberation time, commonly denoted T60, as 
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This is the famous reverberation time formula by Sabine, which is the most commonly 
used in practice in spite of its simplicity and the assumptions lying behind its derivation. 
Obviously, it cannot be applied for rooms having a very high absorption area. Setting the 
absorption factor equal to 1.0 for all surfaces, we still get a finite reverberation time 
whereas it is obvious that we shall get no reverberation at all. Other formulae have been 
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developed taking account of the fact that the reverberation is not a continuous process 
but involves a stepwise reduction of the wave energy when hitting the boundary surfaces. 
We shall not go into detail but just refer to a couple of these formulae. The first one is 
denoted Eyring’s formula (see Eyring (1930)), which may be expressed as 
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where as before is the average absorption factor of the room boundaries, i.e. 
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The formula is obviously correct for the case of totally absorbing surfaces as we then get 
TEy equal to zero. For the case of << 1, the formula will be identical to the one by 
Sabine.
 Still another is the Millington–Sette formula (Millington (1932) and Sette (1933)), 
where one does not form the average of the absorption factors as above but is using the 
average of the so-called absorption exponents  ' = –ln(1– ). This leads to 
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One drawback of this formula is that the reverberation time will be zero if a certain 
subsurface has an absorption factor equal to 1.0. In practice, the absorption factors i
have to be interpreted as an average factor for e.g. a whole wall. It is claimed (see e.g. 
Dance and Shield (2000)) that when modelling the sound field in rooms having strongly 
absorbing surfaces this formula gives a better fit to measurement data than the formulae 
of Sabine and Eyring.  
 Sabine’s formula is however widely used, also by the standard measurement 
procedure for determining the absorption area and absorption factors of absorbers of all 
types (see ISO 354). By the determination of absorption factors one measures the 
reverberation time before and after introduction of the test specimen, here assumed to be 
a plane surface of area St, into the room. The absorption factor is then given by 
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T0 and T are the reverberation times without and with the test specimen present, 
respectively. One thereby neglects the absorption of the room surface covered by the test 
specimen but this surface is assumed to be a hard surface, normally concrete, having 
negligible absorption. We shall return to this measurement procedure in the following 
chapter.
 To conclude this section, we mention that various extensions of the simple 
reverberation time formulae have been proposed, in particular to cover situations where 
the absorption is strongly non-uniformly distributed in the room. A review of these 
formulae may be found in Ducourneau and Planeau (2003), who performed an 
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experimental investigation in two different rooms comparing, altogether, seven different 
formulae. However, this number includes the three formulae presented above.  
 Here, we shall present just one example of the formulae particularly developed for 
covering the aspect of non-uniformity, a formula given by Arau-Puchades (1988). It 
applies strictly to rectangular rooms only and may be considered as a product sum of 
Eyring’s formula defined for the room surfaces in the three main axis directions, X, Y and 
Z, each term weighted by the relative area in these directions. It may be expressed as  
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where q is the factor 55.26/c0. Using this formula one may e.g. assign the area SX to the 
ceiling and the floor having average absorption factor X, the two sets of sidewalls to the 
corresponding surface areas and absorption coefficients with indices Y and Z. It will 
appear that this formula will predict quite longer reverberation times than predicted by 
the simple Eyring’s formula in case of low absorption on the largest surfaces of the 
room.  

4.5.1.3 The influence of air absorption 
In the derivation of the formulae above we assumed that all energy losses were taking 
place at the boundaries of the room. This is only partly correct as one in larger rooms 
and/or at high frequencies one may have a significant contribution to the absorption 
caused by energy dissipation mechanisms in the air itself. This is partly caused by 
thermal and viscous phenomena but for sound propagation through air by far the most 
important effect is due to relaxation phenomena. This is related to exchange of vibration 
energy between the sound wave and the oxygen and nitrogen molecules; the molecules 
extract energy from the passing wave but release the energy after some delay. This 
delayed process leads to hysteretic energy losses, an excess attenuation of the wave 
added to other energy losses.  
 The relaxation process is critically dependent on the presence of water molecules, 
which implies that the excess attenuation, also strongly dependent on frequency, is a 
function of relative humidity and temperature. Numerical expressions are available (see 
ISO 9613–1) to calculate the attenuation coefficient, which include both the “classic” 
thermal/viscous part besides the one due to relaxation. The standard gives data that are 
given the title atmospheric absorption, as attenuation coefficient in decibels per metre. 
This is convenient due to the common use of such data in predicting outdoor sound 
propagation. For applications in room acoustics, we shall, however, make use of the 
power attenuation coefficient with the symbol m, at the same time reserving the symbol 

 for the absorption factor. The conversion between these quantities is, as shown earlier, 
simple as we find 

Attenuation dB/m 10 lg(e) 4.343 .m m  (4.41) 

Examples on data are shown in Figure 4.8, where the power attenuation coefficient m is 
given as a function of relative humidity at 20  Celsius, the frequency being the 
parameter.  
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