

Design for Speech Intelligibility Using Software Modeling

Stefan Feistel, Bruce C. Olson

SUPDET 2014 – March 6, 2014 Orlando, FL

Overview

- System Design Concepts
- Definition of STI
 - Background
 - Application
- Simulation of STI in Rooms
 - Methods
 - Statistical Reverberation Time
 - Mean Absorption Coefficient
- EASE Evac Software

Intelligibility?

- What is Intelligibility The capability of being understood or comprehended (distinguishable and understandable)
- In simple terms intelligibility is an evaluation of changes that occur to speech that impact comprehension
- If you can't understand a voice message you cannot be made aware of the emergency event or special instructions

Technical Concepts

- Audibility: Measured in decibels (dB A-weighted)
 - Can you hear it?
- Intelligibility: Predicted according to "Speech Transmission Index (STI) or "Common Intelligibility Score" (CIS)
 - Can you understand it?

Factors that Impact the Design

- Acoustics of the space
- Ambient noise level
- Distance between devices
- Device sound level
- Device characteristics

Software Features

- ADS defined as a room
- Materials database

- Results output
- Comprehensive Report

Software Modeling Value

System Designers

- Address design issues early
- Meet NFPA codes
- Virtual modeling and pretesting
- Limit costly design changes
- Guide installation
- Provide competitive advantage

AHJs

- Provide documentation
- Reveal potential problems

Building Owners

- Reduce the change of a non-Code compliant system & delaying commissioning
- Raise confidence in your system's intelligibility during an emergency
- Reveal potential problems early

Requirements for different applications:

- Conference rooms, lecture halls for speech reproduction
- Churches, multi-purpose halls, "houses of worship", theatres and concert halls for speech and music
- Stadiums, convention halls for public address
- Railway stations and airports for public address and voice alarm
- Hotels, public buildings, factories, power plants for voice alarm and evacuation
- Also public transport: trains, airplanes, cruise ships
- Worldwide advancements enforced in regulations since Sep. 11.
- STI, STIPa, before: RaSTI, ALCons

Background:

Indirect determination of MTF via impulse response (IR) according to Schroeder:

- Any excitation signal
- Linear, Time-Invariant (LTI) system
- Random noise, fluctuating noise, averaging
- IR data also useful for evaluating other acoustic quantities

Typical MTF curves, single value STI:

^{*} Per IEC 60268-16 ed3.0

Typical MTF curves, single value STI:

> 0.76 A+0.64 - 0.76 A, B, C 0.56 - 0.64 D, E 0.48 – 0.56 F, G 0.44 - 0.48 H0.36 - 0.44 I, J< 0.36 U

^{*} Per IEC 60268-16 ed4.0

STI Categories*

* Per IEC 60268-16 ed4.0

CATEGORY		TYPICAL USE	COMMENT	
A+>	0.76			
Α	0.74	Communication systems		
В	0.70	Theatres, speech auditoria assistive listening systems	High speech intelligibility	
С	0.66	Theatres, speech auditoria, teleconference rooms, court rooms	High speech intelligibility	
D	0.62	Lecture theatres, classrooms, concert halls, modern churches, court rooms	Good speech intelligibility	
Е	0.58	Concert halls, modern churches	High quality PA systems	

STI Categories*

* Per IEC 60268-16 ed4.0

CATEGORY		TYPICAL USE	COMMENT	
F	0.54	Shopping malls, public buildings, offices, voice alarm systems	Good quality PA systems	
G	0.50	Shopping malls, public buildings, offices, voice alarm systems	Target requirement for VA/PA systems	
Н	0.46	Voice alarm and public address systems in difficult acoustic environments	Lower target for VA/PA systems	
I	0.42	Voice alarm and public address systems in very difficult acoustic environments	Lower limit for useful VA/PA systems	
J	0.38	Not suitable for PA systems		
U	< 0.36	Not suitable for PA systems		

STI, MTF, MTI							
	MTF 125Hz	MTF 250Hz	MTF 500Hz	MTF 1000Hz	MTF 2000Hz	MTF 4000Hz	MTF 8000H
0,63 Hz	0,66	6 0,732	0,746	0,85	0,877	0,909	0,93
0,8 Hz	0,61	9 0,659	0,69	0,816	0,842	0,877	0,91
1 Hz	0,55	B 0,59	0,635	0,783	0,802	0,842	0,88
1,25 Hz	0,49	2 0,527	0,583	0,745	0,751	0,799	0,84
1,6 Hz	0,43	1 0,475	0,539	0,694	0,678	0,737	0,78
2 Hz	0,39	4 0,456	0,505	0,634	0,594	0,673	0,70
2,5 Hz	0.33	5 0,429	0,476	0,562	0,496	0,605	0,62
3,15 Hz	0,24			0,476			
4 Hz	0.14	6 0,416	0,368	0.4	0,348	0.524	0,59
5 Hz	0,02	9 0,436	0,388	0,352	0,435	0,586	
6.3 Hz	0,23	5 0,52					
8 Hz	0.26					0,545	
10 Hz	0.25						
12,5 Hz	0,18	4 0,373	0,074	0,076	0,219	0,469	
MTI	0,38	5 0,486	0,456	0,513	0,536	0,609	0,67
STI	0,52	9					
AlCons [%]	9,68	7					
STI (Male)	0,53	9					
STI (Female)	0,55	4					
RaSTI	0,50	5					
Equiv. STIPa (Mal	e) 0,55	4					
Equiv. STIPa (Fen	nale) 0,56	6					
STI (Modified)	0,53	3					
STI (Unweighted)	0,52	2					
STI (Custom)	0,52	9					
RaSTI (Weighted)	0,50	9					
STIPa (Modified)	0,5	6					
STIPa (Unweighte	d) 0.54	6					

RaSTI STIPA STI

STI versions:

- STI employs full set of 98 MTF
- STIPA uses 14 MTF
- RaSTI uses 9 MTF in500 Hz and 2 kHz bands

STI Simulation

EASE or EASE Evac Model

- + Loudspeaker Data
- + Wall Materials

Objective Quantities, Mapping Presentation

Impulse Responses, Real-Time Convolution

STI Simulation

Implementation in EASE:

Hybrid ray tracing in EASE AURA

MTF

MTF

Implementation in EASE and EASE Evac:

Statistical model according to Eyring/Sabine

Statistical model according to Eyring/Sabine:

- Volume V, mean absorption coefficient a, acoustically effective surface S, air attenuation m
- Assumption of a diffuse (homogeneous, isotropic) reverberant field

$$T = k \frac{V}{4mV - S\ln(1 - \alpha)}$$

Result: reverberation time RT

- Derivation of a "virtual" impulse response from direct sound and ideal reverberant tail
- But: Discrete reflections or echoes are not accounted for

Validity of statistical assumptions regarding RT in flat rooms:

- Is Eyring's approach still valid?
- Inhomogeneous diffuse field
- Mean free path length I=4V/S is no longer valid
- RT also depends on the location of the source(s)
- Typically two sub rooms: horizontal + vertical

Numerous corrections have been developed:

Kuttruff, Fitzroy, Arau, Tohyama, Millington-Sette,...

- Other factors and sources of errors for STI:
 - Complicated geometry
 - Signal and noise levels have to be accounted for
 - Reflections are neglected
 - Loudspeaker data
 - Uncertainties regarding wall materials in use
 - Diffuse-field absorption coefficients
- Uncertainty for STI = f(RT) ?
- Uncertainty for STI = f(a) ?

STI as a Function of Reverberation Time

Relationship:

- Here: without direct sound or noise
- Small variation for high reverberation time
- Increased sensitivity for dry rooms
- => A small variation of the RT is insignificant for STI in practice

Reverberation Time as a Function of Mean Absorption Coefficient (Cube)

Relationship:

- Small variation for large absorption
- Increased sensitivity for acoustically hard rooms
- => A small variation of the RT is insignificant for STI in practice

STI as a Function of Mean Absorption Coefficient (Cube)

Relationship:

- Functions compensate each other roughly
- Course approximately linear
- An error of a = 0.1equals roughly an error of STI = 0.1

STI calculation based on statistics:

- Other uncertainties are equal or greater than the calculation of reverberation time
- Sensitivity of STI to errors in a is limited
- Uncertainty in determining a should be accounted for in the design!

Summary:

- STI according to IEC 60268-16 (2003): EASE Evac
- By means of direct modulation method or indirect IR
- Correction factors:
 - Male/Female
 - S/N-Ratio
 - Signal masking, hearing threshold
- Criticism:
 - Masking is defined as a step function, usable level range
 - Smoothness of time function, influence of echoes
 - Linearity, quality, coverage of frequency response
 - Not binaural
- STI according to IEC 60268-16 (2011): EASE
 - masking, bands A-J+U, recommendations, foreign and hearing-impaired listeners

EASE Evac Software

Features:

- Entry of room layout
- Abstract objects
- Acoustic materials or Reverberation Time
- Noise levels
- Statistical calculation of STI
- => EN 60849, NFPA 72
- => EASE AURA

EASE Evac Info

- Design pre-planning
 - Avoid surprises at the end of the job
 - Documentation for the AHJ / job file
 - Avoid system pretesting (where required)
 - Report can be used for installers guide

- EASE Evac is exclusively available from AMFG
 - For more information, to register for a trial version or to order the product: http://evac.afmg.eu/
- For technical support on EASE Evac:
 - Support email: <u>support-us@afmg.eu</u>
 - Support Hotline: 855-411-2364

Design for Speech Intelligibility Using Software Modeling

Stefan Feistel, Bruce C. Olson

SUPDET 2014 – March 6, 2014 Orlando, FL