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Abstract 

Often, Sabine’s and other reverberation formulae are applied without really knowing whether the 
sound field is sufficiently diffuse. In this rather didactical paper a rigorous definition of the crucial 
term 'diffuse sound field' is proposed and the relationships to the necessary surface conditions, 
especially scattering, are analyzed. Also the reasons for the differences between Sabine's and 
Eyring's reverberation formulae are analyzed. Some other approaches for partially diffuse sound 
fields, e.g. Kuttruff’s formula, are discussed. Some numerical investigations are added. The aim 
is to find reliable definitions of conditions for at least an approximately diffuse sound field. 

Keywords: room acoustics, reverberation theory, diffuse sound field 
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A rigorous definition of the term “diffuse sound field” 
and a discussion of different reverberation formulae  

1. Introduction 
The term "diffuse sound field" (DSF) is often not explained very accurately - the motivation for this 

paper. The paper provides the following sections: 2. a more rigorous definition is proposed and 

the relationships to the necessary surface conditions as absorption and scattering are discussed; 

3. Some basic quantities are defined, especially the free path length - the derivation of which is 

systematized; 4. re-derivation of the Eyring and Sabine reverberation formulae; 5. analyzation  of 

the reason for the difference between both formulae; 6. discussion of different transition models; 

7. a short review of analytical and 8) semi-analytical reverberation models for only partially diffuse 

sound fields. The general condition of geometric/statistic room acoustics is that typical room 

dimensions are large compared with wavelengths such that the analysis may be performed with 

an energetic sound (particle) model (for one frequency band).  

2. Conditions for the diffuse sound field 
First, it should be distinguished between theoretical definitions and practical conditions, further 

between the claim the sound field should be diffuse 'from the start' (strict version) or 'towards the 

end of reverberation'' (tolerant version, conditions in brackets) (see Table). 

Usually one starts with A (' each direction with same intensity’/‘directional diffusivity’). From A 

follows B (in a room without absorption, the particles don't lose energies, see the lines connecting 

the clusters in Fig. 1a [1], but not vice versa (consider e.g. the case of a long room homogeneously 

filled with rays but just in a longitudinal direction). The room does not need to be convex (the 

argumentation of Fig.1a could be extended by more array-clusters) - if a diffuse sound field is 

really given. However, in non-convex rooms with weakly coupled sub-spaces the sound field is 

hardly diffuse. From B (a volume condition) follows as a surface condition B2 (Fig. 1b).  

The surface conditions C (zero absorption) +D (total scattering) are necessary but not sufficient 

for A+B- as all surfaces may be totally diffusely reflecting, but the irradiation strengths may be 

non-constant due to geometry (typically  if the absorption distribution over the surface is quite 

uneven). If just one piece of surface is absorbing, then the sound field closely in front will not be 

isotropic. The same happens, strictly speaking, with only one specular reflecting peace of surface 

as producing a mirror image source and hence a singularity in the directivity.   

 

 

Fig. 1a: Isotropy and homogeneity 

 (same arrow lengths in every direction  

everywhere,at every 'array-cluster');  

b (right): constant  irradiation of  all surfaces (B2)  

following from B) (homogeinity) 
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Table:  Conditions for the diffuse sound field (in parentheses: tolerant version) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total scattering means Lambert reflection: the reflection angle (ϑ) probability density p’ per 

solid angle is proportional cos⁡(ϑ)⁡, independent from the incidence angle   

   ⁡𝑝′ =:
𝑑𝑝

𝑑𝛺
=

𝑐𝑜𝑠(𝜗)

𝜋
       (π is the normalization factor for the half-sphere)      (1) 

It can be considered as the ideal scattering characteristics of  'rough surfaces' following from 

the cos- projection law and the reciprocity principle. It can be shown that just this cos-law in 

emission as well as in immission on surfaces corresponds to spatial isotropy. In room 

acoustical computer simulation, the mix of diffuse and specular reflections in reality is often 

simulated by a 'diffusivity 'or 'scattering' coefficient usually interpolating between both cases 

drawing random numbers [2]. The scattering coefficient 𝝈 is defined as the proportion: non-

geometrically energy’/total reflected energy'. A diffusivity coefficient may also include edge 

diffraction (often forgotten). 

For the tolerant version of the definition of the DSF ('convergence only in late reverberation') it is 

sufficient that only an average absorption degree needs to be 'low', typically it is proposed that for 

the validity of the Sabine formula a mean absorption degree  αm < 0.3 is sufficient and at least a 

small piece of surface is a bit unregularly i.e. scattering and hence 'mixing' [3]. Only if (fictively) 

the surfaces were also interchanging positions (evenly distributed), i.e. totally mixing (D2), then 

from C+D+D2 follows A+B +B2. 

Relationship between spatial and temporal diffusivity (exponential decay) 
Only if the room is 'totally mixing' i.e. interchanging energy at every place and time into every 

direction, then there is no chance that different (exponential) energy decays arise and just one 

single exponential energy decay with on reverberation time is left. A constant B is the condition 

A)  Isotropy:  
intensity j /solid angle constant C)  all absorption degrees zero ! 

(mean absorption degree small) 

D) all surfaces totally scattering 
 (only some surfaces scattering) 

D2)  totally mixing   

B) Homogeneity: 

energy density cionstant 

theoretical definitions 
practical conditions 

E) Definition of an 'equivalent absorption area' 
    and an average absorption degree 

F) Existence of a 'representative sound  
  particle' and a 'mean free path length'  

Sabine's reverberation formula  Eyring's reverberation formula  

+G) only one sound energy +H) only one constant  
        free path length  

B2) constant irradiation  
       of all surfaces  



 
22nd International Congress on Acoustics, ICA 2016 
Buenos Aires – 5 to 9 September, 2016                                                
 

Acoustics for the 21st Century… 

   

4 
 

that the notion 'equivalent absorption area' (used to derive the Sabine formula) i.e. a surface-

weighting, makes sense.  

3.  Average quantities in a Diffuse sound field  
The core physical quantity is the equivalent absorption area 

       A = ∑αi Si                (2)  

or the 'mean (surfaces averaged) absorption degree'  

    αm ≡ α =
∑αiSi

S
= A/S        (3) 

(𝛼𝑖 = absorption degrees,⁡𝑆𝑖= single of N surfaces, S= total surface, V=volume). 

The other, the geometric average quantity, is the mean free path length with its famous formula 

       ⁡Λ = 4𝑉/𝑆        (4) 

This formula is true even for non-convex rooms, if a diffuse sound field really were given – 

which is, however, hardly the case then. The correct mfp-formulae can be derived strictly 

obeying conditions A…D2:  

Method a) is utilizing A) isotropy in 𝜴 and B) homogeneity in V and averaging over the inverse 

mfp, i.e. reflection frequencies ('time average') (the dash – stands for averaging) [4]. 

       Λ−1 = 𝑙−1̅̅ ̅̅ 𝑉,Ω
     (5) 

In a DSF, 'sound particles' (sp) lose their identity: 'time = ensemble average' [1]. So, another   

Method b) utilizes B2) i.e. constant irradiation of S, and D) (everywhere Lambert law) and 

direct averaging over the mfp ('ensemble average': one considers the ‘fates’ of different sps: 

       Λ = l p′̅̅ ̅̅ Ω,S       (6) 

Different from method a, method b is related to the surface related conditions for the DSF.  

Both methods result in Λ = 4𝑉/𝑆. Other results in literature are not strictly based on a DSF. 

4.  Re-derivation of reverberation formulae  
Both reverberation formulae assume a diffuse sound field  (especially condition B2 i.e. a 

constant irradiation of the surface leading to a mean absorption coefficient, E in Table 1.)  

4.1.  The Eyring formula 
Typical is here to consider a ´representative sound particle` (sp) (Table 1, condition F).  

This sp, after always a free path length Λ, ‘sees’ a surface with the absorption degree 𝛼𝑚.  

The consequence is a stepwise exponential energy decay: 

     𝐸(𝑁) = 𝐸0(1 − 𝛼𝑚)
𝑁⁡ (E0 = start energy, N=reflection number)  (7) 

By introducing a mean absorption exponent      𝛼𝑚
′ = − ln(1 − 𝛼𝑚)   (8) 

Eqn. 14 reads 𝐸(𝑁) = 𝐸0𝑒
−𝑁𝛼𝑚′. For N reflections with a mfp 𝛬, the time 𝑡 = 𝑁 Λ/𝑐  is needed. 

Tacitly it is assumed that N is a real number as after a switched off steady sound source the 

decays overlap and 'smooth' the resulting function 𝐸(𝑡) = 𝐸0𝑒
−𝛼𝑚

′ 𝑐𝑡/Λ. Using the standard for-

mulation of an exponential decay 𝐸(𝑡) = 𝐸0𝑒
−
𝑡

𝜏 the time constant of the sound energy decay is   
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      𝜏𝑒𝑦 =
Λ

𝑐 𝛼𝑚′
      (9) 

In such a typical RT formula, the time constant is always the proportion of the mean free path 

length and an average absorption exponent. The RT for a 60dB decay is then generally 

     𝑇 = 6 ln(10)⁡𝜏       (10) 

Using the normalized value of the sound velocity c=340m/s at 14°C and also the value for the 

mfp Λ (Eqn. 7) yields the Eyring reverberation time 

           𝑇𝑒𝑦 =
6 ln(10)⁡

𝑐

4V

𝑆⁡𝛼𝑚′
≈ 0.163⁡

𝑉

𝑆⁡𝛼𝑚′
       (11) 

So, additionally (to the DSF) it is assumed: D2): only with a total mixing the sp lose their identity; 

F): a representative sp may be assumed, and: 'the mfp are constant' (condition H).  

4.2. The Sabine formula  
The Sabine formula is not just an approximation of the Eyring formula. It has its own, amazingly 

different derivation. Neither the model of a sp nor the concept of a mfp is needed. Instead, the 

decay of the total sound energy E(t) is considered aiming at a differential equation. Especially 

the homogeneity of the energy distribution is assumed, even more, that there is simply only one 

value of E at the time t (condition G). This will turn out to be the crucial misunderstanding of 
the Sabine approach. With the energy density  𝑼 = 𝑬/𝑽 ,  𝑰 = 𝒄 𝑼, the irradiation strength is   

𝑩 = 𝑰/𝟒 = 𝒄𝑼/𝟒 = 𝒄𝑬/(𝟒𝑽). ( 𝐼 = ∫ 𝑗𝑑Ω = omnidirectional scalar intensity; ‘1/4’ is due to the 

directional averaging of the projection factor 𝑐𝑜𝑠(𝜗) (0 on backside) over the full solid angle 4π.) 

Then the incident energy per time is 

        
dEi

dt
= cE

S

(4V)
        (12),   

and the absorbed energy      
dE

dt
= −E(t) c

αm S

4V
= −E(t) c

αm 

Λ
   (13). 

The solution is an exponential decay with the time constant 

        τsab =
Λ

c αm
          (14) 

Inserting again Λ = 4V/S yields the famous Sabine RT 

      Tsab = 6 ∙ ln⁡(10) τsab ≈ 0.163 
V

A
    (15). 

As the energy is proportional to the number of sps, analogously to Eqn.12 the sp impact rate is 

     𝑑𝑁/𝑑𝑡 = 𝑁/𝑡 = 𝑐𝑁 𝑆/(4𝑉)      (16) 

which would be constant without absorption.  After the time for travelling just a mfp, per 

definition all sp once have hit the room surface. Hence, inserting t = Λ/c into Eqn. 16 yields by 

the way a prove for the formula for the mean free path length Λ = 4V/S. 

5. Why is the Sabine different from the Eyring formula?  
For small 𝛼𝑚 is (by expansion)   𝛼𝑚

′ = − ln(1 − 𝛼𝑚) ≈ 𝛼𝑚(1 +
𝛼𝑚

2
)     (17). 

So comparing both formulae (Eqns. 9 and 14) shows that the difference is just in the order of  

       
𝑻𝒆𝒚

𝑻𝒔𝒂𝒃
≈ (𝟏 − 𝜶𝒎/𝟐)        (18). 
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The reasons for the difference are different tacit additional assumptions:  

Eyring assumes a constant mean free path length and a stepwise energy decay, so as if all 

sound particles lose a part of their energy at the same time [6]. Sabine assumes only one 

energy value. This is absurd as this were only possible if the information about absorption of a 

sp at one part of the surface and thus a decrease of the total energy (density) in the room were 

spread infinitely fast to everywhere within the room, such that other sps would have suddenly 

less energy and therefore lose less energy at the next reflection- as if ‘the sound particles know 

from each other’.  This leads to an effectively smaller energy loss and hence a longer 

reverberation time than with just one 'representative' sp as with the Eyring theory.  

6. Transitions between the two formulae 
6.1. From Eyring to Sabine  
Starting with the Eyring model, obviously one has to consider the time interval between two 

reflections Δt = Λ/c  more in detail. The first thinking model is to subdivide it. With an equally 

distributed time shift of many sound particles, the energy loss may be linearly interpolated, so, 

after a time Δt/n, assuming that perfect ‘information and energy interchange’ after each ‘1/n 

reflection’ the energy loss factor is (1 − α/n)⁡ After a whole reflection (n such steps)  the energy 

would be multiplied by  (1 − α/n)n. For n → ∞, the loss factor between two reflections becomes 

        fsab = lim
n→∞

(1 −
α

n
)
n
= e−α ≈ 1 − α +

1

2
α2… ≈ 1 − α ∙ (1 −

α

2
)     (19).  

e−α is the Sabine energy loss factor for 1 reflection (insert τ =
Λ

c α
 and t =

Λ

c
  into  e−t/τ).  The 

corresponding Eyring value is    fEy = 1 − α = e−α´      (20) 

Comparing Eqn. 19 with 20, the 'effective' absorption degrees differ in the first approximation by 

the factor (1 − α/2⁡).⁡So, the difference between the Eyring and the Sabine formula (Tey  Tsab⁄ , 

equ.18) can be explained by the transition from the stepwise to a continuous absorption. 

Here, it just shall be mentioned that Kuttruff found a formula to 'repair' Eyring’s formula allowing 
varying the free path lengths. His approach [1] is to consider the reverberation as a sum of an 
infinite number of decays with different RTs. The effective absorption coefficient is then 

     𝛂´´ = 𝛂´(𝟏 − 𝛄𝟐𝛂´/𝟐)  with 𝜸𝟐 =
𝒍𝟐̅−𝒍̅𝟐

𝒍̅𝟐
⁡   (21) 

the relative variance of the free path lengths where 𝐥 ̅is the mfp (called 𝚲 before), 𝐥𝟐̅ its square 

and 𝐥𝟐̅ the average over the squares. This is smaller than the Eyring exponent 𝛂´. So, with 
varying free path lengths the RT is longer than without. One can see: The variation of reflection 
moments furthers the ‘mixing effect’ as it is, different from the Eyring theory, tacitly assumed 

within the derivation of the Sabine formula. For ‘totally’ varying free path lengths 𝛄𝟐 = 𝟏 and with 

the expansion 𝛂´ = − 𝐥𝐧(𝟏 − 𝛂) ≈ 𝛂 + 𝛂𝟐/𝟐 it turns out that 𝛂´´ ≈ 𝛂 . So, allowing totally varying 
free path lengths, the RT value of the Eyring formula converges against the Sabine value. 

 
6.2. From Sabine to Eyring  
An idea to describe the opposite transition is to assume that for the energy loss at the surface 

the total energy (considered with the Sabine model) in the middle of the room is relevant. Thus 
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the former differential eqn.13 has to be altered to 

           
𝑑𝐸

𝑑𝑡
= −

𝑐 ∝

Λ
𝐸(𝑡 − Δ𝑡/2)     (22) 

where Δ𝑡 =
Λ

𝑐
= 𝛼𝜏𝑠𝑎𝑏 is the half of the time interval between two reflections. Assuming, as the 

first approximation, an exponential decay according the Sabine RT,  

    𝐸 (𝑡 −
Δ𝑡

2
) = 𝐸(𝑡)𝑒Δ𝑡/(2𝜏𝑠𝑎𝑏) = 𝐸(𝑡) 𝑒α/2 ≈ 𝐸(𝑡) (1 + α/2)    (23). 

Inserted into the differential eqn. 22 yields a differential eqn. with a modified absorption factor  

      
𝑑𝐸

𝑑𝑡
≈ −

𝑐 𝛼(1+
𝛼

2
)

𝛬
𝐸(𝑡) = −𝐸(𝑡)/𝜏𝑠𝑎𝑏𝑠ℎ𝑖𝑓𝑡     (24). 

The new time constant is    𝜏𝑠𝑎𝑏𝑠ℎ𝑖𝑓𝑡 =
𝛬

𝑐 𝛼(1+𝛼/2)
≈ 𝜏𝑠𝑎𝑏(1 − 𝛼/2) ≈ 𝜏𝐸𝑦    (25) 

Thus, again the Eyring reverberation time is reached - explained by the forgotten time shift. 

7.  Analytical approaches for partially diffuse sound fields 
In the following, some concepts shall be discussed which do not any longer assume 

homogeneous and/or isotropic sound fields, yet still diffuse reflections. As mentioned, even 

overall diffuse reflections do not guarantee a diffuse sound field, the irradiation strengths on the 

surfaces Bi may not be constant. A base to describe this is Kuttruff’s integral equation for the 

irradiation strength 𝑩(𝒓, 𝒕) [1]. The equation (already found by Clausius [5] for heat transfer) 

describes the radiation balance in a closed room with diffusely reflecting surfaces. This integral 

equation can only be solved numerically by the time dependent 'radiosity' method. A 

compromise is an iteration with the assumption of an approximately exponential decay where 

the reverberation time is delivered as an Eigenvalue [7]. A special application is the non-diffuse 

sound field of reverberation rooms causing wrong measurements of α. 

7.1. Kuttruff's formula regarding the spreading of the absorption degrees 
Aiming at an analytical approximation formula for a single exponential decay, Kuttruff [1] found a 

formula taking into account also the variance of the absorption degrees. All (still unknown) 

irradiation strengths Bi (of small discretized plane surfaces) are assumed to decay exponentially 

and all distances are replaced by the same mean free path length Λ. The approach starts with 

the idea of an 'effective', i.e. irradiation weighted new absorption exponent:  

      α′′ = −ln (
∑ ρiBiSi
K
i=1

∑ BiSi
K
i=1

)   ( ρn = reflection degrees) (26). 

Assuming, as a first guess, that the Bi are simply proportional to the other surfaces times their 

reflection coefficients, the result is: 

     ⁡α′′ = ⁡α′ + ln (1 +
∑ (αm−αn)(1−αn)Sn

2N
n=1

(1−αm)²∙S2−∑ (1−αn)²Sn
2N

n=1
)⁡    (27) 

where the αn are the absorption degrees of the surfaces,  αm⁡their average, and α′ is the Eyring 

absorption exponent. Analogously to Eyring is 𝜏𝐾𝑢𝑡𝑡 = Λ/(𝑐 𝛼′′) and 𝑇𝐾𝑢𝑡𝑡 = 6 ln(10)⁡𝜏𝐾𝑢𝑡𝑡. For 

the frequent cases of one dominating absorbing surface (usually the floor), the term to the right 

in Eqn. 27 is positive, and the Kuttruff formula yields lower (typically 10-20% lower) RTs than 

according Eyring. So:  𝑇𝑆𝑎𝑏 > 𝑇𝐸𝑦 > 𝑇𝐾𝑢𝑡𝑡.  
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7.2. Fitzroy's subdivision into separate reverb. processes in x-, y- and z-direction 
Another early approach to take the special effects of a non-uniform absorption distribution into 

account, is that of Fitzroy [8]. Often, especially in planar rectangular rooms with few scattering 

and hence mixing, more or less separate reverberation processes establish in the three main 

axes' directions. Assigning for each direction (x,y,z) a specific mean absorption coefficient α1, 

α2 , ⁡α3 and  'typical' mean free path lengths  Λ1, Λ2,⁡Λ3, one could derive, in the same way as 

for the Eyring RT (section 4.1), specific reverberation times T1, T2 and ⁡T3 respectively. Fitzroy's 

empirical compromise is just to take the arithmetic surface weighted average of all three: 

      𝑇𝐹𝑟 =
𝑆1

𝑆
∙ 𝑇1 +

𝑆2

𝑆
∙ 𝑇2 +

𝑆3

𝑆
∙ 𝑇3     (28) 

where the S1, S2 and ⁡S3 are the surfaces of the room perpendicular to the x,y,z-direction. The 

weak point is:  what are the values of the surfaces  S1, S2 and ⁡S3 in cases of non-rectangular 

rooms? Also, the choice of such three orthogonal directions may be quite arbitrary. 

7.3. Arau's improved reverberation formula 
The same unanswered questions apply to the model of Arau [9] who further developed Fitzroy's 

model. The basic approach of his formula is to account for different classes of reflections: 𝑗 =

1,2,3 for x,y,z; 𝑁𝑗 out of 𝑁 = ∑𝑁𝑗. In a DSF, i.e. with constant surface irradiation, the 

probabilities to hit a surface Si are 𝑝𝑖 = Si/𝑆, such that the reflection numbers seem to be 𝑁𝑖 =

𝑁 ∙ 𝑝𝑖. But, as Kuttruff showed, the 𝑝𝑖 are just probabilities, the reflection numbers are not 

exactly 𝑁𝑖 but the probability for e.g. 𝑁1 reflections obeys a binomial distribution. Also Arau went 

this way of first introducing a binominal distribution going then over to a logarithmic normal 

distribution. First, a surface weighted average of the absorption exponent is applied to surfaces 

within the same class (e.g. opposite parallel walls):  ⁡⁡𝛂𝒋̅̅ ̅ = ∑ 𝐒𝐉𝐢/𝐒𝑱 ∙ 𝛂𝐉𝐢𝒊    (29) 

For the simultaneous reverberation processes, a stepwise decay as with the Eyring theory but 

with different steps according different classes of reflections, he derives the formula: 

         ⁡𝛼𝐴𝑟𝑎𝑢
′̅̅ ̅̅ ̅̅ ̅ = ∏ (𝛼𝐽

′̅̅̅)
𝑝𝐽3

𝐽=1     (30) 

- an area weighted geometric mean of the weighted absorption exponents 𝛂𝐉
′̅ = −𝒍𝒏(𝟏 − 𝛂𝒋̅̅ ̅) in 

the x,y,z- directions. Component wise insertion into the usual reverberation time formulae (like 

Eqns. 9,10) yields for the reverberation time finally an area weighted geometric mean: 

      𝑇𝐴𝑟𝑎𝑢 = 𝑇𝑥
𝑆𝑥/𝑆 ∙ 𝑇𝑦

𝑆𝑦/𝑆 ∙ 𝑇𝑧
𝑆𝑧/𝑆     (31) 

The computed results, obtained separately for early and late RT, agreed astonishingly well – 

and much better than Sabine and Eyring – with measurements – at least in a rectangular and 

highly diffusing hall. But: There is an important deficit at Arau’s and Fitzroy's method: both seem 

to assume somehow geometric reflexions – but the decisive 'mixing' between the different 

reverberation classes caused by more or less scattering walls is not taken quantitatively into 

account.  

So far, all RT formula assume totally diffuse reflections (some other, in rare cases, assume 

unrealistic totally geometric reflections as e.g. to estimate flutter-echoes). 
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7.4. The Nilsson/Gerretsen analytical model for rectangular rooms with partially 
diffusely reflecting surfaces 
An innovative analytical approach is that by Nilsson [10]. His basic idea is to subdivide the 
reverberation process into a 'grazing' part (i.e. almost parallel to the ceiling) and a 'non-grazing' 
part. The coupling of these processes by scattering is derived from counting room modes and 
the Statistical Energy Analysis. Gerretsen [11] simplified Nilssons approach, translating it into 
the 'energetic language'. Instead of loss factors, he introduced the familiar notions of equivalent 
absorption or scattering areas. He generalizes the method to any absorption and scattering 
distribution: three 2-dimensional 'grazing' fields almost perpendicular to the x-, y.- and z-axes 
and an overall almost diffuse field for which 4 partial RTs and a RT for the total non-linear decay 
are derived. 
The computational results applying these formulae are 'globally in accordance’ with measured 
effects [11] for even and uneven absorption distribution (all walls reflecting, or just the ceiling or 
also the floor highly absorbing). For the uneven absorption distribution, the most interesting 
case here, the Sabine value is, as expected, much too low, the Fitzroy value much too high. 
The RT values from the Nilsson/Gerretsen model agree very well and best with the results from 
ray tracing with scattering. The Nilsson method has also been verified quite well by Prodi [12].  

 

8. Semi-analytical models regarding scattering coefficients  
As a compromise between simple analytic formulae and costly ray tracing methods, an 
‘Anisotropic Reverberation Model’ [13] has been developed as a semi-analytical model that 

takes absorption and scattering coefficients into account as well as the orientation of the 

surfaces, however, not their positions. It assumes still a homogeneous but anisotropic sound 

field. The idea is to consider flowing sound energies in a group (typically some thousands) of 

angular ranges (like pyramidal beams but without defined starting vertices) and to define (as 

with the theory of coupled rooms) coefficients describing transitions between them over the 

relevant surfaces depending on their absorption and scattering coefficients and their orientation. 

This leads to a linear system of ordinary differential equations. This system can be solved either 

by iteration or with Eigenvalues (as partial RTs) and Eigenvectors describing energy 

distributions. Finally, specific early and late reverberation times and directivities are obtained.  

Some semi-analytical procedures to compute RTs as a function of the scattering coefficients are  
presented in [2], however only in 2D:   

1) For a semi-circular room with scattering ceiling and absorbing floor; here focusing effects 

may cause RTs much shorter than according Sabine, decreasing with decreasing scattering 

coefficients.  An analytical formula is derived. 

2) Reverberation in a 2D-rectangular room with absorbing side walls and reflecting front walls is 

handled by establishing an iteration scheme utilizing scattering dependent transition coefficients 

between the geometric and the rest diffuse sound field. Here – as tyoical for flutter echoes – 

RTs increase drastically (about inversely proportional) with decreasing scattering coefficients.  

3) On the occasion of the Elbphilharmonie concert hall under construction in Hamburg – a 

vineyard hall -a drastic influence of scattering and inclination of the ceiling on the RT could be 

proved by sound particle simulation [14]. 
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9. Conclusions 
The "diffuse sound field" is a very idealistic assumption for zero absorption and total scattering 
and mixing - an utopia. So actually, both the Sabine and the Eyring formula are wrong. They must 
not be applied in many cases of non-diffuse reflections i.e. in many realistic cases.  The reasons 
for the difference between the Sabine and the Eyring formula are tacit additional assumptions. 
For small absorption degrees, RTs lie between the Sabine value and the Eyring value, depending 
on the mfp distribution, described by the Kuttruff formula. The main condition in praxi is: reflections 
need to be sufficiently diffuse and absorption degrees not too unevenly distributed. A weak point 
is: scattering coefficients are often unknown. Most other reverberation formulae assume perfectly 
diffuse reflections yet yielding rather small corrections. They cannot explain effects of partly 
geometrical reflections which may be dominating in cases of focusing on reflecting or absorbing 
surfaces causing e.g. flutter echoes in shoe-box-rooms or focusing effects in domes. There are 
some analytical or semi-analytical approaches, however restricted to special geometries [2]. The 
only analytical model to compute RTs explicitly respecting scattering coefficients is that of 
Nilsson/Gerretsen - however restricted to rectangular rooms, published in the ISO 12354, part 6 
- unfortunately only in the non- obligatory appendix D [15]. Reverberation times in non-diffuse 
sound fields depend on the room shape, the distribution of the absorption and especially the 
scattering coefficients. To compute such sound fields, numerical methods seem unavoidable. 
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