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The conditions and assumptions behind different reverberation formulae are often not 
explained very accurately. So, the reasons for their differences are often hardly 
understood. In this rather didactical paper a more rigorous definition of the crucial term 
'diffuse sound field' is proposed and the relationships to the necessary surface conditions, 
especially scattering, are discussed. The reasons for the difference between some 
reverberation formulae, first of all, Sabine's and Eyring's, are analyzed.  Also Kuttruff's 
correction formulae for varying free path lengths and uneven absorption distributions as 
well as approaches to partially diffuse sound fields with their assumptions are discussed. 
 
 
1 INTRODUCTION 
 
 The term "diffuse sound field" (DSF) is often not explained very accurately - the motivation 
for this paper. The paper is organized as follows: in section 2 , a more rigorous definition is 
proposed and the relationships to the necessary surface conditions as absorption and scattering 
are discussed After some general definitions, and a clarification on the computation of mean free 
path length (in 3), in section 4, the Eyring and Sabine reverberation formulae will be re-derived. 
In section 5, the reason for the difference between both formulae will be analyzed by some 
thought experiments. In section 6, different transition models are discussed, in section 7 further 
reverberation time formulae and approaches to only partially diffuse sound fields.  
 
First, the general condition of geometric/statistic room acoustics is presupposed that typical room 
dimensions are large compared with wavelengths such that the analysis may be performed with 
an energetic sound particle model (and for one frequency band). So, ‘Intensity’ I is here 
interpreted as an integral over the whole solid angle: � � � ��Ω, a scalar rather than a vector: 
       � � � � (c= sound velocity, U= energy density)     (1). 
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2 CONDITIONS FOR THE DIFFUSE SOUND FIELD  
 
 First, it should be distinguished between theoretical definitions and practical conditions, 
further between the claim the sound field should be diffuse 'from the start' (strict version) or 
'towards the end of reverberation'' (tolerant version, conditions in brackets) (see Table 1). 
 
 Usually one starts with A (' each direction with same intensity /‘directional diffusivity’). 
From A follows B (in a room without absorption, the particles don't lose energies, see the lines 
connecting the clusters in Fig. 1) [1], but not vice versa (consider e.g. the case of a long room 
evenly filled with rays just in a longitudinal direction, Fig. 2). It should be emphasized by the 
way: The room does not need to be convex (the argumentation of Fig.1. could be extended by 
more array-clusters) - if  a diffuse sound field is really given; then also the derived consequences 
as e.g. the formula for mean free path lengths, are true. However, in non-convex rooms,  - e.g. 
with weakly coupled sub-spaces -  the sound field is hardly diffuse. From B (a volume condition) 
follows as a surface condition B2 (Fig. 1b).  
 
The surface conditions  C+D are necessary but not sufficient for A+B: All surfaces may be 
totally diffusely reflecting, but the irradiation strengths may be non-constant due to geometry 
(typically  if the absorption distribution over the surface is quite uneven). If  just one piece of 
surface is absorbing, then the sound field closely in front will be not isotropic (Fig. F3a). The 
same happens, strictly speaking, with only one specularly reflecting peace of surface as 
producing a mirror image source (Fig. F3b, actually already the existence of the source itself is 
forbidden.) For the tolerant version of the definition of the DSF ('convergence only in late 
reverberation') it is sufficient that only an average absorption degree needs to be 'low' (typically 
it is proposed that for the validity of the Sabine formula a mean absorption degree  α
 < 0.3 is 
sufficient) and at least a small piece of surface is a bit unregularly i.e. scattering and hence 
'mixing' [2]. 
 
Only if (fictively) the surfaces were also interchanging positions (evenly distributed), i.e. totally 
mixing (D2), then from C+D+D2 follows A+B +B2 i.e. aconstant irradiation strength 
     � � �/4  (2)  
And only if the room is 'totally mixing' i.e. interchanging energy at every place and time into 
every direction, then there is no chance that different (exponential) energy decays arise and just 
one single exponential energy decay with on reverberation time is left (Fig. 4). 
 
A constant  B is the condition that the notion 'equivalent absorption area' (used to derive the 
Sabine formula) i.e. a surface-weighting, makes sense. The factor 1/4 is due to the directional 
averaging the projection factor ������ over the full solid angle 4π: 

    � � �
�� � �������Ω = �

�� � � ��������
�

�/�
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2.1 The Lambert reflection 
 With the Lambert reflection, the reflection angle (ϑ) probability density p’ per solid angle is 
proportional cos	�ϑ�	, independent from the incidence angle (Fig. 5a):   

   	() =: +,
+- = ./0�1�

�  (4) 

(π is the normalization factor for the half-sphere). It can be considered as the ideal scattering 
characteristics of  'rough surfaces' following from the cos- projection law and the reciprocity 



principle. In room acoustical computer simulation, the mix of diffuse and specular reflections in 
reality is often simulated by a 'diffusivity 'or 'scattering' coefficients usually simulated by 
drawing random numbers [3,4], see Fig. 5b. The scattering coefficient 2 is defined as the  
proportion: '(non-geometrically energy)/(total reflected energy)'.  
 

 
3.  AVERAGE QUANTITIES IN A DIFFUSE SOUND FIELD  
 
 The core physical quantity is the equivalent absorption area  
   A = ∑ α5 S5            (5)  
or the 'mean (surfaces averaged) absorption degree'  

  α
 ≡ α = ∑ 89:9
: = A/S    (6) 

(	;<= single of N surfaces, S= total surface,  =< = absorption degrees). 
 
The other, the geometric average quantity, is the mean free path length with its famous formula  
    	Λ = 4?/;   (7) 
(V=volume), which is true even for non-convex rooms, if a diffuse sound field really were given 
– which is, however, hardly the case then. The same is valid for the other relationships.  
 
3.1 Derivations of the formula for the mean free path length (mfp) 
 The correct mfp-formulae can be derived strictly obeying conditions A…D2. These shall be 
explicitly named in the following: 
 
Method a) is utilizing  
A) isotropy in @ and  B) homogeneity in V and averaging over the inverse mfp, i.e. 
reflection frequencies ('time average'):  

  ΛA� = BA�CCCCD,F
 (8) 

This way, also shown by Kosten [5] is gone with the derivation of the Sabine formula. In a DSF, 
'sound particles' lose their identity: 'time = ensemble average' [1]. Therefore the averaging can be 
performed also over a group of 'parallel' rays ('channels') into an absolute direction G 
representative for all (Fig.6). 

  Λ�G� = �
H ∑ B<H<I� = D/J

K/J = D
K�L�  (9) 

The inverse of Eqn. 8 inserted in Eqn. 9 yields 

                       
�
M = N �

M�L�O
CCCCCCCCF

= NK�L�
P OCCCCCCCCF

= Q
�D (10) 

as the directional average over all projected surface elements dS (also over their backsides) is 
dS/4. The average cross section of any volume is always Q=S/4.  (See the derivation of the factor 
1/4 in Eqn. 3.) The directional average over all ‘absolute’ orientations G must be equivalent to an 
average over the local incident angle � relative to the surface normal at any part of the room 
surface with any orientation. Any 'channel' (in Fig.6)  intersects the surface twice, but once from 
the back side, where the averaging is omitted such that the averaging factor is M=1/4 (as derived 
in Eqn. 3). Even if the room is not convex, such that the ‘channels’ may be interrupted into 
several ones, this argumentation holds.  
 



Method b) utilizes B2) i.e. constant irradiation of S and D) (everywhere Lambert law) and 
direct averaging over the mfp ('ensemble  average': one considers the ‘fates’ of different ‘sound 
particles’ simultaneously on the way.) 

    R � B (′CCCCF,: (11) 
Different from method a, method b is related to the surface related conditions for the DSF: 

                      R � �
Q � � B�����

./0�1�
�  Q �Ω�;             (12) 

Now � is the local angle relative to the normal. As in a diffuse sound field the averaging 
procedures over the surface and the angle are independent from each other (the Lambert law is 
valid everywhere). The surface integral in the following is 2V, independent from orientation, and 
can be separated. Thus 

           R � �
�Q � �Ω�� � B����������; Q � �� �D

�Q � �D
Q    (13) 

 
 
4  RE-DERIVATION OF REVERBERATION FORMULAE  
 
Both reverberation formulae assume a diffuse sound field  (especially condition B2 i.e. a 
constant irradiation of the surface leading to a mean absorption coefficient, E in Table 1.)  
 
4.1.  The Eyring formula 
 Typical is here to consider a ´representative sound particle` (sp) (Table 1, condition F) 
which, after always a free path length Λ, ‘sees’ a surface with the absorption degree =T. The 
consequence is a stepwise exponential energy decay: 
   U�V� � U��1 − =T�Y   (14) 
where E0 is the start energy and N is the reflection number (Fig. 7). 
By introducing a mean absorption exponent  
    =T) � − ln�1 − =T� (15) 
Eqn. 14 reads U�V� � U�\AY]^). For N reflections with a mfp _, the time ̀ � V Λ/�  is needed. 
Tacitly it is assumed that N is a real number as after a switched off steady sound source the 
decays overlap and 'smooth'  the resulting function U�`� � U�\A]â .b/M. Using the standard for-

mulation of an exponential decay U�`� � U�\Ac
d the time constant of the sound energy decay is 

     efg � M
. ]^) (16) 

In such a typical RT formula, the time constant is always the proportion of the mean free path 
length and an average absorption exponent. The RT for a 60dB decay is then generally 
   h � 6 ln�10� e  (17) 
Using the normalized value of the sound velocity c=340m/s at 14°C and also the value for the 
mfp Λ (Eqn. 7) yields the Eyring reverberation time 

          hfg � j kl���� 
.

�P
Q ]^) ≈ 0.163 D

Q ]^)             (18) 

Additionally (to the DSF) condition D2 is assumed: (only with a total mixing the sp lose their 
identity and one representative sp may be assumed, condition F) and: 'the mfp are constant' 
(condition H) –which is of course wrong: they are varying.  
 
4.2. The Sabine formula  
The Sabine formula is not just an approximation of the Eyring formula, it has its own, amazingly 
different derivation. Neither the model of a sp nor the concept of a mfp is used. Instead, the 



decay of the total sound energy E(t) (one value everywhere!) is considered aiming at a 
differential equation. Especially the homogeneity of the energy distribution is assumed, however, 
tacitly even more, namely that there is simply only one value of E at the time t (condition G). 
(This will turn out to be the crucial misunderstanding of the Sabine approach.) With the energy 
density  U � E/V ,  I � c U, the irradiation strength is   B � I/4 � cU/4 � cE/�4V�  (Eqn.2).  
Then the incident energy per time is 

    
st9
su � cE :

��P�    (19),      

and finally the absorbed energy :    

   
st
su � −E�t� c 8w :

�P  (20). 

The solution is an exponential decay with the time constant 

    τyz{ � M
| 8w

     (21) 

Inserting again Λ � 4V/S yields the famous Sabine RT 

   Tyz{ � 6 ∙ ln �10� τyz{ ≈ 0.163 P
� (22). 

As the energy is proportional the number of sound particles, analogously to Eqn. 19 the sp 
impact rate is 
   dN/dt � N/t � cN S/�4V�  (23) 
(which would be constant without absorption – an allowed assumption for deriving just a 
geometric quantity as the mfp).  After the time for travelling just a mfp, per definition all sp once 
have hit the room surface. Hence, inserting t � Λ/c into Eqn. 23 yields by the way a prove for 
the formula for the mean free path length Λ � 4V/S. 
  
 5 WHY IS THE SABINE DIFFERENT FROM THE EYRING FORM ULA?  
 
For small =T,   =T) � − ln�1 − =T� ≈ =T�1 + ]^

� �   (24),  

so comparing both formulae (Eqns. 16 and 21) shows that the difference is just in the order of  

        
���

����
≈ �1 − =T/2�              (25).  

The reasons for the difference are different tacit additional assumptions:  
 Eyring assumes a constant mean free path length and a stepwise energy decay, i.e. all sound 
particles lose a part of their energy at the same time [7].  
Sabine assumes only one energy value. This is also absurd as this were only possible if the 
information about absorption at one part of the surface were spread infinitely fast to everywhere 
within the room, such that local different energies are 'equalized' as if ‘the sound particles know 
from each other’.  This leads to an effectively smaller energy loss and hence a longer 
reverberation time than with just one 'representative' sp as with the Eyring theory (Fig.8).  
   
 
6  TRANSITIONS BETWEEN THE TWO FORMULAE 
 
6.1. From Eyring to Sabine  
 Starting with the Eyring model, obviously one has to consider the time interval between 
two reflections Δt � Λ/c  more in detail. The first thinking model is to subdivide it. With an 
equally distributed time shift of many sound particles, the energy loss may be linearly 
interpolated, so, after a time Δt/n, the overall energy loss factor is �1 − α/n�; allowing an 
‘information and energy inter change’ the energy loss after ‘1/n reflection’ would be 'equalized'. 



So, after a whole reflection – n such steps - the energy would be multiplied by  �1 − α/n�l. For 
n → ∞, the loss factor between two reflections would become 

       fyz{ � lim
l→�

N1 − 8
lO

l
� eA8 ≈ 1 − α + �

� α� … ≈ 1 − α ∙ �1 − 8
��  (26).  

eA8 is the Sabine energy loss factor for 1 reflection (insert τ � M
| 8 and t � M

|  into  eAu/�).  The 

corresponding Eyring value is    ft� � 1 − α � eA8´  (27) 
Comparing Eqn. 26 with 27, the 'effective' absorption degrees differ in the first approximation by 
the factor �1 − α/2 �, hence (regarding Eqns. 16 and 21) also the proportion 
    T��  Tyz{⁄ ≈ �1 − α/2 �  (28). 
So, the difference between the Eyring and the Sabine formula can be explained by the transition 
from the stepwise to a continuous absorption. 
  
6.2. From Sabine to Eyring  
 An idea to describe the opposite transition is to assume that for the energy loss at the 
surface the energy (considered with the Sabine model) in the middle of the room is relevant. 
Thus the former diff. Eqn.20 with Λ � 4?/; has to be altered to  

        
+�
+b � − . ∝

M U�` − Δ`/2� (29) 

where Δ` � M
. � =e0��  is the half of the time interval between two reflections. Assuming, as the 

first approximation an exponential decay according the Sabine RT,  

    U N` − �b
� O � U�`�\�b/���0��� � U�`� \8/� ≈ U�`� �1 + α/2�  (30.  

Inserted into the differential. Eqn. 29 yields a differential. Eqn. with a modified absorption factor 

      
+�
+b ≈ − . ]N���

�O
  U�`� � −U�`�/e0��0¡<¢b (31). 

The new time constant is 
     e0��0¡<¢b �  

. ]���]/�� ≈ e0���1 − =/2� ≈ e�g   (32)  

Thus, again the Eyring reverberation time is reached. 
 
6.3. Kuttruff's 'repair' of the Eyring formula allo wing a spreading of the free path lengths 
 The new parameter is here the relative variance £� of the free path lengths defined by 

   £� � ¤�¥ A¤�̅

¤�̅   (33) 

where B ̅ is the mfp (called Λ before), B�̅ its square and B�¥  the average over the squares. (A 
variance of the absorption degrees is not considered, = is still the mean absorption degree.) 
Kuttruff's approach [1] is to consider the reverberation as a sum of an infinite number of decays 
with different RTs, thus, a different number of reflections N within the same time, weighted with 
different probabilities §Y: 
  U�`� � U� ∑ §Y\A]´ Y�

YI�  (normalized by ∑ §Y � 1�
YI� )  (34).  

By expanding the exponential functions into a Taylor series around the mean value =´ V¥ up to 
the quadratic order (V¥ � �`/ Λ  is the average number of reflections) and   introducing the 
variance ̈ Y� of the N reflections, the sum of these many decays can be expressed as one unified 

decay U�`� � U�\Ac
d

´´
 with a new time constant τ´´ � M

| 8´´ with a correction term proportional to 

the variance ̈Y�. The effective absorption coefficient is then 
   α´´ � α´�1 − γ�α´/2� (35)    



This is smaller than the Eyring exponent =´. So, with varying free path lengths the RT is longer 
than without.  Usually, depending of the room shape, for typical proportions from 1:1:1 to 
1:10:10, the variance £� is in the order of 0.4….0.6 (as found by numerical experiments). 
Kuttruff’s derivation and Eqn. 35 is only valid for small absorption and /or the very first 
reflections. The late reverberation with its different non-mixing decays, remains always 
governed by the weakest single decay, i.e. by the longest partial RT. However, one can see: The 
variation of reflection moments furthers the ‘mixing effect’ as it is, different from the Eyring 
theory, tacitly assumed within the derivation of the Sabine formula. For ‘totally’ varying free 
path lengths £� = 1 and with the expansion =´ = − ln�1 − =� ≈ = + =�/2 inserted into Eqn. 35 
it turns out that 

   α´´ = α´ N1 − 8´
�O = α N1 + 8

�O N1 − 8
� − ]�

� O ≈ =  (36) 

in the first order. So, allowing totally varying free path lengths, the RT value of the Eyring 
formula converges against the Sabine value.  
 
 
7  ANALYTICAL APPROACHES FOR PARTIALLY DIFFUSE SOUN D FIELDS 
 
In the following, some concepts shall be discussed which do not any longer assume 
homogeneous and/or isotropic sound fields, yet still diffuse reflections. As mentioned, even 
overall diffuse reflections do not guarantee a diffuse sound field, the irradiation strengths on the 
surfaces Bi may not be constant. A base for the next derivations is Kuttruff’s integral equation for 
the irradiation strength ��ª, `� [1] here reproduced in the time dependent case without (with 
switched-off) sound source: 

   ��ª, `� = � «�ª´���ª´, ` − ¬ �⁄ �Q)
./0�1�./0�1´�

�­´² �;´ (37) 

where r is the receiver position, r´ the position of a radiating surface element dS,  � the incident 
angle, �´ the emission angle from dS´, ¬ = |ª′ − ª| the distance between source and receiver 

position and	` − ¬ �⁄  the earlier time of emission from r´  (Fig. 9). The term 
./0�1´�

�  is the 

probability density per solid angle due to the Lambert law, the term ������	is due to the 
projection onto the receiving surface element on the other side. «�ª´� is the local reflection 
coefficient. The equation (already found by Clausius [6] for heat transfer) describes the radiation 
balance in a closed room with diffusely reflecting surfaces. 
This integral equation can only be solved numerically by the time dependent 'radiosity' method. 
A compromise is an iteration with the assumption of an approximately exponential decay where 
the reverberation time is delivered as an Eigenvalue [8]. (This pays especially for solving the 
problem of computing the absorption degrees of specimen in the non-diffuse sound fields of 
reverberation rooms.)    
 
7.1. Kuttruff's formula regarding the spreading of the absorption degrees 
 Aiming at an analytical approximation formula for a single exponential decay, Kuttruff 
found a formula taking into account the variance of the absorption degrees. All irradiation 
strengths B are assumed to decay exponentially and all distances R in Eqn. 37 are replaced by the 
same mean free path length Λ. By integrating the resulting equation over the whole surface S, 
and changing for practical reasons to a discrete formulation with N plane surfaces ;H, an 
'effective' new absorption exponent is obtained:  

  =)) = −B! N∑ ¯°±°Q°²°³´
∑ ±°Q°²°³´

O  (38). 



where the «H are the surface's reflection degrees, «̅ = ∑ «H;H/;YHI�  is the mean reflection degree 
and the �H are the (unknown) irradiation strengths, each assumed to be constant over a surface 
;H. For constant irradiation strengths B, this would reproduce the Eyring absorption exponent 
=) = −B!« = − ln�1 − =T�. Obviously, the new absorption exponent is not only a surface 
weighted but also a irradiation weighted average.   
 Especially interesting in praxis are rectangular rooms with high absorption on the (largest 
area) floor and low absorption elsewhere. For the simplified cases of total floor absorption and 
zero rest absorption, Kuttruff computed effective absorption exponents in the order of 10% (for a 
1:1:1 cube) up to 20% (for a 5:2:1 shoe-box , where 5:2 is the proportion of the floor rectangle) 
over the Eyring value, hence, shorter reverberation times [1].  
 
In the typical case of one receiving high absorptive floor and rather reflecting other surfaces, the 
reasonable guess for the unknown irradiation strengths �H is that they are simply proportional to 
the other surfaces times their reflection coefficients. After inserting the respective equation into 
Eqn 38, and some approximation for small correction factors, the result for an effective new 
absorption degree taking a non-uniform absorption into account turns out to be  

   	=)) = 	=) + ∑ �]^A]°���A]°�Q°�²°³´
��A]^�²∙Q� 	  (39) 

where the =H are the absorption degrees of the surfaces,  =T	their average, and =′ is the Eyring 
absorption exponent. Analogously to Eyring is eµ¶bb = Λ/�� =′′� and hµ¶bb = 6 ln�10�	eµ¶bb.  
 
At least for the frequent cases of one dominating absorbing surface (usually the floor), the term 
to the right in Eqn. 39 is positive, and the Kuttruff formula yields lower RTs than according even 
the Eyring value:  hQ�� > h�g > hµ¶bb . 
 
 
7.2. Fitzroy's subdivision into separate reverberation processes in x-, y- and z-direction 
 Another early approach to take the special effects of a non-uniform absorption distribution 
or, better to say, anisotropy into account, is that of Fitzroy [9]. Often, especially in planar 
rectangular rooms with few scattering and hence mixing, more or less separate reverberation 
processes establish in the three main axes' directions. Assigning for each direction (x,y,z) a 
specific mean absorption coefficient =�, =� , 	=¸ and  'typical' mean free path lengths  Λ�, Λ� , 
	Λ¸, one could derive, in the same way as for the Eyring RT (section 4.1), specific reverberation 
times T�, T� and 	T¸ respectively. Fitzroy's empirical (somewhat naive) compromise is just to 
take the arithmetic surface weighted average of all three: 

   h¹º = Q´
Q ∙ T� + Q�

Q ∙ T� + Q»
Q ∙ T¸ (40) 

where the S�, S� and 	S¸ are the surfaces of the room perpendicular to the x,y,z-direction. But: 
what are the values of the surfaces  S�, S� and 	S¸ in cases of non-rectangular rooms, the 
projected fractions of all surfaces into the three directions? The choice of such three orthogonal 
directions seems quite arbitrary. 
 
7.3. Arau's improved reverberation formula 
 The same unanswered questions apply to the model of Arau [10] who further developed 
Fitzroy's model. The basic approach of his formula is to account for different classes of 
reflections (V<;  = 1,2,3 for x,y,z; out of V = ∑ V< ) such that (instead of just one stepwise 
decay as with the Eyring theory in Eqns. 14,15) the energy decay is (in the first approach) now 
described by 



   U�V� = U� ∏�1 − =<�Y¾ = U� ∙ \A∑ Y¾]¾)	  (41) 
The first idea is that (as in a diffuse sound field, i.e. with constant surface irradiation) the 
probabilities to hit a surface S5 are (< = S5/;, such that the reflection numbers are  V< = V ∙ (<. 
Then ∑ V<=< ′ = V ∙ ∑(<=<′ and with 
    =′¥ = ∑(<=<′  (42) 
a 'surface weighted absorption exponent' could be defined (and from that as with Eqns.( 16,17) a 
reverberation time). This would be different from =T) = − ln�1 − =T� (Eqn.15) and become 
infinite (and the RT zero) if just one =<) = −B!¿1 − =< À would become infinite, if =5 → 1 (one 
'open window'). So this approach (once formulated by Mellington – Sette as an 'improvement to 
Eyring' [1]) is definitely wrong. The reason is, as Kuttruff showed, that the (< are just 
probabilities, but the reflection numbers are not exactly V< but the probability for e.g. V� 
reflections obeys a binominal distribution 

   (�V�� = ÁV
V�

Â ∙ Ã�Y´ ∙ Ã�Y�  (with V� = V − V��.	  (43) 

There are many sequences of reflections of different classes. These are described by an 
respective binominal distributed sum over different decays (exponential functions as in Eqn. 41). 
Kuttruff's result is: the surface weighted averaging of a mean absorption degree =T (Eqn. 6) as 
for the Sabine and Eyring formula is justified. 
 Now, also Arau went this way of introducing a binominal distribution (where a transition to 
a logarithmic normal distribution is not quite clear). The arithmetic average of the absorption 
exponent as in Eqn. 42 is now just applied to surfaces within the same class (e.g. opposite 
parallel walls) for the sequential effects. For the simultaneous reverberation processes, he 
derives the formula: 
   	=Äº�¶)CCCCCCC = ∏ �=Å)¥ �,¾<̧I�  (44) 
- an area weighted geometric mean of the weighted absorption in the x,y,z- directions. 
Component wise insertion into the usual reverberation time formulae (like Eqns. 16,17)  yields 
for the reverberation time finally also an area weighted geometric mean: 
   hÄº�¶ = hÆQÇ/Q ∙ hgQ�/Q ∙ hÈQÉ/Q (45) 
The computed results, obtained separately for early and late RT, agreed astonishingly well – and 
much better than Sabine and Eyring – with measurements – at least in a rectangular and highly 
diffusing hall.  
 
 
7.4. An Anisotropic Reverberation Model (ARM) 
However, there is an important deficit at this and Fitzroy's method: the decisive 'mixing' between 
the different reverberation classes caused by more or less scattering walls is not taken into 
account. This exactly is possible with ARM [11]. The semi-analytical ARM takes absorption and 
scattering coefficients into account as well as the orientation of the surfaces, however, not their 
positions. As a compromise between simple analytic (often wrong) formulae and costly ray 
tracing methods, it assumes still a  homogeneous but anisotropic sound field. The idea is to 
consider flowing sound energies in a group (typically some thousands) of angular ranges (like 
pyramidal beams but without defined origins) and to define coefficients describing transitions 
between them over the relevant surfaces depending on their absorption and scattering 
coefficients and their orientation. This leads to a linear system of ordinary differential equations. 
This system can be solved either by iteration or with Eigenvalues (partial RTs) and Eigenvectors 
(energy distributions). The result gives information on early and late reverberation times.  
 
 



 
7 CONCLUSION 
 The "diffuse sound field" is a very idealistic assumption. The reasons for the difference 
between the Sabine and the Eyring formula are different tacit  additional assumptions. The ‘true’ 
reverberation times lie between the Sabine value and the Eyring value, as described by the 
Kuttruff formula– provided the absorption degrees are small and not too different and all 
reflections are diffuse and totally mixing – which is an utopia. So actually, both the Sabine and 
the Eyring formula are wrong. Strictly speaking, they must not be applied in many cases of non-
perfectly diffuse reflections  i.e. in many realistic cases. Also all other reverberation formulae 
assume perfectly diffuse reflections – which is approximately often, but never perfectly the case. 
They yield rather small corrections depending on the distribution of the absorption. However, 
they cannot explain effects of partly geometrical reflections which may be dominating in cases of 
focusing on reflecting or absorbing surfaces causing e.g. flutter echoes in shoe-box-rooms or 
focusing effects in domes [12]. Reverberation times in non-diffuse sound fields depend on the 
room shape, the distribution of the absorption and especially the scattering coefficients.  
In two other papers, presented to this conference, some semi-analytical procedures are presented 
to compute reverberation times as a function of the scattering coefficients, taking the anisotropy 
into account [11]. For a semi-circular room with its focusing effects an analytical formula is 
presented [3]. 
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 Table 1 – Conditions for the diffuse sound field (in brackets:  

 
   
     
   
 
 
 
 
 
  
          
  

 

 

 

 

 

    

 

 

 

 

 

 

 

 

   
 

 
 
 
 
Fig. 1: Isotropy and homogeneity (same arrow lengths in every direction everywhere,  
at every 'array-cluster'); Fig. 1b: constant  irradiation of  all surfaces (B2) following from B) 
(homogeinity) 
 
 
 
Fig 2 : Homogenous but anisotropic sound distribution : flutter echoes in a long rectangular 
room with reflecting front-end but absorbing side walls  
 
 
 
 
 
 
Fig. 3a: An absorbing piece of surface destroys isotropy,  
  3b):  Each specular reflection destroys also isotropy (causes a peak in the array-cluster) 

 

B2) constant irradiation  
       of all surfaces 

A)  Isotropy (j=const)     C)  all absorption degrees zero ! 
(mean absorption degree small) 

D) all surfaces totally scattering   
i.e Lambert diffuse reflections 
(only some surfaces scattering) 

D2)  totally mixing   

B) Homogeneity (U=const)    

theoretical definitions practical conditions 
(in parentheses: tolerant version) 

E) Definition of an 'equivalent absorption area'  
and an average absorption degree 

F) Existence of a 'representative sound  
  particle' and a 'mean free path length'  

Sabine's reverberation formula Eyring's reverberation formula 

+G) only one  
        sound energy  

+H) only one constant  
      free path length  



 
 
 
 
 
Fig. 4: Two different exponential energy decays  
(green and blue, logarithmically displayed) in  
weakly couples sub-spaces or intodifferent directions ;  
red curve: their sum – a non-.exponential decay  
 
  
 
 
 
 
 
 
Fig. 5a: The Lambert directivity (cosine-function); 5b) reflected ray distributions simulated by 
drawing random numbers for scattering coefficients of 0, 0.25 and 1.  
 
 

 
 
 
 
 
 
 
 
 
Fig. 7: The stepwise exponential energy decay as assumed by the Eyring theory as a function of 
the number of reflections N in constant time intervals ∆` (energies in logarithmic scale); 
straight green line: time average over many sound particles  
 
 
 
 
 
 

 

 
 
 
 
 

Fig. 6: A volume V of cross section Q  
subdivided into n 'channels'  
of cross section q and lengths 
 B<: Ã ∑ B<H<I� = ? 
 

Fig. 9 Mutual irradiation of two 
pieces of surface dS and dS' in a 
room:    illustration of the 
quantities in Kuttruffs integral 
equation [1] 

Fig. 8:  If SP1 hits wall S1,the total energy E in the 
room is reduced. Tacitly assumed by Sabine, this 
information is transmitted immediately to SP2 such 
that its energy is also reduced. Then its future energy 
loss due to absorption on wall S2 will be smaller than 
otherwise leading to a longer reverberation time than 
due to Eyring. 

 


