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The conditions and assumptions behind different resrberation formulae are often not
explained very accurately. So, the reasons for theidifferences are often hardly
understood. In this rather didactical paper a morerigorous definition of the crucial term
'diffuse sound field' is proposed and the relationsips to the necessary surface conditions,
especially scattering, are discussed. The reasonsr fthe difference between some
reverberation formulae, first of all, Sabine's andEyring's, are analyzed. Also Kuttruff's
correction formulae for varying free path lengths and uneven absorption distributions as
well as approaches to partially diffuse sound fielsl with their assumptions are discussed.

1 INTRODUCTION

The term "diffuse sound field" (DSF) is often moiplained very accurately - the motivation
for this paper. The paper is organized as followssection 2 , a more rigorous definition is
proposed and the relationships to the necessafgcsuconditions as absorption and scattering
are discussed After some general definitions, addr#ication on the computation of mean free
path length (in 3), in section 4, the Eyring andbiSa reverberation formulae will be re-derived.
In section 5, the reason for the difference betweetn formulae will be analyzed by some
thought experiments. In section 6, different traasimodels are discussed, in section 7 further
reverberation time formulae and approaches to paiially diffuse sound fields.

First, the general condition of geometric/statistiom acoustics is presupposed that typical room
dimensions are large compared with wavelengths thaththe analysis may be performed with
an energetic sound particle model (and for oneuleqy band). So, ‘Intensityf is here
interpreted as an integral over the whole soliderig= [ jdQ, a scalar rather than a vector:

I = c U (c= sound velocity, U= energy density) Q).
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2 CONDITIONS FOR THE DIFFUSE SOUND FIELD

First, it should be distinguished between theoattdefinitions and practical conditions,
further between the claim the sound field shoulddifkise ‘from the start' (strict version) or
'towards the end of reverberation"” (tolerant \@rsconditions in brackets) (see Table 1).

Usually one starts with A (' each direction witdmee intensity /‘directional diffusivity’).
From A follows B (in a room without absorption, tharticles don't lose energies, see the lines
connecting the clusters in Fig. 1) [1], but notevieersa (consider e.g. the case of a long room
evenly filled with rays just in a longitudinal do®on, Fig. 2). It should be emphasized by the
way: The room does not need to be convex (the aggtation of Fig.1. could be extended by
more array-clusters)if a diffuse sound field is really given; then alke tlerived consequences
as e.g. the formula for mean free path lengths{raee However, in non-convex rooms, - e.g.
with weakly coupled sub-spaces - the sound ielthrdly diffuse From B (a volume condition)
follows as a surface condition B2 (Fig. 1b).

The surface conditions C+D are necessary but ufficient for A+B: All surfaces may be
totally diffusely reflecting, but the irradiatiorirengths may be non-constant due to geometry
(typically if the absorption distribution over tlseirface is quite uneven). If just one piece of
surface is absorbing, then the sound field clogelfront will be not isotropic (Fig. F3a). The
same happens, strictly speaking, with only one Wp€dy reflecting peace of surface as
producing a mirror image source (Fig. F3b, actualhgady the existence of the source itself is
forbidden.) For the tolerant version of the defomt of the DSF (‘convergence only in late
reverberation’) it is sufficient that only an awggaabsorption degree needs to be 'low' (typically
it is proposed that for the validity of the Sabfoemula a mean absorption degreg, < 0.3 is
sufficient) and at least a small piece of surfazea ibit unregularly i.e. scattering and hence
'mixing' [2].

Only if (fictively) the surfaces were also interclggng positions (evenly distributed), i.e. totally
mixing (D2), then from C+D+D2 follows A+B +B2 i.aconstant irradiation strength

B=1/4 (2)
And only if the room is 'totally mixing' i.e. intelnanging energy at every place and time into
every direction, then there is no chance that wifie (exponential) energy decays arise and just
one single exponential energy decay with on revatlmn time is left (Fig. 4).

A constant B is the condition that the notion 'equivalent aption area' (used to derive the
Sabine formula) i.e. a surface-weighting, makesaeiihe factor 1/4 is due to the directional
averaging the projection factons(9) over the full solid anglé:

_ 1 _ 1 (m/2 ;2m , _1,. 2 m/2 _ 1
M=_— J,, cos(®)dq = y= Jo "y cos(®) desin(¥9)dd = ~(sin?(@0)/2)1y"" =1 (3)

2.1 The Lambert reflection
With the Lambert reflection, the reflection an¢¢ probability density’ per solid angle is

proportionalcos(9) , independent from the incidence angle (Fig. 5a):
' ::d_p _ cos(9) (4)

an T
(m is the normalization factor for the half-spheri¢)can be considered as the ideal scattering
characteristics of 'rough surfaces' following fréine cos- projection law and the reciprocity



principle. In room acoustical computer simulatime mix of diffuse and specular reflections in
reality is often simulated by a 'diffusivity 'orcattering' coefficients usually simulated by
drawing random numbers [3,4], see Fig. 5b. Thetegag coefficiento is defined as the
proportion: '(non-geometrically energy)/(total esfled energy)'.

3. AVERAGE QUANTITIES IN A DIFFUSE SOUND FIELD

The corephysicalquantity is the equivalent absorption area

A=XYaS; (5)
or the 'mean (surfaces averaged) absorption degree’
Uy = o =285 = A/S (6)

S
(S;= single of N surfaces= total surface,a; = absorption degrees).

The other, thgeometricaverage quantity, is the mean free path length iistfamous formula

A=4V/S @)
(V=volume), which is true even for non-convex rooihs, diffuse sound field really were given
— which is, however, hardly the case then. The damalid for the other relationships.

3.1 Derivations of the formula for the mean free pth length (mfp)
The correct mfp-formulae can be derived stricthgying conditions A...D2. These shall be
explicitly named in the following:

Method a) is utilizing
A) isotropy in 2 and B) homogeneity in V and averaging over the uerse mfp,i.e.
reflection frequencies (‘time average’):

AL =710 8)
This way, also shown by Kosten [5] is gone with degivation of the Sabine formula. In a DSF,
'sound particles’ lose their identity: 'time = enbée average' [1]. Therefore the averaging can be
performed also over a group of 'parallel' rays gfolels’) into anabsolute direction §
representative for all (Fig.6).

_Lyn g _V/a__V_
A(6) - n =1 ll Q/q 0(8) (9)
The inverse of Eqn. 8 inserted in Eqgn. 9 yields
Q Q
L) — (@) _ s
A (A(S)) - ( v ) T (10)

as the directional average over all projected serielements dS (also over their backsides) is
dS/4.The average cross section of any volume is always/Q=(See the derivation of the factor
1/4 in Eqn. 3.) The directional average over dlis@ute’ orientationg must be equivalent to an
average over the local incident andlerelative to the surface normal at any part of ribem
surface with any orientation. Any ‘channel’ (in .Big intersects the surface twice, but once from
the back side, where the averaging is omitted sh@hthe averaging factor M=1/4 (as derived

in Egn. 3). Even if the room is not convex, suchttthe ‘channels’ may be interrupted into
several ones, this argumentation holds.



Method b) utilizes B2) i.e. constant irradiation ofS and D) (everywhere Lambert law) and
direct averaging over the mfp (‘ensemble average':considers the ‘fates’ of different ‘sound
particles’ simultaneously on the way.)

A=1p%s (12)
Different from methodh, methodb is related to the surface related conditionster®SF:
_ 1 cos(9)
A= Efs fml(ﬁ)T dQds (12)

Now 9 is the local angle relative to the normal. As idiffuse sound field the averaging
procedures over the surface and the angle areendept from each other (the Lambert law is
valid everywhere). The surface integral in thedaling is 2V, independent from orientation, and
can be separated. Thus

22V 4V

A=—[, dQf; 1®)cos@ds =T == (13)

4 RE-DERIVATION OF REVERBERATION FORMULAE

Both reverberation formulae assume a diffuse solield (especially condition B2 i.e. a
constant irradiation of the surface leading to amabsorption coefficient, E in Table 1.)

4.1. The Eyring formula
Typical is here to consider a ‘representative doparticle” (sp) (Table 1, condition F)

which, after always a free path length ‘sees’ a surface with the absorption degrge The
consequence is a stepwise exponential energy decay:

E(N) = Eg(1 — a;)" (14)
wherekEy is the start energy amidlis the reflection number (Fig. 7).
By introducing a mean absorption exponent

am =—In(1 —a,,) (15)

Eqgn. 14 read& (N) = E,e” V%', For N reflections with a mfd, the timet = N A/c is needed.
Tacitly it is assumed that N is a real number derad switched off steady sound source the

decays overlap and 'smooth' the resulting funciitn = Eoe‘“v'n“/". Using the standard for-

t
mulation of an exponential decayt) = Eye~= the time constant of the sound energy decay is
A
Tey = (16)

cam!
In such a typical RT formula, the time constanaéliways the proportion of the mean free path
length and an average absorption exponent. TheoRa 60dB decay is then generally
T =6In(10) 7 (17)
Using the normalized value of the sound velocitg4@m/s at 14°C and also the value for the

mfp A (Eqn. 7) yields the Eyring reverberation time

T __6In(10) 4V 1%

&Y T ¢ Sap ~0.163 S am! (18)

Additionally (to the DSF) condition D2 is assumédnly with a total mixing the sp lose their
identity and one representative sp may be assuowmdlition F) and: 'the mfp are constant’
(condition H) —which is of course wrong: they aseywng.

4.2. The Sabine formula
The Sabine formula is not just an approximatiothef Eyring formula, it has its own, amazingly
different derivation. Neither the model of a sp iee concept of a mfp is used. Instead, the



decay of the total sound energy E(t) (one valuerysvieere!) is considered aiming at a
differential equation. Especially the homogeneityhe energy distribution is assumed, however,
tacitly even more, namely that there is simply onhe value oE at the timet (condition G).
(This will turn out to be the crucial misunderstangdof the Sabine approach.) With the energy
density U =E/V , [ = cU, the irradiation strength isB =1/4 = cU/4 = cE/(4V) (Eqn.2).
Then the incident energy per time is

= E s (19),
and finally the absorbed energy :
L o (20).
The solution is an exponential decay with the tooastant
Tab = 7o (21)
Inserting agaim\ = 4V/S yields the famous Sabine RT
Teap = 6 - In(10) Tqap ~ 0.163 5 (22).

As the energy is proportional the number of souadigles, analogously to Eqn. 19 the sp
impact rate is

dN/dt = N/t = cN S/(4V) (23)
(which would be constant without absorption — aloveéd assumption for deriving just a
geometric quantity as the mfp). After the time ti@velling just a mfp, per definition all sp once
have hit the room surface. Hence, insertirg A/c into Egn. 23 yields by the way a prove for
the formula for the mean free path lengtk- 4V/S.

5 WHY IS THE SABINE DIFFERENT FROM THE EYRING FORM ULA?

For smalle,,, Ay =—In(1 —a,,) = a,(1+ O‘Tm (24),
so comparing both formulae (Eqns. 16 and 21) stibatsthe difference is just in the order of
FZ~ (1 ap/2) (25).

The reasons for the difference are different tacédditional assumptions:
Eyring assumes a constant mean free path lengthaastepwise energy decay, i.e. all sound
particles lose a part of their energy at the same [7].

Sabine assumes only one energy value. This isasard as this were only possible if the
information about absorption at one part of thdema were spread infinitely fast to everywhere
within the room, such that local different energaes 'equalized’ as if ‘the sound particles know
from each other. This leads to an effectively Bemaenergy loss and hence a longer
reverberation time than with just one 'represeveatip as with the Eyring theory (Fig.8).

6 TRANSITIONS BETWEEN THE TWO FORMULAE

6.1. From Eyring to Sabine

Starting with the Eyring model, obviously one hasconsider the time interval between
two reflectionsAt = A/c more in detail. The first thinking model is to siabde it. With an
equally distributed time shift of many sound pdesc the energy loss may be linearly
interpolated, so, after a tim&t/n, the overall energy loss factor (¢ — a/n); allowing an
‘information and energy inter change’ the energslafter ‘1/n reflection’ would be 'equalized'.



So, after a whole reflection — n such steps - tlergy would be multiplied by(1 — a/n)". For
n — oo, the loss factor between two reflections woulddoee

. n _ 1
fsab=gl_)rg(1—§) =e°‘z1—a+5a2...z1—a-(1—g) (26).
e~ is the Sabine energy loss factor for 1 reflectimsertt = % andt =% into e"T). The

corresponding Eyring value is fgy=1—a= e % (27)
Comparing Egn. 26 with 27, the 'effective’ absanptilegrees differ in the first approximation by
the factor(1 — a/2 ), hence (regarding Eqns. 16 and 21) also the ptiopor

Tey/ Tsap = (1 —a/2) (28).
So, the difference between the Eyring and the ®afoirmula can be explained by the transition
from the stepwise to a continuous absorption.

6.2. From Sabine to Eyring
An idea to describe the opposite transition isassume that for the energy loss at the
surface the energy (considered with the Sabine lhade¢he middle of the room is relevant.

Thus the former diff. Eqn.20 with = 4V /S has to be altered to

== —ZE(t - At/2) (29)

whereAt = I—C\ = aTgqp IS the half of the time interval between two refiecs. Assuming, as the
first approximation an exponential decay accordivggSabine RT,

E(t—7) = E(t)e®/C%a) = E(t) e ~ E(t) (1 + a/2) (30.
Inserted into the differential. Eqn. 29 yields Hetential. Eqn. with a modified absorption factor
dE C(Z(l-l-%) _
@ =~ L EW® = —EO/Tsapshire (31).

The new time constant is
A
Tsavshift = pirayn ~ Tsan(1 = @/2) = Tgy (32)
Thus, again the Eyring reverberation time is redche

6.3. Kuttruff's 'repair’ of the Eyring formula allo wing a spreading of the free path lengths
The new parameter is here the relative varigrcef the free path lengths defined by

12-12 (33)
where[ is the mfp (calledA before),? its square and? the average over the squares. (A
variance of the absorption degrees is not congiderés still the mean absorption degree.)
Kuttruff's approach [1] is to consider the revedtem as a sum of an infinite number of decays
with different RTs, thus, a different number ofieetions N within the same time, weighted with
different probabilitiedPy,:

E(t) = EgX%_oPve VN (normalized byy%_, Py = 1) (34).
By expanding the exponential functions into a Tageries around the mean valaeN up to
the quadratic orderM = ct/ A is the average number of reflections) and thioing the
varianceoy? of the N reflections, the sum of these many decaysbe expressed as one unified

2 =
12

t
decayE (t) = Eye” = with a new time constant” = % with a correction term proportional to

C
the variancery 2. The effective absorption coefficient is then
a =o' (1—-y%a'/2) (35)



This is smaller than the Eyring exponerit So, with varying free path lengths the RT is leng
than without. Usually, depending of the room shdpe typical proportions from 1:1:1 to
1:10:10, the variance? is in the order of 0.4....0.6 (as found by numerieaperiments).
Kuttruff's derivation and Eqn. 35 is only valid famall absorption and /or the very first
reflections. The late reverberation with its diéflet non-mixing decays, remains always
governed by the weakest single decay, i.e. bydhgdst partial RT. However, one can see: The
variation of reflection moments furthers the ‘migieffect’ as it is, different from the Eyring
theory, tacitly assumed within the derivation oé t8abine formula. For ‘totally’ varying free
path lengthg? = 1 and with the expansiam’ = —In(1 — a) = a + a?/2 inserted into Eqn. 35

it turns out that

a"=a'(1—i):a(1+g)(1—g—a—)za (36)

2 2 2 4

in the first order. So, allowing totally varyinge& path lengths, the RT value of the Eyring
formula converges against the Sabine value.

7 ANALYTICAL APPROACHES FOR PARTIALLY DIFFUSE SOUN D FIELDS

In the following, some concepts shall be discussddch do not any longer assume
homogeneous and/or isotropic sound fields, yetl diffuse reflections. As mentioned, even
overall diffuse reflections do not guarantee audi#f sound field, the irradiation strengths on the
surfacedB; may not be constant. A base for the next derimatie Kuttruff's integral equation for
the irradiation strengttB(r,t) [1] here reproduced in the time dependent caskhowit (with
switched-off) sound source:

B(r,0) = [, p(r)B(r,t — R/c) =2 g0 (37)

where r is the receiver position, r" the positidragadiating surface element d8,the incident
angle,9” the emission angle from dR,= |r' — r| the distance between source and receiver

position and — R/c the earlier time of emission from r' (Fig. 9).eTherm <= s the

T

probability density per solid angle due to the Lembaw, the termcos(¥9)is due to the
projection onto the receiving surface element am ather sidep(r”) is the local reflection
coefficient. The equation (already found by Claag#] for heat transfer) describes the radiation
balance in a closed room with diffusely reflectswgfaces.

This integral equation can only be solved numdgday the time dependent ‘radiosity’ method.
A compromise is an iteration with the assumptioraofapproximately exponential decay where
the reverberation time is delivered as an EigerevgB). (This pays especially for solving the
problem of computing the absorption degrees of ispat in the non-diffuse sound fields of
reverberation rooms.)

7.1. Kuttruff's formula regarding the spreading of the absorption degrees

Aiming at an analytical approximation formula farsingle exponential decay, Kuttruff
found a formula taking into account the variancetlod absorption degrees. All irradiation
strengthdB are assumed to decay exponentially and all dis&Ram Eqn. 37 are replaced by the
same mean free path length By integrating the resulting equation over theolghsurface S,
and changing for practical reasons to a discretendtation with N plane surfaces,, an
‘effective’ new absorption exponent is obtained:

a' = —=In (ZrI\L’=1panSn) (38)

Y N=1BnSn



where thep,, are the surface's reflection degreges; YN_, p,S,./S is the mean reflection degree
and theB,, are the (unknown) irradiation strengths, eachrassuto be constant over a surface
S,. For constant irradiation strengtBs this would reproduce the Eyring absorption exmbne
a' = —Inp = —-In(1 — a,,,). Obviously, the new absorption exponent is notycml surface
weighted but also a irradiation weighted average.

Especially interesting in praxis are rectangutanns with high absorption on the (largest
area) floor and low absorption elsewhere. For thwldied cases of total floor absorption and
zero rest absorption, Kuttruff computed effectibs@ption exponents in the order of 10% (for a
1:1:1 cube) up to 20% (for a 5:2:1 shoe-box , wheleis the proportion of the floor rectangle)
over the Eyring value, hence, shorter reverberatroas [1].

In the typical case of one receiving high absomfleor and rather reflecting other surfaces, the
reasonable guess for the unknown irradiation sthex®), is that they are simply proportional to
the other surfaces times their reflection coeffitse After inserting the respective equation into
Eqgn 38, and some approximation for small correctaxtors, the result for an effective new
absorption degree taking a non-uniform absorptiba account turns out to be

12}

a’'=a +

2h=1(@m—an)(1-an)SA

Loy’ s? (39)
where thax,, are the absorption degrees of the surfaegstheir average, and'’ is the Eyring
absorption exponent. Analogously to Eyringjis;; = A/(c a'") andTg,:: = 6In(10) Tgyse-

At least for the frequent cases of one dominatingpebing surface (usually the floor), the term
to the right in Eqn. 39 is positive, and the Kuftformula yields lower RTs than according even
the Eyring value:Tsqp, > Tgy > Tiyee -

7.2. Fitzroy's subdivision into separate reverberabn processes in x-, y- and z-direction
Another early approach to take the special effett® non-uniform absorption distribution
or, better to say, anisotropy into account, is thatFitzroy [9]. Often, especially in planar
rectangular rooms with few scattering and henceingjxmore or less separate reverberation
processes establish in the three main axes' directiAssigning for each directigix,y,z) a
specific mean absorption coefficiesf, @, , a3 and 'typical' mean free path lengtids, A, ,
A5, one could derive, in the same way as for therfgyRT (section 4.1), specific reverberation
times T, T, and T; respectively. Fitzroy's empirical (somewhat naigejnpromise is just to
take the arithmetic surface weighted average dhede:

TFrzs?l'T1+i_2'T2+S?3'T3 (40)
where theS;, S, and S; are the surfaces of the room perpendicular taxtiig-direction. But:
what are the values of the surfacel, S, and S; in cases of non-rectangular rooms, the

projected fractions of all surfaces into the thd@ections? The choice of such three orthogonal
directions seems quite arbitrary.

7.3. Arau's improved reverberation formula

The same unanswered questions apply to the mdd&tan [10] who further developed
Fitzroy's model. The basic approach of his formidato account for different classes of
reflections {V;;i = 1,2,3 for x,y,z; out of N =) N; ) such that (instead of just one stepwise
decay as with the Eyring theory in Eqns. 14,15)ahergy decay is (in the first approach) now
described by



E(N) = Eo[1(1 — a)"i = E, - e~ 2N (41)
The first idea is that (as in a diffuse sound fielé. with constant surface irradiation) the
probabilities to hit a surfac® arep; = S;/S, such that the reflection numbers akg = N - p;.
Then) N;a;' = N - Y p;a;" and with

a =Ypa; (42)

a 'surface weighted absorption exponent' coulddb@ed (and from that as with Eqns.( 16,17) a
reverberation time). This would be different fram), = —In(1 — «,,,) (Eqn.15) and become
infinite (and the RT zero) if just oné = —In(1 — «; ) would become infinite, it; > 1 (one
‘'open window'). So this approach (once formulatgd/iellington — Sette as an 'improvement to
Eyring' [1]) is definitely wrong. The reason is, &wttruff showed, that thep; are just
probabilities, but the reflection numbers are ngaotly N; but the probability for e.gh;
reflections obeys a binominal distribution

N :
p() = () @™ a (ith N = N = Ny 43)

There are many sequences of reflections of diffeidasses. These are described by an
respective binominal distributed sum over differdatays (exponential functions as in Eqn. 41).
Kuttruff's result is: the surface weighted averggaof a mean absorption degreg (Eqn. 6) as
for the Sabine and Eyring formula is justified.
Now, also Arau went this way of introducing a limoal distribution (where a transition to
a logarithmic normal distribution is not quite alpalrhe arithmetic average of the absorption
exponent as in Eqn. 42 is now just applied to sedawithin the same class (e.g. opposite
parallel walls) for thesequential effects. For thesimultaneousreverberation processes, he
derives the formula:
Tpran = [l (@)P (44)
- an area weighted geometric mean of the weightesbration in the x,y,z- directions.
Component wise insertion into the usual reverbenatime formulae (like Eqns. 16,17) yields
for the reverberation time finally also an areagi#ed geometric mean:
Tarau = szx/s ) Tysy/s ) TZSZ/S (45)
The computed results, obtained separately for eatlylate RT, agreed astonishingly well — and
much better than Sabine and Eyring — with measumn&sne at least in a rectangular and highly
diffusing hall.

7.4. An Anisotropic Reverberation Model (ARM)

However, there is an important deficit at this &fidroy's method: the decisive 'mixing' between
the different reverberation classes caused by roorkess scattering walls is not taken into
account. This exactly is possible with ARM [11].elsemi-analytical ARM takes absorption and
scattering coefficients into account as well asdhientation of the surfaces, however, not their
positions. As a compromise between simple anakgften wrong) formulae and costly ray

tracing methods, it assumes still a homogeneotusabisotropic sound field. The idea is to

consider flowing sound energies in a group (typycabme thousands) of angular ranges (like
pyramidal beams but without defined origins) anddéfine coefficients describing transitions

between them over the relevant surfaces dependmgtheir absorption and scattering

coefficients and their orientation. This leads tinear system of ordinary differential equations.
This system can be solved either by iteration d@h\iigenvalues (partial RTs) and Eigenvectors
(energy distributions). The result gives informatan early and late reverberation times.



7 CONCLUSION

The "diffuse sound field" is a very idealistic asgtion. The reasons for the difference
between the Sabine and the Eyring formula arereifietacit additional assumptions. The ‘true’
reverberation times lie between the Sabine valud the Eyring value, as described by the
Kuttruff formula— provided the absorption degrees amall and not too different and all
reflections are diffuse and totally mixing — whiishan utopia. So actually, both the Sabine and
the Eyring formula are wrong. Strictly speakinggythmust not be applied in many cases of non-
perfectly diffuse reflections i.e. in many reatistases. Also all other reverberation formulae
assume perfectly diffuse reflections — which isragpnately often, but never perfectly the case.
They vyield rather small corrections depending om distribution of the absorption. However,
they cannot explain effects of partly geometriedlections which may be dominating in cases of
focusing on reflecting or absorbing surfaces capsmg. flutter echoes in shoe-box-rooms or
focusing effects in domes [12]. Reverberation tinmeson-diffuse sound fields depend on the
room shape, the distribution of the absorption a@specially the scattering coefficients.
In two other papers, presented to this conferesmme semi-analytical procedures are presented
to compute reverberation times as a function ofsitegtering coefficients, taking the anisotropy
into account [11]. For a semi-circular room witl focusing effects an analytical formula is
presented [3].
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Table 1 — Conditions for the diffuse sound fighdbfackets:

theoretical definitions practical conditions
— (in parenthes¢ tolerant versio)
g—
A) Isotropy (j=const) C) all absorption degrees zero
‘ (mean absorption dearee s
B) Homo_qenvelty (U=const) | - “ - D) all surfaces totally scatterin
B2) constant irradiation i.e Lambert diffuse refle_ctlon 5
(onlv some surfaces scatteri
of all surfaces
D2) totally mixing

¥ - - ¥

E) Definition of an 'equivalent absorption arga’'| F) Existence of a 'representative soynd
and an average absorption de: particle' and a 'mean free path len: f
+G) only one +H) only one constant
sound eergy \ free path lenatl
Sabine's reverberation form Evyring's reverberation formt

f

X ol
constant surface
4 irradiation

IR
/4 4N\
Fig. 1: Isotropy and homogeneity (same arrow lesgthevery direction everywhere,

at every 'array-cluster’); Fig. 1b: constant irredion of all surfaces (B2) following from B)
(homogeinity)

>

€

Fig 2 : Homogenous but anisotropic sound distribnti flutter echoes in a long rectangular
room with reflecting front-end but absorbing sidalls

e
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Fig. 3a: An absorbing piece of surface destroystguy,

3b): Each specular reflection destroys alsonspy (causes a peak in the array-cluster)
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Fig. 4: Two different exponential energy decays Fig. 6: A volume V of cross section Q
(green and blue, logarithmically displayed) in subdivided into n 'channels'
weakly couples sub-spaces or intodifferent dir@sip  5f cross section q and lengths
red curve: their sum — a non-.exponential decay Lig¥t L=V
3
{ j j ds
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Fig. 5a: The Lambert directivity (cosine-functiordl) reflected ray distributions simulated by
drawing random numbers for scattering coefficiesft®, 0.25 and 1.
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Fig. 7: The stepwise exponential energy decay asrasd by the Eyring theory as a function of
the number of reflections N in constant time irdés¥W¢ (energies in logarithmic scale);
straight green line: time average over many souadiges

Fig. 8: If SP1 hits wall S1,the total energy Ehe s1

room is reduced. Tacitly assumed by Sabine, this

information is transmitted immediately to SP2 such

that its energy is also reduced. Then its futurergn

loss due to absorption on wall S2 will be smalkert

otherwise leading to a longer reverberation timarth 5 @
due to Eyring.
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Fig. 9 Mutual irradiation of two P )
pieces of surface dS and dS' in a S e il
room: illustration of the / =
guantities in Kuttruffs integral ~e 5 //
equation [1] i S



