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Summary 
Firstly a theory of reverberation in rectangular rooms is formulated on the condition that only 
specular reflections occur from image sources. It is based on the idea that image sources are 
divided into the axial, tangential and oblique groups, which chiefly contribute to the 
corresponding normal mode groups in wave acoustics. As a result, the reverberation formula for 
rectangular rooms consists of seven kinds of exponential decay. Secondly, surface scattering is 
considered by introducing scattering coefficients to the above formula. The specular reflection 
field is simply formulated by substituting specular absorption coefficients, while the diffuse 
reflection field, in which energy is transformed from the specular reflection field at each reflection, 
is formulated with the decay in three-dimensional diffuse field. 

PACS no. 43.55.Br, 43.20.Fn 
 
1. Introduction1 

A variety of reverberation theories in rooms exist, 
originated from Sabine’s equation [1] on the 
assumption of diffuse field, modified by Eyring-
Norris [2, 3], Millington-Sette [4, 5],  Kuttruff [6, 
7], and for rectangular rooms, proposed by Fitzroy 
[8], Pujolle [9], Hirata [10], Arau-Puchades [11], 
Nilsson [12], Neubauer [13] etc.. As an interesting 
approach to non-diffuse field, Hirata derived a 
reverberation theory by the image source method, 
decomposing 1D, 2D and 3D fields. However, the 
theoretical development has a misunderstanding on 
field decomposition, and furthermore, room for 
reconsideration on average absorption coefficients. 
In this paper, firstly, a reverberation theory for 
specular reflection field in rectangular rooms is 
formulated by modifying Hirata’s theory. Secondly, 
considering surface scattering on the walls with 
scattering coefficients, an integrated reverberation 
theory for non-diffuse field is newly developed. 
 
2. Reverberation 2 of specular reflection 

field in rectangular rooms 

2.1. Specular field of image sources 

Consider the arrangement of image sources for a 
point source in a rectangular room (Figure 1), and 
estimate the number of sources in a very small 
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path at equal distance from a receiving point, 
distance attenuation and wall absorption. If the 
source is stopped at t = 0  in steady state, the 
energy density of specular reflection field in the 
room is expressed by 

Eob
S t( ) = W

4πcr2
1−αob( )

r
lob
4πr2dr
Vct

∞

∫ =
4W
cAob

e
−
αEob
lob

ct
 

( t ≥ 0 ) (1) 
where the 3D mean free path lob ≈ lr = 4V S , 
the room volume V , the total surface area S , 
Aob = SαEob , αEob = − ln 1−αob( ) ,  

 
αob = 2 LyLz α x

r + LzLx α y
r + LxLy α z

r( ) S  (2) 

 
α x(y,z )
r = 1− 1−α x(y,z )

r+( ) 1−α x(y,z )
r−( )  (3) 

α x(y,z )
r±  are the random-incidence absorption 

coefficients of two parallel walls, 
 
α x(y,z )
r  is the 

geometrical mean for alternate reflections between 
the walls, and αob  is assumed the area-weighted 
mean for the three directions. The above equation 
roughly corresponds to the specular field of 
oblique sources. In the following, other specular 

r

dr
Lx

Ly

Figure 1. Image sources of a rectangular room. 
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fields are considered by dividing image sources 
into axial, tangential and oblique groups, which 
chiefly contribute to 1D, 2D and 3D specular 
fields, respectively. 

2.2. Specular fields of axial sources 

Consider the image sources near the x-axis in the 
angular ranges within ±θaxy  and within ±θaxz  to 
the positive and negative x-directions (Figure 2), 
which lead to normal incidence for x-directional 
walls (yz-plane), and glazing incidence for y-/z-
directional walls. In the above ranges, if the path 
differences from a far image source in y-/z-
directions are within 1/4 wavelength (π/2 in phase), 
the source chiefly contribute to the corresponding 
axial modes in the wave theory. The path 
differences are Δ xy(z ) ≈ Ly(z ) sinθaxy(z ) ≈ Ly(z )θaxy(z ) , 
which giving the critical angles 
θaxy(z ) = πc 2ωLy(z )  (4) 
At the angles, the frequency of reflections for x-
directional walls nax ≈ c Lx , while those for y-/z-
directional walls naxy(z ) ≈ cθaxy(z ) Ly(z ) . In the 
angular ranges, the average frequencies nax ≈ nax , 
while nay(z ) ≈ nay(z ) 2 . Similarly to Eq. (1), the 
energy density of specular field from x-axial 
sources is given by 

 
Eax
S t( ) = 4W

c
1− α x

n( )
r
Lx 1− α y

g( )
θaxyr
2Ly 1− α z

g( )
θaxzr
2Lz

ct

∞

∫  

⋅
2 2θaxy( ) 2θaxz( )dr

4πV
 

=
4W
c

πc2Lx
2ω 2V 2 1−α ax( )

r
lx dr

ct

∞

∫ =
4W
c
2πc2Lx
ω 2VÂax

e
−
αEax
lx

ct
(5) 

where the 1D mean free path lx = Lx , 

Âax = 2Aax , Aax = 2LyLzαEax , αEax = − ln 1−α ax( ) , 

 
α ax = 1− 1− α x

n( ) 1− α y
g( )εaxy 1− α z

g( )εaxz  (6) 

εaxy(z ) =
naxy(z )
nax

≈
πcLx
4ωLy(z )

2  (7) 

 α x
n  is the normal-incidence absorption coefficient 

of x-directional walls, and 
 
α y(z )
g  are the glazing-

incidence values of y-/z-directional walls, where 
considering the geometrical mean for parallel 
walls according to Eq. (3). The total average value 
for the 1D field, α ax , is given by taking into 
account the frequency of reflections in every 
direction, with εaxy(z )  the average frequency ratio 
of y-/z-directional to x-directional walls. Note that 
in Eq. (5) the contribution of axial sources to 1D 
field is four times that of oblique sources to 3D 
field, which corresponds to the ratio of 
normalization factors in the mode theory. 

2.3. Specular fields of tangential sources 

In a similar way to axial sources, consider the 
image sources near the xy-plane in the angular 
range within ±θ tz  to the xy-plane, which lead to 
random incidence for x-/y-directional walls, and 
glazing incidence for z-directional walls (xy-plane). 
The critical angle is given by 
θ tz = πc 2ωLz  (8) 
In the anglular range, the average frequency of 
reflections for x- and y-directional walls is 
ntxy ≈ ntxy ≈ c lxy , where the 2D mean free path 
lxy = πLxLy 2 Lx + Ly( ) , and that for z-directional 
walls ntz ≈ ntz 2 ≈ cθ tz 2Lz . Similarly to Eq. (5), 
the energy density of specular field from xy-
tangential sources is given by 

 
Etxy
S t( ) = 2W

c
1− α xy

r( )
r
lxy 1− α z

g( )
θtzr
2Lz
2π 2θ tz( )dr
4πVct

∞

∫  

=
2W
c

πcLxLy
2ωV 2 1−α txy( )

r
lxy dr

ct

∞

∫ =
4W
c

πcLxLy
ωVÂtxy

e
−
αEtxy
lxy

ct

 (9) 
where Âtxy = 4 π( )Atxy , Atxy = 2 Lx + Ly( )LzαEtxy , 

αEtxy = − ln 1−α txy( ) , 

 
α txy = 1− 1− α xy

r( ) 1− α z
g( )ε tz  (10) 

 
α xy
r = Ly α x

r + Lx α y
r( ) Lx + Ly( )  (11) 

ε tz =
ntz
ntxy

≈
π 2cLxLy

8ω Lx + Ly( )Lz2
 (12) 

 
α xy
r  is the area-weighted mean random-incidence 

value for the two directions, and α txy  is the total 
average value for the 2D field, with ε tz  the ratio of 
average reflection frequencies of z-directional to 
x- and y-directional walls. Note that in Eq. (9) the 
contribution of tangential sources to 2D field is 
twice that of oblique sources to 3D field. 

2.4. Reverberation of total specular field 

Equation (1) includes the contributions of axial 
and tangential sources, and Eq. (9) includes that of 
axial sources. Excluding these contributions, and 

θaxy

Lx

Ly

y

x
θaxy

θaxy
θaxy

Δxy

Figure 2. Axial image sources for x-axis in xy-plane. 
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summing up Eqs. (1), (5) and (9), the total energy 
density of specular field in the room is given by 

ES(t) = 4W
c

γ ob
Aob

e
−
αEob
lob

ct
+

γ txyπcLxLy
ωVÂtxy

e
−
αEtxy
lxy

ct

xy
∑

⎡

⎣
⎢
⎢

 

+
2πc2Lx
ω 2VÂax

e
−
αEax
lx

ct

x
∑

⎤

⎦
⎥
⎥

 (13) 

where γ ob = 1−πcS 4ωV +πc2L 8ω 2V , 

γ txy = 1− c Lx + Ly( ) ωLxLy , 

L = 4 Lx + Ly + Lz( ) , 

thus the reverberation of the total specular field is 
composed of seven kinds of exponential decay, 
arising from one oblique, three tangential and 
three axial source groups. Each decay rate is given 
by 
Dob(txy,ax )
S = 10 lg e ⋅cαEob(txy,ax ) lob(xy,x )  (14) 

2.5. Correspondece to wave theory 

Equation (13) entirely corresponds to the equation 
derived from the mode theory [14]. The critical 
angles for axial and tangential image sources can 
be interpreted in view of normal mode distribution 
in wavenumber space (Figure 3). Supposing the 
ranges dominated by axial modes to be within the 
middle to the adjacent oblique modes, the critical 
angles are determined depending on wavenumber 
as follows 
π 2Ly(z ) = k sinθaxy(z ) ≈ kθaxy(z )  (15) 
which is consistent with Eq. (4). Thus it can be 
stated that the angular ranges for axial/tangential 
image sources approximately correspond to the 
axial/tangential modes in wavenumber space. Note 
that Hirata [10] determined different angular 
ranges from the above in an ambiguous discussion, 
and also used the arithmetic means wighted with 
the reflection frequency of every direction as the 
total average absorption coefficients, which finally 
leading to different decay rates. 

θaxy
kx

ky

π/2Ly
π/Lx

π/Ly

k

θayx

π/2Lx  
Figure 3. Axial modes in xy-plane in k-space. 
 

3. Reverberation in rectangular rooms 
with surface scattering 

3.1. Specular field with surface scattering 

The sound energy propagating from image sources 
can be divided into specular and diffuse reflection 
components by introducing scattering coefficients 
of wall surfaces [15]. Considering the specular 
field as not scattered throughout every path from a 
source to a receiving point (Figure 4), the energy 
density is given by replacing all values related to 
absorption coefficient with those related to 
specular absorption coefficient β =α + (1−α )s , 
where s  is the scattering coefficient. Accordingly, 
Eq. (13) is  modified by substituting all kinds of 

 
β , βE , B  and B̂  for  α , αE , A , and Â . 

r’

specu
lar r

efle
ctio

n path

diffu
se r

efle
ctio

n path

r−r’

random incidence

lr

 
Figure 4. Transition from specular to diffuse reflections. 

3.2. Diffuse field with surface scattering 

It is considered that a part of specular energy is 
transformed into diffuse energy at every reflection, 
and after the transition, the energy is decayed by 
perfectly diffuse reflections in the 3D diffuse field. 
Estimating the energy scattered at an arbitrary 
distance ′r  from a source and decayed before and 
after the transition, and integrating it with respect 
to ′r  throughout every path, the energy density of 
diffuse field is given by 

Eob
D t( ) = W

c
1− βob( )

′r
lob 1−α r( )

r− ′r
lr
sEobd ′r
lob0

r

∫ dr
Vct

∞

∫  

=
W
c
µob 1−α r( )

r
lr − 1− βob( )

r
lob

⎛
⎝⎜

⎞
⎠⎟
dr
Vct

∞

∫  

=
4W
c

µob
1
Ar
e
−
αEr
lr
ct
−
1
Bob

e
−
βEob
lob

ct⎛

⎝
⎜

⎞

⎠
⎟  (16) 

where µob =
sEob lob

βEob lob −αEr lr
, 
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Ar = SαEr , αEr = − ln 1−α r( ) , sEob = − ln 1− sob( ) , 

βEob = − ln 1− βob( ) =αEob + sEob , 

 
sob =

LyLz rx
r sx
r + LzLx ry

r sy
r + LxLy rz

r sz
r

LyLz rx
r + LzLx ry

r + LxLy rz
r  (17) 

 
rx(y,z )
r = 1− α x(y,z )

r , 

α r  is the area-weighted mean of random-
incidence absorption coefficients, 

 
sx(y,z )
r  is the 

geometrical mean of random-incidence scattering 
coefficients of two parallel walls, and sob  is 
assumed the arithmetic mean weighted with the 
area and the reflection coefficient of every 
direction. In Eq. (16), the rate of scattered energy 
in a very small path is given by  

lim
d ′r →0

1− 1− sob( )
d ′r
lob = lim

d ′r →0
1− e

−
sEobd ′r
lob →

sEobd ′r
lob

 (18) 

Note that for oblique sources the relations lob ≈ lr  
and αob ≥α r  result in 0 ≤ µob ≤1  and Bob ≥ Ar . 

3.3. Diffuse fields of axial sources 

Similarly to the above section, the energy density 
of diffuse field from x-axial sources is given by 

 
Eax
D t( ) = W

c
1− βx

n( )
′r
Lx 1− βy

g( )
θaxy ′r
2Ly 1− βz

g( )
θaxz ′r
2Lz

0

r

∫ct

∞

∫  

⋅ 1−α r( )
r− ′r
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sEaxd ′r
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2 2θxy( ) 2θxz( )dr
4πV

 

=
W
c
πc2Lx
2ω 2V

1− βax( )
′r
lx 1−α r( )

r− ′r
lr
sEaxd ′r
lx0

r

∫ dr
Vct

∞

∫  

=
W
c
2πc2Lx
ω 2V

µax
1
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e
−
αEr
lr
ct
−
1
B̂ax

e
−
βEax
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ct⎛

⎝
⎜

⎞

⎠
⎟  (19) 

where µax =
sEax lx

βEax lx −αEr lr
, sEax = − ln 1− sax( ) , 

sax  is the total average scattering coefficient given 
similarly to Eq. (6), with  sx

n  the normal-incidence 
value of x-directional walls and 

 
sy(z )
g  the glazing-

incidence values of y-/z-directional walls, as the 
geometrical mean for parallel walls. In contrast to 
Eq. (5), the above equation do not involve the 
ratio of normalization factors for axial modes. If 
βEax lx >αEr lr , µax ≥ 0  and B̂ax > Ar , otherwise 
changing the signs of inequality. In a singular case 
that βEax lx =αEr lr , Eq. (19) can be transformed 
into 

Eax
D t( ) = W

c
2πc2Lx
ω 2V

sEax
βEax

1+ αEr

lr
ct

⎛
⎝⎜

⎞
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1
Ar
e
−
αEr
lr
ct

 (20) 

3.4. Diffuse fields of tangential fields 

Similarly to axial sources, the energy density of 
diffuse field from xy-tangential sources is given by 

 
Etxy
D t( ) = W

c
1− βxy

r( )
′r

lxy 1− βz
g( )
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2Lz

0
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W
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′r

lxy 1−α r( )
r− ′r
lr
sEtxyd ′r
lxy0

r

∫ dr
Vct

∞
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c
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1
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 (21) 

where µtxy =
sEtxy lxy

βEtxy lxy −αEr lr
, sEtxy = − ln 1− stxy( ) , 

stxy  is the total average scattering coefficient given 
similarly to Eqs. (10) and (11), with modifying the 
latter as 

 
sxy
r = Ly rx

r sx
r + Lx ry

rr sy
r( ) Lx rx

r + Ly ry
rr( )  (22) 

where assuming the arithmetic mean weighted 
with area and reflection coefficient. Again, if 
βEtxy lxy >αEr lr , µtxy ≥ 0  and B̂txy > Ar , otherwise 
changing the signs of inequality, and in a singular 
case that βEtxy lxy =αEr lr , Eq. (21) can be 
transformed into 

Eax
D t( ) = W

c
2πcLxLy
ωV

sEtxy
βEtxy

1+ αEr

lr
ct

⎛
⎝⎜

⎞
⎠⎟
1
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e
−
αEr
lr
ct

(23) 

3.5. Reverberation of total diffuse field 

Similarly to specular field, summing up Eqs. (16), 
(19) and (21) with excluding the duplicate 
contributions, the total energy density of diffuse 
field in the room is given by 

ED(t) = 4W
c

γ obµob
1
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e
−
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ct
−
1
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e
−
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⎜
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⎝
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∑

⎤

⎦
⎥
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 (24) 

From the above, the steady state energy density at 
t = 0  is expressed by 

ED(0) = 4W
cAr

γ ob
sEob
βEob

+
γ txyπcLxLy
2ωV

sEtxy
βEtxyxy

∑
⎛

⎝
⎜  

+
πc2Lx
2ω 2V

sEax
βEaxx

∑ ⎞
⎠⎟

 (25) 

The reverberation of the total diffuse field is also 
apparently composed of seven kinds of decay, but 
not pure exponential decay. With the decay rate of 
the 3D diffuse field Dr

D = 10 lg e ⋅cαEr lr , the rates 
for source groups are given by 
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Dob
D t( ) = Dr

D 1− e
−

βEob
lob

−
αEr
lr

⎛
⎝⎜

⎞
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ct

1− Ar Bob( )e
−

βEob
lob

−
αEr
lr

⎛
⎝⎜

⎞
⎠⎟
ct

 (26) 

and Dtxy(ax )
D t( )  with substituting B̂txy(ax ) , βEtxy(ax )  

and lxy(x )  for Bob , βEob  and lob . Just after stopping 
the source ( t→ 0 ), Dob(txy,ax )

D (t)→ 0  for all seven 
components. On the other hand, after a long time 
( t→∞ ), Dob

D t( )→ Dr
D ≤ Dob

S  for oblique sources, 
while Dtxy(ax )

D t( )→min Dr
D ,Dtxy(ax )

S( )  for axial and 
tangential sources, where the modified decay rates 
of specular fields are given by 
Dob(txy,ax )
S = 10 lg e ⋅cβEob(txy,ax ) lob(xy,x )  (27) 

Accordingly, the decay of the total diffuse field is 
Dr
D  at maximum. 

3.6. Integrated reverberation in rooms 

Adding the energy density of specular and diffuse 
fields in Eqs. (13) and (24), the overall energy 
density in the room is expressed by 

E(t) = 4W
c

γ r
Ar
e
−
αEr
lr
ct
+
γ ob 1− µob( )

Bob
e
−
βEob
lob

ct⎡

⎣
⎢
⎢

 

+
γ txyπcLxLy
2ωV

2 − µtxy
B̂txy

e
−
βEtxy
ltxy

ct
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∑  

+
πc2Lx
2ω 2V

4 − µax
B̂ax

e
−
βEax
lax

ct

x
∑

⎤

⎦
⎥
⎥

 (28) 

where 

γ r = γ obµob +
γ txyπcLxLyµtxy

2ωVxy
∑ +

πc2Lxµax
2ω 2Vx

∑ , 

Consequently, the reverberation of the total field 
in a rectangular room is apparently composed of 
eight kinds of exponential decay, which 
correspond to seven rates for specular fields and 
one for the 3D diffuse field. 
 
4. Case study based on the new theory of 

reverberation 

4.1. Conditions of rooms 

As a case study based on the above theory, the 
energy density levels relative to L0 = 10 lg W c( )  
are calculated for rectangular rooms with a volume 
1000 m3, an absorption area 210 m2, and different 
aspect ratios and distributions of absorption (Table 
I), additionally assuming that the absorption and 
scattering coefficients have no dependence of 
incidence angle, and the latter has an uniform 
value for all surfaces. Based on the conventional 
diffuse field theories, the reverberation times by 
Sabine’s equation are 0.77 sec for all cases, and 

those by Eyring’s are 0.62 sec for Cases 1a/b, and 
0.65 sec for Cases 2a/b. 

Table I. Conditions of rectangular rooms. 
Case Lx (m) Ly (m) Lz (m) αx αy αz 

1a 10 10 10 0.35 0.35 0.35 
1b 10 10 10 0.10 0.35 0.60 
2a 20 10 5  0.30 0.30 0.30 
2b 20 10 5 0.10 0.20 0.40 

4.2. Reverberation of non-diffuse field 

As a calculated example, Figure 5 shows the 
energy decay of specular, diffuse and total fields 
for Case 1b with a scattering coefficient of 0.1, at 
500 and 2000 Hz. It is seen that the decay curve of 
the specular field for every source group is straight, 
but not for the diffuse field. Compared between 
the two frequencies, the energy density levels of 
axial and tangential sources are higher, and the 
curvature of the total decay is more remarkable at 
the lower frequency. 

4.3. Effect of surface scattering 

Figure 6 shows the energy decay for Cases 1a/b 
and 2a/b, with uniformly changing the scattering 
coefficient from 0.05 to 0.8. In Case 1a (cube, 
uniform absorption), surface scattering does not 
affect the total decay, but remarkably does in the 
other cases. It is seen that with increasing the 
scattering coefficient, the decay of specular field 
steadily becomes greater, and additionally its 
curvature is suppressed. However, the change of 
scattering coefficient from 0.4 to 0.8 hardly affects 
the total decay in all cases. 
 
5. Conclusions 

A general theory of reverberation in rectangular 
rooms was developed, which is based on the 
image source method with decomposing 1D, 2D 
and 3D specular fields, and considering diffuse 
fields caused by surface scattering. It describes 
that the total reverberation is apparently composed 
of seven kinds of exponential decay for specular 
fields and one for the 3D diffuse field. A case 
study demonstrated the energy decay of each 
specular and diffuse fields, and the effect of 
surface scattering on the reverberation in non-
diffuse fields. 
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Figure 5. Energy decay of specular, diffuse and total 
fields for Case 1b with a scattering coefficient of 0.1: 
(a) 500 Hz, (b) 2000 Hz. 
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Figure 6. Energy decay of specular, diffuse and total 
fields at 500 Hz, with changing the scattering 
coefficient from 0.05 to 0.8: (a) Case 1a, (b) Case 1b, 
(c) Case 2a, (d) Case 2b. 
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