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Summary

Firstly a theory of reverberation in rectangular rooms is formulated on the condition that only
specular reflections occur from image sources. It is based on the idea that image sources are
divided into the axial, tangential and oblique groups, which chiefly contribute to the
corresponding normal mode groups in wave acoustics. As a result, the reverberation formula for
rectangular rooms consists of seven kinds of exponential decay. Secondly, surface scattering is
considered by introducing scattering coefficients to the above formula. The specular reflection
field is simply formulated by substituting specular absorption coefficients, while the diffuse
reflection field, in which energy is transformed from the specular reflection field at each reflection,
is formulated with the decay in three-dimensional diffuse field.

PACS no. 43.55.Br, 43.20.Fn

1. Introduction v\

A variety of reverberation theories in rooms exist, e
originated from Sabine’s equation [1] on the o] oo z o [lo |0
assumption of diffuse field, modified by Eyring- L I
Norris [2, 3], Millington-Sette [4, 5], Kuttruff [6, S N dr
7], and for rectangular rooms, proposed by Fitzroy L

[8], Pujolle [9], Hirata [10], Arau-Puchades [11],
Nilsson [12], Neubauer [13] etc.. As an interesting
approach to non-diffuse field, Hirata derived a
reverberation theory by the image source method,
decomposing 1D, 2D and 3D fields. However, the
theoretical development has a misunderstanding on
field decomposition, and furthermore, room for
reconsideration on average absorption coefficients. = . ) Oy
In this paper, firstly, a reverberation theory for E:b (t)zj w - (l_aob)g anr dr:4_We o
specular reflection field in rectangular rooms is a 4mer 14 Ay,
formulated by modifying Hirata’s theory. Secondly, (#=0) (D)
considering surface scattering on the walls with  where the 3D mean free path [, = =4V/S,
scattering coefficients, an integrated reverberation  the room volume V, the total surface area S,

Figure 1. Image sources of a rectangular room.

path at equal distance from a receiving point,
distance attenuation and wall absorption. If the
source is stopped at r=0 in steady state, the
energy density of specular reflection field in the
room is expressed by

theory for non-diffuse field is newly developed. A, =Sa,, , O, = —ln(l _ aob) ,
2. Reverberation of specular reflection %= 2(Lyde; +L Lo +L.La; )/ S (2)
field in rectangular rooms o o -
Uiy = 1- \/(1 - a~r(y,2>)(1 aX(y.Z)) 3)
2.1. Specular field of image sources a;fy,z) are the random-incidence absorption

coefficients of two parallel walls, &, is the
geometrical mean for alternate reflections between
the walls, and « is assumed the area-weighted
mean for the three directions. The above equation
roughly corresponds to the specular field of

oblique sources. In the following, other specular

Consider the arrangement of image sources for a
point source in a rectangular room (Figure 1), and
estimate the number of sources in a very small
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fields are considered by dividing image sources
into axial, tangential and oblique groups, which
chiefly contribute to 1D, 2D and 3D specular
fields, respectively.

2.2. Specular fields of axial sources

Consider the image sources near the x-axis in the
angular ranges within 6, and within £6,_t
the positive and negative x-directions (Figure 2),
which lead to normal incidence for x-directional
walls (yz-plane), and glazing incidence for y-/z-
directional walls. In the above ranges, if the path
differences from a far image source in y-/z-

directions are within 1/4 wavelength (n/2 in phase),

the source chiefly contribute to the corresponding
axial modes in the wave theory The path
differeneee are A%)‘(.Z) ~L,,sin0, . =L 0, . ,
which giving the critical angles

0, = Tc/20L, 4

At the angles, the frequency of reflections for x-
directional walls n,, zc/L , while those for y-/z-
directional walls n,  =c,,. /L., . In the
angular ranges, the average frequenc1es n, =n,
while ., =n,. /2. Similarly to Eq. (1) the
energy density of specular field from x-axial
sources is given by

PO LA e ot

)i (1) (1)
” 2(26,,)(26,,.)dr
4rv
43’ Z) 1L/2 _[ (1-e, )i dr= @ Z;ZAL S
where the 1D mean free path £, = L

w=2A,, A =2L Lo

ax ?

A AR

Ny 7L,
e _ e € 7)

axy(z) —
n, 4a)L)(Z)

&)

X °

=-In(l-e,),

Eax —

o

Eax >

¢! is the normal-incidence absorption coefficient
of x-directional walls, and &, are the glazing-
incidence values of y-/z-directional walls, where
considering the geometrical mean for parallel
walls according to Eq. (3). The total average value
for the 1D field, «, , is given by taking into
account the frequency of reflections in every
direction, with g, ., the average frequency ratio
of y-/z-directional to x-directional walls. Note that
in Eq. (5) the contribution of axial sources to 1D
field is four times that of oblique sources to 3D
field, which corresponds to the ratio of
normalization factors in the mode theory.

o o ) ) o o o o o
1 e
| ax
ay T e W P ﬁc
I ——H ]
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axy
Lv o o o o ) o o o o (o)
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Figure 2. Axial image sources for x-axis in xy-plane.

2.3. Specular fields of tangential sources

In a similar way to axial sources, consider the
image sources near the xy-plane in the angular
range within 26, to the xy-plane, which lead to
random incidence for x-/y-directional walls, and
glazing incidence for z-directional walls (xy-plane).
The critical angle is given by

6, =nc/20L, (8)
In the anglular range, the average frequency of
reflections for x- and y-directional walls is
n,, =n, =c/l , where the 2D mean free path
[, —7rL L, 2(L. +L ), and that for z-directional
walls n.=n, /2~c9 /2L Similarly to Eq. (5),
the energy density of specular field from xy-
tangential sources is given by

:_J» (1= ag)u 27 (26, )dr
47tV
T 20v? J VT Ee TS coVAL
)

where A, =(4/m)A,,, A, =2(L,+L )Ly,
Opyy =—In(1-0t,, ),

=1-(1-a;)(1-a2)" (10)
a=(La+La)/(L,+L) (11)

7. m’cL L,
£, = =% « (12)

T, 8w(L, +L)L

T

., is the area-weighted mean random-incidence
value for the two directions, and ¢, is the total
average value for the 2D field, with &_ the ratio of
average reflection frequencies of z-directional to
x- and y-directional walls. Note that in Eq. (9) the
contribution of tangential sources to 2D field is
twice that of oblique sources to 3D field.

2.4. Reverberation of total specular field

Equation (1) includes the contributions of axial
and tangential sources, and Eq. (9) includes that of
axial sources. Excluding these contributions, and
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summing up Egs. (1), (5) and (9), the total energy
density of specular field in the room is given by

4W ,J/ob

¢ ob

2nc’L, e
+) ———e * 13
; w’VA,, (13)

where 7, =1-ncS/40V +nc’L/80°V ,

Yo =1-¢(L,+L,)[oLL,,

L=4(L+L,+L),
thus the reverberation of the total specular field is
composed of seven kinds of exponential decay,

arising from one oblique, three tangential and
three axial source groups. Each decay rate is given

by
Ds

ob(txy,ax)

Etxy

Oy L«
:bb + z J/vanCL L Ly “
. a)VA

ES(t)=

=101g e € Olpyry ey /Lobiy (14)

2.5. Correspondece to wave theory

Equation (13) entirely corresponds to the equation
derived from the mode theory [14]. The critical
angles for axial and tangential image sources can
be interpreted in view of normal mode distribution
in wavenumber space (Figure 3). Supposing the
ranges dominated by axial modes to be within the
middle to the adjacent oblique modes, the critical
angles are determined depending on wavenumber
as follows

n/2L,., =ksin,  ~kO, (15)

which is consistent with Eq. (4). Thus it can be
stated that the angular ranges for axial/tangential
image sources approximately correspond to the
axial/tangential modes in wavenumber space. Note
that Hirata [10] determined different angular

ranges from the above in an ambiguous discussion,

and also used the arithmetic means wighted with
the reflection frequency of every direction as the
total average absorption coefficients, which finally
leading to different decay rates.

kv e ayx

JT/Ly‘

P2

—

\
n/2L, 11——/ 0.

7/2L, /L

Figure 3. Axial modes in xy-plane in k-space.
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3. Reverberation in rectangular rooms
with surface scattering

3.1. Specular field with surface scattering

The sound energy propagating from image sources
can be divided into specular and diffuse reflection
components by introducing scattering coefficients
of wall surfaces [15]. Considering the specular
field as not scattered throughout every path from a
source to a receiving point (Figure 4), the energy
density is given by replacing all values related to
absorption coefficient with those related to
specular absorption coefficient f=o+(1-a)s ,
where s is the scattering coefficient. Accordingly,
Eq. (13) is modified by substituting all kinds of
B, Bz, Band B for &, o, A,and A.

random incidence

Figure 4. Transition from specular to diffuse reflections.

3.2. Diffuse field with surface scattering

It is considered that a part of specular energy is

transformed into diffuse energy at every reflection,

and after the transition, the energy is decayed by

perfectly diffuse reflections in the 3D diffuse field.

Estimating the energy scattered at an arbitrary
distance r” from a source and decayed before and
after the transition, and integrating it with respect
to r’ throughout every path, the energy density of
diffuse field is given by

J‘ J‘ a) Eobdr dr
/ V

ob

—Vjuob | [(1 )1~ ﬁomj%

O Beon

aw (1 a1 Lema

Sy [ (16)
c 141- Bob

Ston /Lop

ﬁEob/lob _aEr/lr ’

where U, =
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A =S80y, oy =-In(1-0,), s, =—In(1-5s,),

Beo» = ln(l Bob) Oy, + Sggp 5
LL, 7S +L L, Fr§r+L L 7§

sob - ~r ~r ~ i,-z - (17)
L},Lzrx + LzLxry + LXL_VrZ

P =1-a

x(y.2) x(y.2) ?
¢, is the area-weighted mean of random-
incidence absorption coefficients, §,_ is the
geometrical mean of random-incidence scattering
coefficients of two parallel walls, and s, is
assumed the arithmetic mean weighted with the
area and the reflection coefficient of every
direction. In Eq. (16), the rate of scattered energy
in a very small path is given by
dr’ _Sendr’

liml—(1-s,)w =liml—e ™
dr'—0 ( "b) dr'—0

N —SE;bdr (18)

ob
Note that for oblique sources the relations [, =1,
and o, 2, resultin 0<u, <1 and B, =2 A, .
3.3. Diffuse fields of axial sources

Similarly to the above section, the energy density
of diffuse field from x- ax1al sources 1s given by

T - -

(1-a,) 7 S 2(26,,)(26,.)dr

[ 4rv
W rnc’L, (= (7 = s dr’ d
_v szJ‘ j(l —ar)lr M_’-
C 260V ct 0 l V

X

W 27c’L 1 SEa o P
=_#‘uax£_e b ok J (19)
c oV

Spar /1
where p, =——"> 5 =—In(l-s,),
ﬁEax/lx _aEr/lr
s, 1s the total average scattering coefficient given

similarly to Eq. (6), with §! the normal-incidence
value of x-directional walls and §_ the glazing-
incidence values of y-/z-directional walls, as the
geometrical mean for parallel walls. In contrast to
Eq. (5), the above equation do not involve the
ratio of normalization factors for axial modes. If
Ben /1, >0 /L, 20 and B >A , otherwise
changing the signs of inequality. In a singular case
that B, /I, =g/l , Eq. (19) can be transformed

into

2mc’L 1

Ejj_(z):K 0 Se Qe | 07 (20)
c wV ﬁEax l 14r

T

3.4. Diffuse fields of tangential fields

Similarly to axial sources, the energy density of
diffuse field from xy-tangential sources is given by

eaio =" [ (-B) ()

(1-a )r» Seuydr’ 27(26 ) dr

luy 4rv

_w mel L, J' J' ﬂL )’Z’ Sedr” dr
c 20V Y I, Vv

By

W 27176'14,(14v 1 —%ct 1 —T)ct
- ' —e T — — e Xy 21
c v Mla B, -

r Y
S /1

where 41, = ey /oy - ——ln(l—suy),

Breo /Ly = Ot/
S, 18 the total average scattering coefficient given
similarly to Eqgs. (10) and (11), with modifying the
latter as
§t=(Ls 4+ L) (L7 + L) (22)
where assuming the arithmetic mean weighted
with area and reflection coefficient. Again, if
Bew /1y >0t /1, f,,, 20 and f?m > A, , otherwise
changing the signs of inequality, and in a singular
case that B /I =0/l , Eq. (21) can be
transformed into

E,(t)= WameLL, Suy () O )L 0
v ¢ (OV ﬁEny T

3.5. Reverberation of total diffuse field

Similarly to specular field, summing up Egs. (16),
(19) and (21) with excluding the duplicate
contributions, the total energy density of diffuse
field in the room is given by

Ok Beon
4W 1 —a 1 —Eob oy
EP(1) =" e ——
(1) - [%bﬂob [ A B, ]

T

]/M\'ECLXLV 1 - 1 L, “
+ ) — |—e T ——=—e "
2 20 | 4, B,
2 Oy Beax
e L 1 1
+ . —e " ——=—e " 24
200 uu(AT 3 J] (24)

From the above, the steady state energy density at
t =0 is expressed by

ED (0) — 4W ,}/Ob SEob +Z ’}/LU'”CL LV SEUC)
ﬁEob Xy 20)V ﬁEDcy
2
'L, sy
+y ——~ 25
; 20)2V ﬁEax ] ( )
The reverberation of the total diffuse field is also
apparently composed of seven kinds of decay, but
not pure exponential decay. With the decay rate of

the 3D diffuse field D° =101ge-cay, /L. , the rates
for source groups are given by
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,[@,h]w
]ob lr

DY(1)= D0 — 6)
(a/pe =
and Dgy(m)(t) with substituting l}m,(ax) s Beugya

components. On the other hand, after a long time
(t—> o), D) (t)— DP < D3, for oblique sources,
while DE),(M(t)—)min(DrD ,DSO,(M)) for axial and
tangential sources, where the modified decay rates

of specular fields are given by

be(txy,ax} = 10 lg e CﬁEob(Lx)‘,ax)/lob(xy,x) (27)
Accordingly, the decay of the total diffuse field is
DrD at maximum.

3.6. Integrated reverberation in rooms

Adding the energy density of specular and diffuse
fields in Eqs. (13) and (24), the overall energy
density in the room is expressed by

o,

4W LeiTCt + ,}/ob (1 - uob ) e

_Bew ¢

1

E(t)=— o
( ) c 141_ Bob
Bas,
+z YLX)'ECLxLy 2_A'LL'X) e—?t‘
o 20V B,
2 ﬁl}m
mwe'L 4—-p, e
+ L% 28
; 20°V B, 28)
where

_ Y TeL L nc’L u,,
Ve = Yaolon +Z A Ty
Consequently, the reverberation of the total field
in a rectangular room is apparently composed of
eight kinds of exponential decay, which
correspond to seven rates for specular fields and
one for the 3D diffuse field.

b
X

4.  Case study based on the new theory of
reverberation

4.1. Conditions of rooms

As a case study based on the above theory, the
energy density levels relative to L, =101g(W/c)
are calculated for rectangular rooms with a volume
1000 m3, an absorption area 210 mz, and different
aspect ratios and distributions of absorption (Table
I), additionally assuming that the absorption and
scattering coefficients have no dependence of
incidence angle, and the latter has an uniform
value for all surfaces. Based on the conventional
diffuse field theories, the reverberation times by
Sabine’s equation are 0.77 sec for all cases, and

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767

those by Eyring’s are 0.62 sec for Cases la/b, and
0.65 sec for Cases 2a/b.

Table I. Conditions of rectangular rooms.

Case | Ly(m) | Ly(m) | L, (m) | a, ay 0,
la 10 10 10 0.35 | 0.35 | 0.35
1b 10 10 10 0.10 | 0.35 | 0.60
2a 20 10 5 0.30 | 0.30 | 0.30
2b 20 10 5 0.10 | 0.20 | 0.40

4.2. Reverberation of non-diffuse field

As a calculated example, Figure 5 shows the
energy decay of specular, diffuse and total fields
for Case 1b with a scattering coefficient of 0.1, at
500 and 2000 Hz. It is seen that the decay curve of
the specular field for every source group is straight,
but not for the diffuse field. Compared between
the two frequencies, the energy density levels of
axial and tangential sources are higher, and the
curvature of the total decay is more remarkable at
the lower frequency.

4.3. Effect of surface scattering

Figure 6 shows the energy decay for Cases la/b
and 2a/b, with uniformly changing the scattering
coefficient from 0.05 to 0.8. In Case la (cube,
uniform absorption), surface scattering does not
affect the total decay, but remarkably does in the
other cases. It is seen that with increasing the
scattering coefficient, the decay of specular field
steadily becomes greater, and additionally its
curvature is suppressed. However, the change of
scattering coefficient from 0.4 to 0.8 hardly affects
the total decay in all cases.

5. Conclusions

A general theory of reverberation in rectangular
rooms was developed, which is based on the
image source method with decomposing 1D, 2D
and 3D specular fields, and considering diffuse
fields caused by surface scattering. It describes
that the total reverberation is apparently composed
of seven kinds of exponential decay for specular
fields and one for the 3D diffuse field. A case
study demonstrated the energy decay of each
specular and diffuse fields, and the effect of
surface scattering on the reverberation in non-
diffuse fields.

Acknowledgement

This project has been funded by the Grant-in-Aid
Scientific Research from Japan Society for the
Promotion of Science (No. 21360275).

1963



1964

FORUM ACUSTICUM 2011
27. June - 1. July, Aalborg

Sakuma: Theory of reverberation in rooms

References

[1] W. C. Sabine: Collected paper on acoustics, Harvard
Univ. Press, 1922.

[2] C. F. Eyring: Reverberation time in “dead” rooms, J.
Acoust. Soc. Am. 1 (1930) 217-241.

[3] R. F. Norris: A derivation of the reverberation formula,
Architectural Acoustics ed. V. O. Knudsen, Appendix 11,
John Wiley & Sons, New York, 1932.

[4] G. Millington: A modified formula for reverberation, J.
Acoust. Soc. Am. 4 (1932) 69-82.

[S]W. J. Sette: A new reverberation time formula, J.
Acoust. Soc. Am. 4 (1933) 193-210.

[6] H. Kuttruff: Wegléngverteilung und Nachhallverlauf in
Raumen mit diffuse reflektierenden Winden, Acustica
23 (1970) 238-239.

[7]1 H. Kuttruff: Nachhall und effektive Absorption in
Riaumen mit diffuser Wandreflexion, Acustica 35,
(1976) 141-153.

[8] D. Fitzroy: Reverberation formula which seems to be
more accurate with nonuniform distribution of
absorption, J. Acoust. Soc. Am. 31 (1959) 893-897.

[9]J. Pujolle: Nouvelle formule pour la durée de
réverbération, Rev. d’Acoust. 19 (1975) 107-113.

[10] Y. Hirata: Geometrical acoustics for rectangular
rooms, Acustica 43 (1979), 247-252.

[11] H. Arau-Puchades: An improved reverberation
formula, Acustica 65 (1988) 163-179.

[12] E. Nilsson: Decay processes in rooms with non-
diffuse sound fields, Report TVBA-1004, Lund Inst.
Tech., 1992.

[13] R. O. Neubauer: Estimation of reverberation time in
rectangular rooms with non-uniformly distributed
absorption using a modified Fitzroy equation, Build.
Acoust. 8 (2001) 115-137.

[14] P. M. Morse and R. H. Bolt: Sound waves in rooms,
Rev. Mod. Phys. 16 (1944).

[15] M. Vorlinder and E. Mommertz: Definition and
measurement ~ of  random-incidence  scattering
coefficients, Appl. Acoust. 60 (2000) 187-200.

| Specular | Specular

Energy Density Level (dB)

Timé (s)

(a) 500 Hz (b) 2000 Hz

Figure 5. Energy decay of specular, diffuse and total
fields for Case 1b with a scattering coefficient of 0.1:
(a) 500 Hz, (b) 2000 Hz.
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Figure 6. Energy decay of specular, diffuse and total
fields at 500 Hz, with changing the scattering
coefficient from 0.05 to 0.8: (a) Case la, (b) Case 1b,
(c) Case 2a, (d) Case 2b.
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